Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (448)

Search Parameters:
Keywords = microwave absorber

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 3097 KB  
Article
Reconfigurable Microwave Absorption Properties and Principles of Double-Layer Metasurface Absorbers
by Yun He, Zhiming Zhang, Qingyang Wang, Qiyuan Wang, Qin Fu and Yulu Zhang
Molecules 2025, 30(17), 3608; https://doi.org/10.3390/molecules30173608 - 3 Sep 2025
Viewed by 429
Abstract
A reconfigurable microwave absorber based on double-layer metasurface is proposed for wide microwave band applications spanning 3 to 14 GHz. The absorber consists of two layers with two-dimensional array of four-semi-circular and square-ring metasurface patches loaded impedance devices, two spacers composed of honeycomb [...] Read more.
A reconfigurable microwave absorber based on double-layer metasurface is proposed for wide microwave band applications spanning 3 to 14 GHz. The absorber consists of two layers with two-dimensional array of four-semi-circular and square-ring metasurface patches loaded impedance devices, two spacers composed of honeycomb materials, and a bottom copper substrate. In order to break through the limitation of single-layer absorbers at finite resonant frequencies, a special double-layered metasurface structure is adopted. The layer I of metasurface is designed with two resonant peaks near the X band and transmission performance in the C band. Simultaneously, the layer II of metasurface is designed with a resonant peak near the C band and reflection performance in the X band. To achieve a reconfigurable effect, impedance adjustable device, such as PIN diodes, are connected between patterned metasurface cells of layer I. The simulation results revealed that the double-layer metasurface absorber can not only achieve broadband absorption effect, with the reflection value below −10 dB from 3.1 to 14.2 GHz, but also adjust the electromagnetic absorption rate, with the reflection value below −20 dB covers a bandwidth of 6.6–9 GHz. The good agreement between simulation and measurement validates the proposed absorber. Full article
Show Figures

Figure 1

15 pages, 4685 KB  
Article
Porous Biomass Carbon Composites Derived from Canadian Goldenrod and Their Excellent Microwave Absorption
by Zhidai Zhou, Yan Yan, Jiaming Liu, Zhen He and Yuxin Wang
Appl. Sci. 2025, 15(17), 9474; https://doi.org/10.3390/app15179474 - 28 Aug 2025
Viewed by 358
Abstract
Electromagnetic wave pollution has become a growing concern in recent decades. Biomass-derived carbon materials have attracted significant attention as wave-absorbing materials due to their easy availability, low cost, and environmental friendliness. In this study, the invasive plant Solidago canadensis (Canada goldenrod) in China [...] Read more.
Electromagnetic wave pollution has become a growing concern in recent decades. Biomass-derived carbon materials have attracted significant attention as wave-absorbing materials due to their easy availability, low cost, and environmental friendliness. In this study, the invasive plant Solidago canadensis (Canada goldenrod) in China was used as the carbon source, and a two-step pyrolysis and hydrothermal process was applied to create a porous composite material with magnetic CoFe2O4 particles. This improved the impedance matching of the biomass carbon and introduced multiple loss mechanisms. The combination of magnetic loss, interfacial polarization, dipole polarization, and multiple reflections in the biomass carbon produced a material with excellent microwave absorption properties. At 16.76 GHz with a thickness of 2.5 mm, the material achieved a minimum reflection loss of −35.21 dB and an effective absorption bandwidth of 7.76 GHz. This study presents a promising method for developing biomass-based absorbers and offers an efficient, cost-effective, and environmentally friendly solution for managing invasive species. Full article
Show Figures

Figure 1

12 pages, 3228 KB  
Communication
Green and Efficient Lithium Extraction from Spent NCM Batteries via Electromagnetic Radiation
by Ling Tong, Gui-Rong Zhang, Da-Shuai Li, Xing-Yu Huang, Yuan-Long Liu and Yan-Qing Cheng
Materials 2025, 18(17), 3975; https://doi.org/10.3390/ma18173975 - 25 Aug 2025
Viewed by 552
Abstract
The conventional recycling of spent lithium-ion batteries (LIBs) is hindered by high energy consumption and severe environmental pollution. In this study, a novel method utilizing high-frequency electromagnetic radiation was proposed to process the black mass derived from spent NCM-LIBs, significantly reducing both energy [...] Read more.
The conventional recycling of spent lithium-ion batteries (LIBs) is hindered by high energy consumption and severe environmental pollution. In this study, a novel method utilizing high-frequency electromagnetic radiation was proposed to process the black mass derived from spent NCM-LIBs, significantly reducing both energy consumption and chemical reagent usage. Conductive carbon black was introduced as an electromagnetic-wave-absorbing additive to improve the electromagnetic energy into thermal energy conversion efficiency during electromagnetic radiation. As a result, the decomposition and reduction of NCM materials can be completed within just 10 min at a microwave power of 500 W. Following electromagnetic irradiation, lithium was efficiently extracted via simple water leaching, achieving an extraction efficiency of 88.24%. Furthermore, a microwave heating device based on traveling-wave propagation was developed. Unlike conventional small-scale microwave systems that employ resonant cavities, this design enables improved heating uniformity, higher efficiency, and greater scalability for industrial microwave-assisted chemical processes. Full article
(This article belongs to the Special Issue Recycling and Electrode Materials of Lithium Batteries)
Show Figures

Graphical abstract

14 pages, 1950 KB  
Article
Tailoring Microwave Absorption via Ferromagnetic Resonance and Quarter-Wave Effects in Carbonaceous Ternary FeCoCr Alloy/PVDF Polymer Composites
by Rajeev Kumar, Harish Kumar Choudhary, Shital P. Pawar, Manjunatha Mushtagatte and Balaram Sahoo
Microwave 2025, 1(2), 8; https://doi.org/10.3390/microwave1020008 - 25 Aug 2025
Viewed by 293
Abstract
In this study, we investigate the dominant electromagnetic wave absorption mechanism–ferromagnetic resonance (FMR) loss versus quarter-wave cancellation in a novel PVDF-based polymer composite embedded with carbonaceous nanostructures incorporating FeCoCr ternary alloy. The majority of the nanoparticles are embedded at the terminal ends of [...] Read more.
In this study, we investigate the dominant electromagnetic wave absorption mechanism–ferromagnetic resonance (FMR) loss versus quarter-wave cancellation in a novel PVDF-based polymer composite embedded with carbonaceous nanostructures incorporating FeCoCr ternary alloy. The majority of the nanoparticles are embedded at the terminal ends of the carbon nanotubes, while a small fraction exists as isolated core–shell, carbon-coated spherical particles. Overall, the synthesized material predominantly exhibits a nanotubular carbon morphology. High-resolution transmission electron microscopy (HRTEM) confirms that the encapsulated nanoparticles are quasi-spherical in shape, with an average size ranging from approximately 25 to 40 nm. The polymeric composite was synthesized via solution casting, ensuring homogenous dispersion of filler constituent. Electromagnetic interference (EMI) shielding performance and reflection loss characteristics were evaluated in the X-band frequency range. Experimental results reveal a significant reflection loss exceeding −20 dB at a matching thickness of 2.5 mm, with peak absorption shifting across frequencies with thickness variation. The comparative analysis, supported by quarter-wave theory and FMR resonance conditions, indicates that the absorption mechanism transitions between magnetic resonance and interference-based cancellation depending on the material configuration and thickness. This work provides experimental validation of loss mechanism dominance in magnetic alloy/polymer composites and proposes design principles for tailoring broadband microwave absorbers. Full article
Show Figures

Figure 1

14 pages, 3808 KB  
Article
Defect-Engineered Elastic CNC/Chitosan-Based Carbon Aerogel with Wideband Microwave Absorption
by Weikai Zhan, Yijie Hu, Liangjun Li, Yonggang Jiang, Junzong Feng and Jian Feng
Nanomaterials 2025, 15(16), 1233; https://doi.org/10.3390/nano15161233 - 13 Aug 2025
Viewed by 520
Abstract
The burgeoning electromagnetic pollution from 5G/6G technologies demands lightweight, broadband, and mechanically robust electromagnetic microwave absorbers (EMWAs). Conventional carbon aerogels suffer from structural fragility and inadequate electromagnetic dissipation. Herein, we propose a defect-engineering strategy through precise optimization of the chitosan (CS)/cellulose nanocrystal (CNC) [...] Read more.
The burgeoning electromagnetic pollution from 5G/6G technologies demands lightweight, broadband, and mechanically robust electromagnetic microwave absorbers (EMWAs). Conventional carbon aerogels suffer from structural fragility and inadequate electromagnetic dissipation. Herein, we propose a defect-engineering strategy through precise optimization of the chitosan (CS)/cellulose nanocrystal (CNC) ratio to fabricate elastic boron nitride nanosheet (BNNS)-embedded carbon aerogels. By fixing BNNS content for optimal impedance matching and modulating the CS/CNC ratio of the aerogel, we achieve synergistic control over hierarchical microstructure, defect topology, and electromagnetic response. The aerogel exhibits a wide effective absorption bandwidth (EAB) of 8.3 GHz at a thickness of 3.6 mm and an excellent reflection loss of −52.79 dB (>99.999% attenuation), surpassing most biomass-derived EMWAs. The performance stems from CNC-derived topological defects enabling novel polarization pathways and BNNS-triggered interfacial polarization, while optimal graphitization (ID/IG = 1.08) balances conductive loss. Simultaneously, the optimal CS/CNC ratio facilitates the formation of a stable and flexible framework. The long-range ordered micro-arch lamellar structure endows the aerogel with promising elasticity, which retains 82% height after 1000 cyclic compression at 50% strain. This work paves the way for biomass-derived carbon aerogels as next-generation wearable and conformal EMWAs with broadband absorption. Full article
Show Figures

Graphical abstract

25 pages, 4087 KB  
Review
Progress in High-Entropy Alloy-Based Microwave Absorbing Materials
by Chengkun Ma and Yuying Zhang
Symmetry 2025, 17(8), 1286; https://doi.org/10.3390/sym17081286 - 10 Aug 2025
Viewed by 662
Abstract
The rational design of high-performance microwave absorbers with broadband coverage, superior attenuation, and environmental durability is critical for addressing challenges in both defense and civilian technologies. High-entropy alloys (HEAs) exhibit atomic-scale asymmetric arrangements, demonstrating exceptional potential for microwave absorption through their unique lattice [...] Read more.
The rational design of high-performance microwave absorbers with broadband coverage, superior attenuation, and environmental durability is critical for addressing challenges in both defense and civilian technologies. High-entropy alloys (HEAs) exhibit atomic-scale asymmetric arrangements, demonstrating exceptional potential for microwave absorption through their unique lattice distortion, high entropy, sluggish diffusion, and “cocktail effect”. This critical review article provides an overview of the progress made in the development and understanding of HEA-based microwave absorbing materials. Initially, the microwave dissipation mechanisms for HEAs were analyzed, where atomic-scale distortions enhance polarization loss and broaden resonance bandwidth. Subsequently, key synthesis techniques like mechanical alloying and carbothermal shock are discussed, highlighting non-equilibrium processing for phase engineering. Building on these foundations, the discussion then progresses to evaluate four principal material design approaches: (1) compositionally-tuned powders, (2) multifunctional core–shell structures, (3) phase-controlled architectures, and (4) two-dimensional/porous configurations, each demonstrating distinct performance advantages. Finally, the discussion concludes by addressing current challenges in quantitative property modeling and industrial scalability while outlining future directions, including machine learning-assisted design and flexible integration, providing comprehensive guidance for developing next-generation high-performance microwave absorbing materials. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

29 pages, 4545 KB  
Article
Characterization of Fresh and Aged Smoke Particles Simultaneously Observed with an ACTRIS Multi-Wavelength Raman Lidar in Potenza, Italy
by Benedetto De Rosa, Aldo Amodeo, Giuseppe D’Amico, Nikolaos Papagiannopoulos, Marco Rosoldi, Igor Veselovskii, Francesco Cardellicchio, Alfredo Falconieri, Pilar Gumà-Claramunt, Teresa Laurita, Michail Mytilinaios, Christina-Anna Papanikolaou, Davide Amodio, Canio Colangelo, Paolo Di Girolamo, Ilaria Gandolfi, Aldo Giunta, Emilio Lapenna, Fabrizio Marra, Rosa Maria Petracca Altieri, Ermann Ripepi, Donato Summa, Michele Volini, Alberto Arienzo and Lucia Monaadd Show full author list remove Hide full author list
Remote Sens. 2025, 17(15), 2538; https://doi.org/10.3390/rs17152538 - 22 Jul 2025
Viewed by 567
Abstract
This study describes a quite special and interesting atmospheric event characterized by the simultaneous presence of fresh and aged smoke layers. These peculiar conditions occurred on 16 July 2024 at the CNR-IMAA atmospheric observatory (CIAO) in Potenza (Italy), and represent an ideal case [...] Read more.
This study describes a quite special and interesting atmospheric event characterized by the simultaneous presence of fresh and aged smoke layers. These peculiar conditions occurred on 16 July 2024 at the CNR-IMAA atmospheric observatory (CIAO) in Potenza (Italy), and represent an ideal case for the evaluation of the impact of aging and transport mechanisms on both the optical and microphysical properties of biomass burning aerosol. The fresh smoke was originated by a local wildfire about 2 km from the measurement site and observed about one hour after its ignition. The other smoke layer was due to a wide wildfire occurring in Canada that, according to backward trajectory analysis, traveled for about 5–6 days before reaching the observatory. Synergetic use of lidar, ceilometer, radar, and microwave radiometer measurements revealed that particles from the local wildfire, located at about 3 km a.s.l., acted as condensation nuclei for cloud formation as a result of high humidity concentrations at this altitude range. Optical characterization of the fresh smoke layer based on Raman lidar measurements provided lidar ratio (LR) values of 46 ± 4 sr and 34 ± 3 sr, at 355 and 532 nm, respectively. The particle linear depolarization ratio (PLDR) at 532 nm was 0.067 ± 0.002, while backscatter-related Ångström exponent (AEβ) values were 1.21 ± 0.03, 1.23 ± 0.03, and 1.22 ± 0.04 in the spectral ranges of 355–532 nm, 355–1064 nm and 532–1064 nm, respectively. Microphysical inversion caused by these intensive optical parameters indicates a low contribution of black carbon (BC) and, despite their small size, particles remained outside the ultrafine range. Moreover, a combined use of CIAO remote sensing and in situ instrumentation shows that the particle properties are affected by humidity variations, thus suggesting a marked particle hygroscopic behavior. In contrast, the smoke plume from the Canadian wildfire traveled at altitudes between 6 and 8 km a.s.l., remaining unaffected by local humidity. Absorption in this case was higher, and, as observed in other aged wildfires, the LR at 532 nm was larger than that at 355 nm. Specifically, the LR at 355 nm was 55 ± 2 sr, while at 532 nm it was 82 ± 3 sr. The AEβ values were 1.77 ± 0.13 and 1.41 ± 0.07 at 355–532 nm and 532–1064 nm, respectively and the PLDR at 532 nm was 0.040 ± 0.003. Microphysical analysis suggests the presence of larger, yet much more absorbent particles. This analysis indicates that both optical and microphysical properties of smoke can vary significantly depending on its origin, persistence, and transport in the atmosphere. These factors that must be carefully incorporated into future climate models, especially considering the frequent occurrences of fire events worldwide. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Graphical abstract

25 pages, 3459 KB  
Article
Phase Composition, Structure, and Microwave Absorption of Magnetron-Sputtered Co–C–Cr Multilayer Films
by Nadezhda Prokhorenkova, Almira Zhilkashinova, Madi Abilev, Leszek Łatka, Igor Ocheredko and Assel Zhilkashinova
Compounds 2025, 5(3), 27; https://doi.org/10.3390/compounds5030027 - 20 Jul 2025
Viewed by 342
Abstract
Multilayer thin films composed of cobalt (Co), carbon (C), and chromium (Cr) possess promising electromagnetic properties, yet the combined Co–C–Cr system remains underexplored, particularly regarding its performance as a microwave absorber. Existing research has primarily focused on binary Co–C or Co–Cr compositions, leaving [...] Read more.
Multilayer thin films composed of cobalt (Co), carbon (C), and chromium (Cr) possess promising electromagnetic properties, yet the combined Co–C–Cr system remains underexplored, particularly regarding its performance as a microwave absorber. Existing research has primarily focused on binary Co–C or Co–Cr compositions, leaving a critical knowledge gap in understanding how ternary multilayer architectures influence electromagnetic behavior. This study addresses this gap by investigating the structure, phase composition, and microwave absorption performance of Co–C–Cr multilayer coatings fabricated via magnetron sputtering onto porous silicon substrates. This study compares four-layer and eight-layer configurations to assess how multilayer architecture affects impedance matching, reflection coefficients, and absorption characteristics within the 8.2–12.4 GHz frequency range. Structural analyses using X-ray diffraction and transmission electron microscopy confirm the coexistence of amorphous and nanocrystalline phases, which enhance absorption through dielectric and magnetic loss mechanisms. Both experimental and simulated results show that increasing the number of layers improves impedance gradients and broadens the operational bandwidth. The eight-layer coatings demonstrate a more uniform absorption response, while four-layer structures exhibit sharper resonant minima. These findings advance the understanding of ternary multilayer systems and contribute to the development of frequency-selective surfaces and broadband microwave shielding materials. Full article
Show Figures

Figure 1

37 pages, 5136 KB  
Review
Advancements in Optical Fiber Sensors for pH Measurement: Technologies and Applications
by Alaa N. D. Alhussein, Mohammed R. T. M. Qaid, Timur Agliullin, Bulat Valeev, Oleg Morozov, Airat Sakhabutdinov and Yuri A. Konstantinov
Sensors 2025, 25(14), 4275; https://doi.org/10.3390/s25144275 - 9 Jul 2025
Viewed by 1101
Abstract
Measuring pH is a critical parameter in environmental monitoring, biomedical diagnostics, food safety, and industrial processes. Optical fiber sensors have proven highly effective for pH detection due to their exceptional sensitivity, rapid response, and resistance to electromagnetic interference, making them well suited for [...] Read more.
Measuring pH is a critical parameter in environmental monitoring, biomedical diagnostics, food safety, and industrial processes. Optical fiber sensors have proven highly effective for pH detection due to their exceptional sensitivity, rapid response, and resistance to electromagnetic interference, making them well suited for real-time monitoring. This review offers a comprehensive analysis of recent advances in optical fiber-based pH sensors, covering key techniques such as fluorescence-based, absorbance-based, evanescent wave, and interferometric methods. Innovations in Fiber Bragg Grating and Surface Plasmon Resonance technologies are also examined. The discussion extends to the impact of pH-sensitive coatings—ranging from nanomaterials and polymeric films to graphene-based compounds—on enhancing sensor performance. Recent advancements have also enabled automation in data analysis and improvements in remote sensing capabilities. The review further compares the economic viability of optical fiber sensors with traditional electrochemical methods, while acknowledging persistent issues such as temperature cross-sensitivity, long-term stability, and fabrication costs. Overall, recent developments have broadened the functionality and application scope of these sensors by improving efficiency, accuracy, and scalability. Future research directions are outlined, including advanced optical interrogation techniques, such as Addressed Fiber Bragg Structures (AFBSs), microwave photonic integration, and optimized material selection. These approaches aim to enhance performance, reduce costs, and enable the broader adoption of optical fiber pH sensors. Full article
(This article belongs to the Special Issue Feature Review Papers in Optical Sensors)
Show Figures

Figure 1

16 pages, 1933 KB  
Article
Investigation of the Effects of 2.45 GHz Near-Field EMF on Yeast
by Boyana Angelova, Momchil Paunov, Meglena Kitanova, Gabriela Atanasova and Nikolay Atanasov
Antioxidants 2025, 14(7), 820; https://doi.org/10.3390/antiox14070820 - 3 Jul 2025
Viewed by 590
Abstract
The study of the effects of 2.45 GHz electromagnetic fields on the health and safety of people and organisms as a whole is essential due to their widespread use in everyday life. It is known that they can cause thermal and non-thermal effects—at [...] Read more.
The study of the effects of 2.45 GHz electromagnetic fields on the health and safety of people and organisms as a whole is essential due to their widespread use in everyday life. It is known that they can cause thermal and non-thermal effects—at the molecular, cellular and organismal level. Yeast suspensions were treated with 2.45 GHz microwave radiation in the near-field of antenna at two distances (2 and 4 cm) and two time periods (20 and 60 min)—setups resembling the use of mobile devices. The release of UV-absorbing substances from the cells was studied as an indicator of membrane permeabilization, total intracellular antioxidant activity and reduced glutathione were determined, and a comet assay for damage to the DNA was performed. A correlation between reduced antioxidants and increased membrane permeability during EMF treatment was observed at a distance of 2 cm for 20 min, suggesting the presence of oxidative stress, while a similar effect was not observed with conventional heating. Slightly increased membrane permeability was observed after irradiation for 60 min at a distance of 4 cm, but this was not related to the antioxidant status of the cells. A trend towards increased DNA damage was observed under both conditions. Full article
Show Figures

Figure 1

14 pages, 11764 KB  
Article
Excellent Microwave Absorption Properties in the C Band for the Nitrided Y2Fe12Co4Si/Paraffin Composites
by Wenjian Tang, Hanxing Xu, Xichun Zhong, Na He, Zhongwu Liu and Raju V. Ramanujan
Magnetochemistry 2025, 11(7), 54; https://doi.org/10.3390/magnetochemistry11070054 - 24 Jun 2025
Viewed by 597
Abstract
The nitriding process was employed to optimize the low-frequency microwave absorption properties of Y2Fe12Co4Si/paraffin composites. The effects of nitriding temperature on the phase composition, static magnetic properties, electromagnetic parameters, and microwave absorption performance were systematically investigated. As [...] Read more.
The nitriding process was employed to optimize the low-frequency microwave absorption properties of Y2Fe12Co4Si/paraffin composites. The effects of nitriding temperature on the phase composition, static magnetic properties, electromagnetic parameters, and microwave absorption performance were systematically investigated. As the nitriding temperature increases, lattice expansion results in a significant increase in saturation magnetization and a higher ratio of in-plane to out-of-plane anisotropy fields. This, in turn, boosts the electromagnetic parameters of the composite material. With a further rise in temperature, an increased content of α-Fe is produced and the ratio of the in-plane to out-of-plane anisotropy field diminishes, leading to a decline in electromagnetic parameters. At 500 °C, these factors reach an optimum level, maximizing the composite’s electromagnetic parameters. The composite exhibited a minimum reflection loss (RLmin) of −55.9 dB at 5.58 GHz with a thickness of 2.46 mm. Moreover, at a thickness of 2.21 mm, the composite achieved a maximum effective absorption bandwidth (EABmax) of 2.95 GHz (5.05–8 GHz). Compared with other low-frequency-absorbing materials, the composite exhibited stronger absorption and a wider absorption bandwidth at a lower thickness in the C band. Full article
Show Figures

Figure 1

17 pages, 3352 KB  
Article
Research on the Geometry Control and Microwave Absorption Performance of Auxetic Materials
by Yifei Wang, Zhuo Cai, Fuqiang Liu, Xinyu Wang, Dandan Li, Yifei Ma, Zhaomin Tong, Mei Wang, Jonghwan Suhr, Liantuan Xiao, Suotang Jia and Xuyuan Chen
Coatings 2025, 15(6), 689; https://doi.org/10.3390/coatings15060689 - 7 Jun 2025
Viewed by 581
Abstract
There is great potential for the development of microwave-absorbing materials (MAMs) for structural regulation. Auxetic structures have excellent mechanical properties, which can be applied to multifunctional MAMs in various fields. Here, the microwave absorption performances of the auxetic structures were simulated using the [...] Read more.
There is great potential for the development of microwave-absorbing materials (MAMs) for structural regulation. Auxetic structures have excellent mechanical properties, which can be applied to multifunctional MAMs in various fields. Here, the microwave absorption performances of the auxetic structures were simulated using the High-Frequency Structure Simulator (HFSS), by regulating the structure, dielectric constant, layer number, and pore size. The simulation results show that increasing the dielectric constant, layer number, or decreasing pore size will lead to a decrease in the frequency of minimum reflection loss (RLmin). The main purpose of this study is to elucidate the influence of structure, dielectric constant, layer number, and pore size on the absorption performance of auxetic structures and obtain practical auxetic MAMs with a performance of RLmin < −30 dB and effective absorption bandwidth (EAB) > 3 GHz. Finally, practical auxetic MAMs between 8 and 18 GHz and MAMs optimized in dielectric constant were obtained, which were proven to have the advantages of lightweight characteristics, high absorption, and wide bandwidth. The four structures exhibit great RLmin values of −51.09, −55.52, −47.09, and −54.98 dB with wide EAB values of 3.25, 3, 4.75, and 4.5 GHz, demonstrating the strong electromagnetic wave absorption performance of auxetic structures. This work provides theoretical guidance for the study of auxetic structures in the field of microwave absorption and provides an effective approach for multi-disciplinary research on MAMs. Full article
Show Figures

Figure 1

14 pages, 3406 KB  
Article
A Recyclable, Adhesive, and Self-Healing Ionogel Based on Zinc–Halogen Coordination Anion Crosslinked Poly(ionic Liquid)/Ionic Liquid Networks for High-Performance Microwave Absorption
by Lei Wang, Jie Liu, Meng Zong, Yi Liu and Jianfeng Zhu
Gels 2025, 11(6), 436; https://doi.org/10.3390/gels11060436 - 5 Jun 2025
Viewed by 933
Abstract
In the past, powder-like microwave absorbers have made notable breakthroughs in performance enhancements, but complicated processes and undesirable properties have limited their practical application. Herein, a novel poly(ionic liquid) (PIL)-based ionic gel with excellent microwave absorption properties was prepared via a facile UV-initiated [...] Read more.
In the past, powder-like microwave absorbers have made notable breakthroughs in performance enhancements, but complicated processes and undesirable properties have limited their practical application. Herein, a novel poly(ionic liquid) (PIL)-based ionic gel with excellent microwave absorption properties was prepared via a facile UV-initiated polymerization method. By simply adjusting the mole ratio of the polymerizable ionic liquid (IL)monomer and the IL dispersion medium, the microwave absorption properties of the obtained ionic gels can be tuned. A maximum reflection loss (RLmax) of −45.7 dB and an effective absorption bandwidth (EAB) of 8.08 GHz were achieved, which was mainly ascribed to high ionic conduction loss induced by the high content of the dispersion medium. Furthermore, it displayed recyclable, adhesive, and self-healing properties, thus providing a new candidate for developing efficient microwave absorbers for practical applications. Full article
(This article belongs to the Section Gel Applications)
Show Figures

Figure 1

16 pages, 4371 KB  
Article
Graphitization Optimization of Cobalt-Doped Porous Carbon Derived from Seaweed Sludge for Enhanced Microwave Absorption
by Kai Liu, Yusen Ai, Mei Cui, Renliang Huang and Rongxin Su
Polymers 2025, 17(11), 1572; https://doi.org/10.3390/polym17111572 - 5 Jun 2025
Cited by 2 | Viewed by 456
Abstract
Utilizing biomass resources to develop carbon-based microwave-absorbing materials adheres to the principles of sustainable development. Nevertheless, the single loss mechanism of pure carbon materials is limited. Additionally, the carbonization of artificially synthesized polymers has poor environmental performance and involves complex processes. These issues [...] Read more.
Utilizing biomass resources to develop carbon-based microwave-absorbing materials adheres to the principles of sustainable development. Nevertheless, the single loss mechanism of pure carbon materials is limited. Additionally, the carbonization of artificially synthesized polymers has poor environmental performance and involves complex processes. These issues restrict their performance and broader applicability. In this study, cobalt-doped seaweed sludge porous carbon (Co/SSPC) with different cobalt contents was synthesized via a simple grinding–carbonization treatment. The addition of cobalt can regulate the graphitization degree of porous carbon, achieving a suitable amorphous-to-crystalline carbon ratio of 2.05. This not only enhances magnetic loss but also modifies dielectric loss and optimizes impedance matching. The construction of synergistic magnetic and dielectric loss mechanisms enables Co/SSPC to exhibit excellent microwave absorption performance. Specifically, Co/SSPC achieved a minimum reflection loss (RLmin) of −66.91 dB at a thickness of 4.79 mm and an effective absorption bandwidth (EAB) of 5.09 GHz at a thickness of 1.6 mm. This study provides a practical approach for the functional application of natural polymer waste algal sludge and highlights its potential in the low-cost production of microwave absorbing materials. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

23 pages, 3875 KB  
Article
Chemical Composition, Quality, and Bioactivity of Laurus nobilis L. Hydrosols from the Adriatic Regions of Croatia: Implications for Dermatological Applications
by Lea Juretić, Valerija Dunkić, Ivana Gobin, Suzana Inić, Dario Kremer, Marija Nazlić, Lea Pollak, Silvestar Mežnarić, Ana Barbarić and Renata Jurišić Grubešić
Antioxidants 2025, 14(6), 688; https://doi.org/10.3390/antiox14060688 - 5 Jun 2025
Cited by 1 | Viewed by 788
Abstract
Laurus nobilis L., Lauraceae, bay laurel, has been traditionally used for its various therapeutic properties, and in recent years has been gaining interest for its potential applications in skincare products. However, the biological effects of bay laurel, particularly its hydrosols, a water fraction [...] Read more.
Laurus nobilis L., Lauraceae, bay laurel, has been traditionally used for its various therapeutic properties, and in recent years has been gaining interest for its potential applications in skincare products. However, the biological effects of bay laurel, particularly its hydrosols, a water fraction obtained during essential oil production, remain unexplored. The objective of this study was to identify the volatile compounds in L. nobilis hydrosols (LnHYs) from different coastal regions of Croatia (north, middle, and south Adriatic) and to evaluate their potential safety and efficacy for dermatological applications. Upon isolating LnHYs using microwave-assisted extraction, LnHY volatiles were identified and quantified using gas chromatography and mass spectrometry. Oxygenated monoterpenes were the dominant compounds in all LnHYs (61.72–97.00%), with 1,8-cineole being the most abundant component (52.25–81.89%). The physical and chemical parameters of LnHYs were investigated to assess their purity and quality. Biological activity (cytotoxicity and wound-healing effect) was tested on the human keratinocyte cell line (HaCaT), selected as the experimental model due to its relevance to skin biology. Additionally, contents of polyphenolic substances, antioxidative effects using the Oxygen Radical Absorbance Capacity (ORAC) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) methods, and the antimicrobial activity of LnHYs toward five skin microorganisms were determined. All tested hydrosols showed similar biological activity, with only minor differences. Cytotoxicity studies indicated the safety of the dermatological application of LnHYs, and the results of the wound-healing assay showed their neutral to mildly positive effect. Considering the growing use of bay laurel preparations in pharmaceutical and cosmetic applications, extensive studies on their biological activity, quality, and safety are essential to either support or regulate their use in humans. Full article
Show Figures

Figure 1

Back to TopTop