Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (799)

Search Parameters:
Keywords = microwave spectroscopy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2290 KB  
Article
Effect of Microwave Treatment on Physicochemical Properties and Subsequent Anaerobic Digestion of Fecal Sludge
by Principal Mdolo, Jon Pocock and Konstantina Velkushanova
Water 2025, 17(22), 3230; https://doi.org/10.3390/w17223230 - 12 Nov 2025
Abstract
Fecal sludge (FS) requires effective management to mitigate environmental and public health risks and enable resource recovery. This study evaluated the effects of microwave (MW) treatment on FS characteristics and subsequent anaerobic digestion (AD) performance. MW treatment raised FS temperatures to ~96 °C, [...] Read more.
Fecal sludge (FS) requires effective management to mitigate environmental and public health risks and enable resource recovery. This study evaluated the effects of microwave (MW) treatment on FS characteristics and subsequent anaerobic digestion (AD) performance. MW treatment raised FS temperatures to ~96 °C, reducing FS volume by 50% and inducing three thermal phases. Soluble chemical oxygen demand (sCOD) showed a multi-phase pattern, with a maximum solubilization of 29.8% during initial heating due to the solubilization of proteins and carbohydrates. Scanning electron microscopy (SEM) revealed morphological changes, while Fourier transform infrared (FTIR) spectroscopy confirmed that core functional groups remained unchanged. MW-pretreated FS enhanced AD performance, achieving a 17% increase in cumulative methane yield, alongside 18% and 33% improvements in organic loading and methane production rates, respectively. MW treatment influenced the phase distribution of digestate components, showing a shift in nutrient portioning towards the liquid fraction. These results suggest that integrating MW pretreatment into FS management systems can improve energy recovery, reduce treatment costs, and support resource-efficient sanitation solutions. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

17 pages, 8309 KB  
Article
Green Synthesis of Chitosan Silver Nanoparticle Composite Materials: A Comparative Study of Microwave and One-Pot Reduction Methods
by Ahmed Hosney, Algimanta Kundrotaitė, Donata Drapanauskaitė, Marius Urbonavičius, Šarūnas Varnagiris, Sana Ullah and Karolina Barčauskaitė
Polymers 2025, 17(21), 2960; https://doi.org/10.3390/polym17212960 - 6 Nov 2025
Viewed by 625
Abstract
Green synthesis methods of silver nanoparticles have gained great attention because they offer sustainable, eco-friendly, and less-toxic alternatives to traditional methods. This study sheds light on the green synthesis of chitosan silver nanoparticle composites, providing a comparative evaluation of microwave-assisted (M1) and a [...] Read more.
Green synthesis methods of silver nanoparticles have gained great attention because they offer sustainable, eco-friendly, and less-toxic alternatives to traditional methods. This study sheds light on the green synthesis of chitosan silver nanoparticle composites, providing a comparative evaluation of microwave-assisted (M1) and a one-pot (M2) reduction methods. The morphological, crystallinity, and structural uniformity characteristics were evaluated by UV-Visible, Raman spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM) with employing image processing pipeline based on deep learning model for segmentation and particles size estimation. The UV-visible spectrum exhibited independent SPR peaks ranging from 400 to 450 nm for all samples; however, microwave assisted-synthesis possessed narrower and more intense peaks indicative of better crystallinity and mono-dispersity. SEM depicted smaller, more uniformly dispersed particles for microwave-assisted (M1), while deep learning segmentation showed lower particle size variability (σ ≈ 24–43 nm), compared to polydisperse (σ ≈ 16–59 nm) in M2 samples. XRD showed crystalline face-centered cubic (FCC) silver with dominant peaks in M1 samples, whereas M2 had broader, less intense peaks with amorphous features. Raman vibrations revealed more structural order and homogenous capping in M1 than M2. Therefore, microwave-assisted (M1) showed better control on nucleation, particle size, crystallinity, and homogeneity due to a faster and uniform energy distribution. The future research would focus on the antimicrobial evaluation of such nanoparticles in agronomy. Full article
Show Figures

Figure 1

15 pages, 2938 KB  
Article
Enhanced Lateral Growth of Homoepitaxial (001) Diamond by Microwave Plasma Chemical Vapor Deposition with Nitrogen Addition
by Tzu-I Yang, Chia-Yen Chuang, Jun-Bin Huang, Cheng-Jung Ko, Wei-Lin Wang and Li Chang
Coatings 2025, 15(11), 1256; https://doi.org/10.3390/coatings15111256 - 30 Oct 2025
Viewed by 369
Abstract
Diamond, as an exceptional material with many superior properties, requires a single crystal in a reasonably large size for practical industrial applications. However, achieving large-area single-crystal diamond (SCD) growth without the formation of polycrystalline rims remains challenging. Microwave plasma chemical vapor deposition (MPCVD) [...] Read more.
Diamond, as an exceptional material with many superior properties, requires a single crystal in a reasonably large size for practical industrial applications. However, achieving large-area single-crystal diamond (SCD) growth without the formation of polycrystalline rims remains challenging. Microwave plasma chemical vapor deposition (MPCVD) using a gas mixture of 10% CH4-H2 was used for the homoepitaxial growth of (001) SCD. The effect of nitrogen gas addition in the range of 0–2000 ppm on lateral growth was investigated. Deposition with 180 ppm N2 over a growth duration of 20 h to reach a thickness of 0.95 mm resulted in significantly enhanced lateral growth without the appearance of a polycrystalline diamond (PCD) rim for the grown diamond, and the total top surface area of SCD increased by an area gain of 1.6 relative to the substrate. The corresponding vertical and lateral growth rates were 47.3 µm/h and 52.5 µm/h, respectively. Characterization by Raman spectroscopy and atomic force microscopy (AFM) revealed uniform structural integrity across the whole surface from the laterally grown regions to the center, including the entire expanded area, in terms of surface morphology and crystalline quality. Moreover, measurements of the etch pit densities (EPDs) showed a substantial reduction in the laterally grown regions, approximately an order of magnitude lower than those in the central region. The high quality of the homoepitaxial diamond layer was further verified with (004) X-ray rocking curve analysis, showing a narrow full width at half maximum (FWHM) of 11 arcsec. Full article
(This article belongs to the Special Issue Thin-Film Synthesis, Characterization and Properties)
Show Figures

Figure 1

15 pages, 13512 KB  
Article
Facile Microwave Production and Photocatalytic Activity of Bismuth Vanadate Nanoparticles over the Acid Orange 7
by Nataša Tot, Bojana Vasiljević, Slađana Davidović, Anđela Pustak, Ivan Marić, Jovana Prekodravac Filipović and Dragana Marinković
Processes 2025, 13(11), 3485; https://doi.org/10.3390/pr13113485 - 30 Oct 2025
Viewed by 360
Abstract
This work reports the rapid aqueous microwave-assisted synthesis of monoclinic scheelite BiVO4 nanoparticles and their behavior under visible light. X-ray diffraction (XRD) confirms phase-pure BiVO4 with an average crystallite size of ~19 nm, consistent with transmission electron microscopy (TEM) observations, while [...] Read more.
This work reports the rapid aqueous microwave-assisted synthesis of monoclinic scheelite BiVO4 nanoparticles and their behavior under visible light. X-ray diffraction (XRD) confirms phase-pure BiVO4 with an average crystallite size of ~19 nm, consistent with transmission electron microscopy (TEM) observations, while N2 sorption yields a BET surface area of 7.5 m2/g. UV–Vis diffuse reflectance spectroscopy (DRS) indicates a direct band gap of 2.55 eV. We evaluated the effects of catalyst dosage and initial Acid Orange 7 (AO7) concentration on visible-light degradation efficiency. Up to 77% removal was achieved within 120 min, with kinetics following a pseudo-first-order model (R2 ≈ 0.970–0.996). Under the tested conditions, BiVO4 also exhibited a modest antibacterial effect against Escherichia coli (~0.5 log reduction). These findings demonstrate that microwave-synthesized BiVO4 is a multifunctional material and provides a quantitative baseline for practical wastewater treatment studies under visible light. Full article
Show Figures

Figure 1

15 pages, 1477 KB  
Article
Microwave-Assisted Syntheses of 1-Acetyl 2-Methylbenzimidazole Sodium Bisulfate pH-Responsive Ionic Draw Solute for Forward Osmosis Applications
by Ahmed A. Bhran, Abdelrahman G. Gadallah, Hanaa M. Ali, Sahar S. Ali, Hanaa Gadallah and Rania Sabry
Membranes 2025, 15(11), 325; https://doi.org/10.3390/membranes15110325 - 26 Oct 2025
Viewed by 603
Abstract
This work is related to the development of a highly efficient pH-responsive ionic draw solute for forward osmosis applications utilizing microwave-assisted fast heating. This solute is classified as an ionic compound, a sodium salt originating from imidazole, with the scientific acronym 1-acetyl-2-methylbenzimidazole sodium [...] Read more.
This work is related to the development of a highly efficient pH-responsive ionic draw solute for forward osmosis applications utilizing microwave-assisted fast heating. This solute is classified as an ionic compound, a sodium salt originating from imidazole, with the scientific acronym 1-acetyl-2-methylbenzimidazole sodium bisulfate (AMBIM-Na). The synthesized compound was analyzed by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), as well as additional physical characteristics. The baseline performance was initially evaluated at various molar concentrations against distilled water as the feed solution (FS). The results indicated that the produced solute exhibits elevated osmotic pressure, resulting in a water flux of up to 130 LMH for a 1 M concentration, coupled with the absence of reverse salt flux. The synthesized AMBIM-Na at a concentration of 1 M was utilized as a draw solution (DS) against synthetic brackish water. The water flux declined progressively with the increase in FS concentration, decreasing from 130 LMH with distilled water to 99, 70, and 41 LMH at NaCl concentrations of 5, 10, and 15 g/L, respectively. The regeneration of the draw solute was assessed using pH adjustment, revealing that 100% regeneration occurs by reducing the pH to 2. Full article
Show Figures

Figure 1

16 pages, 5682 KB  
Article
Enhanced Stability of Water-Processed Sb2Te3: PEO Thermoelectric Hybrids via Thiol-Based Surface Functionalization
by Oskars Bitmets, Bejan Hamawandi, Raitis Grzibovskis, Jose Francisco Serrano Claumarchirant, Muhammet S. Toprak and Kaspars Pudzs
Sustain. Chem. 2025, 6(4), 37; https://doi.org/10.3390/suschem6040037 - 25 Oct 2025
Viewed by 328
Abstract
This study explores the development of a water-based hybrid thermoelectric (TE) material composed of Sb2Te3 nanoparticles (NPs) and polyethylene oxide (PEO). Sb2Te3 NPs were synthesized via the microwave-assisted colloidal route, where X-ray diffraction confirmed the purity and [...] Read more.
This study explores the development of a water-based hybrid thermoelectric (TE) material composed of Sb2Te3 nanoparticles (NPs) and polyethylene oxide (PEO). Sb2Te3 NPs were synthesized via the microwave-assisted colloidal route, where X-ray diffraction confirmed the purity and quality of the Sb2Te3 NPs. Key properties, including the Seebeck coefficient (S), electrical conductivity (σ), power factor (PF), and long-term stability, were studied. X-ray photoelectron spectroscopy (XPS) analysis revealed that exposure to water and oxygen leads to NP oxidation, which can be partially mitigated by hydrochloric acid (HCl) treatment, though this does not halt ongoing oxidation. Scanning electron microscopy (SEM) images displayed a percolation network of NPs within the PEO matrix. While the initial σ was high, a decline occurred over eight weeks, resulting in similar conductivity among all samples. The effect of surface treatments, such as 1,6-hexanedithiol (HDT), was demonstrated to enhance long-term stability. The results highlight both the challenges and potential of Sb2Te3/PEO hybrids for TE applications, especially regarding oxidation and durability, and underscore the need for improved synthesis and processing techniques to optimize their performance. This study provides valuable insights for the design of next-generation hybrid TE materials and emphasizes the importance of surface chemistry control in polymer–inorganic nanocomposites. Full article
Show Figures

Graphical abstract

19 pages, 1441 KB  
Article
From Plant to Skin: Exploring Alnus glutinosa Extracts for Cosmeceutical Applications
by Nikolaos D. Bikiaris, Evangelia Balla, Despoina Varitimidou, Lelouda-Athanasia Koronaiou and Nikolaos Nikolaidis
Antioxidants 2025, 14(11), 1275; https://doi.org/10.3390/antiox14111275 - 23 Oct 2025
Viewed by 592
Abstract
This study explores the photoprotective and antioxidant potential of cosmetic emulsions formulated with Alnus glutinosa (black alder) extracts. Extraction of bioactive compounds was performed using Soxhlet, ultrasound-assisted, and microwave-assisted techniques with ethanol and water as solvents. The phytochemical profiles of the resulting extracts [...] Read more.
This study explores the photoprotective and antioxidant potential of cosmetic emulsions formulated with Alnus glutinosa (black alder) extracts. Extraction of bioactive compounds was performed using Soxhlet, ultrasound-assisted, and microwave-assisted techniques with ethanol and water as solvents. The phytochemical profiles of the resulting extracts were characterized via UV-Vis spectroscopy, Fourier-transform infrared spectroscopy (FTIR), and liquid chromatography–high-resolution mass spectrometry (LC-HRMS). The extracts were incorporated into oil-in-water emulsions and assessed for antioxidant activity using the DPPH radical scavenging assay, pH and viscosity stability, and color L*a*b* values. Among the extraction methods, ethanol-based Soxhlet extraction yielded the highest concentration of bioactive compounds and demonstrated superior antioxidant and photoprotective efficacy. This is the first report that evaluates the antioxidant properties of A. glutinosa-enriched emulsions, supporting their application as multifunctional, plant-derived cosmeceuticals for skin protection. Full article
(This article belongs to the Section Extraction and Industrial Applications of Antioxidants)
Show Figures

Figure 1

12 pages, 5483 KB  
Article
Conformational Analysis of 3-Indoleacetamide: Unveiling Structural Rigidity in the Tryptophan-Derived Bioactive Molecule Family
by Sofía Municio, Sergio Mato, José Luis Alonso, Elena Rita Alonso and Iker León
Molecules 2025, 30(21), 4156; https://doi.org/10.3390/molecules30214156 - 22 Oct 2025
Viewed by 330
Abstract
The conformational landscape of 3-indoleacetamide, a key intermediate in plant hormone biosynthesis, has been comprehensively investigated using state-of-the-art laser-ablation chirped-pulse Fourier transform microwave (LA-CP-FTMW) and laser-ablation molecular beam Fourier transform microwave (LA-MB-FTMW) spectroscopy. Remarkably, 3-indoleacetamide exhibits unprecedented conformational rigidity within the tryptophan-derived molecule [...] Read more.
The conformational landscape of 3-indoleacetamide, a key intermediate in plant hormone biosynthesis, has been comprehensively investigated using state-of-the-art laser-ablation chirped-pulse Fourier transform microwave (LA-CP-FTMW) and laser-ablation molecular beam Fourier transform microwave (LA-MB-FTMW) spectroscopy. Remarkably, 3-indoleacetamide exhibits unprecedented conformational rigidity within the tryptophan-derived molecule family, displaying only a single stable conformer characterized by distinctive a-, b-, and c-type rotational transitions. This singular conformational behavior contrasts dramatically with the structural flexibility observed in closely related tryptophan derivatives such as tryptophan, serotonin, tryptamine, and 3-indoleacetic acid. The unique structural constraint imposed by the acetamide functional group provides unprecedented insights into the molecular determinants governing the distinct biological roles of tryptophan-derived compounds. This work establishes a potential correlation between conformational flexibility and biological function, from neurotransmission to plant hormone regulation, offering new perspectives on structure-activity relationships in bioactive natural products. Full article
(This article belongs to the Section Physical Chemistry)
Show Figures

Graphical abstract

14 pages, 2347 KB  
Article
Fabrication and Dielectric Characterization of Stable Oil in Gelatin Breast Tissue Phantoms for Microwave Biomedical Imaging
by Héctor López-Calderón, Víctor Velázquez-Martínez, Celia Calderón-Ramón, Juan Rodrigo Laguna-Camacho, Benoit Roger-Fouconnier, Jaime Martínez-Castillo, Enrique López-Calderón, Javier Calderón-Sánchez, Jorge Chagoya-Ramírez and Armando Aguilar-Meléndez
Micromachines 2025, 16(10), 1189; https://doi.org/10.3390/mi16101189 - 21 Oct 2025
Viewed by 342
Abstract
Breast tissue-mimicking phantoms are essential tools for validating microwave imaging systems designed for early breast cancer detection. In this work, we report the fabrication and comprehensive characterization of oil-in-gelatin phantoms emulating normal, benign, and malignant breast tissues. The phantoms were manufactured with controlled [...] Read more.
Breast tissue-mimicking phantoms are essential tools for validating microwave imaging systems designed for early breast cancer detection. In this work, we report the fabrication and comprehensive characterization of oil-in-gelatin phantoms emulating normal, benign, and malignant breast tissues. The phantoms were manufactured with controlled mixtures of kerosene, safflower oil, and gelatin, and their dielectric properties were experimentally evaluated using a free-space transmission method with a Vector Network Analyzer across the 100 MHz–10 GHz range. Results demonstrated significant contrast in permittivity and conductivity among the different tissue types, consistent with values reported in the literature. Long-term stability was confirmed for up to six months under controlled storage. Additional structural and thermal characterization was performed using Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA), providing insight into molecular composition and thermal response. The proposed method enables reproducible, low-cost, and stable phantom fabrication, offering reliable tissue models to support experimental validation and optimization of microwave-based breast cancer detection systems. Full article
(This article belongs to the Section B2: Biofabrication and Tissue Engineering)
Show Figures

Graphical abstract

21 pages, 3509 KB  
Article
Microwave-Assisted Preparation of Coffee-Based Activated Carbons: Characteristics, Properties, and Potential Application as Adsorbents for Water Purification
by Przemysław Pączkowski, Viktoriia Kyshkarova, Viktor Nikolenko, Oksana Arkhipenko, Inna Melnyk and Barbara Gawdzik
Molecules 2025, 30(20), 4123; https://doi.org/10.3390/molecules30204123 - 17 Oct 2025
Viewed by 445
Abstract
Activated carbons were synthesized from coffee grounds using phosphoric acid as a chemical activator and microwave-assisted carbonization as a rapid and energy-efficient method. Then the prepared carbons were surface-treated with cold plasma to improve their chemical properties and adsorption efficiency. The structural properties [...] Read more.
Activated carbons were synthesized from coffee grounds using phosphoric acid as a chemical activator and microwave-assisted carbonization as a rapid and energy-efficient method. Then the prepared carbons were surface-treated with cold plasma to improve their chemical properties and adsorption efficiency. The structural properties and chemical structure of the carbons were determined using nitrogen adsorption–desorption analysis, X-ray photoelectron spectroscopy, as well as X-ray microanalysis by means of scanning electron microscopy. The effect of cold plasma treatment on surface functionality and porosity was investigated. The resulting activated carbons were tested for their potential use as sorbents for the removal of ciprofloxacin, a commonly used antibiotic, from aqueous solutions. The effects of solution pH, sorption kinetics, and initial concentration were investigated. Adsorption kinetics followed a pseudo-second-order model, and the equilibrium data were well described by both the Langmuir and Freundlich isotherms, indicating a combination of monolayer adsorption on homogeneous sites and multilayer adsorption on heterogeneous surfaces. Plasma-treated carbon demonstrated significantly increased adsorption capacity (42.6–120.6 mg g−1) compared to the unactivated samples (20.2–92.4 mg g−1). Desorption experiments revealed that the plasma-treated carbon retained over 90% efficiency after seven cycles, confirming its excellent reusability and regeneration potential for practical water treatment applications. Full article
Show Figures

Figure 1

16 pages, 1250 KB  
Article
Almond Shell-Derived Biochar for Lead Adsorption: Comparative Study of Pyrolysis Techniques and Sorption Capacities
by Eva Pertile, Tomáš Dvorský, Vojtěch Václavík, Lucie Berkyová and Petr Balvín
Molecules 2025, 30(20), 4121; https://doi.org/10.3390/molecules30204121 - 17 Oct 2025
Viewed by 424
Abstract
Lead (Pb(II)) contamination in water poses severe environmental and health risks due to its toxicity and persistence. This study compares almond shell-derived biochars produced by slow pyrolysis (SP) and microwave pyrolysis (MW), with and without KOH activation, focusing on structural properties and Pb(II) [...] Read more.
Lead (Pb(II)) contamination in water poses severe environmental and health risks due to its toxicity and persistence. This study compares almond shell-derived biochars produced by slow pyrolysis (SP) and microwave pyrolysis (MW), with and without KOH activation, focusing on structural properties and Pb(II) adsorption performance. Biochars were characterized by proximate and elemental analysis, BET surface area, FTIR spectroscopy, and adsorption experiments including pH dependence, kinetics, and equilibrium isotherms. Non-activated SP exhibited the highest surface area (SBET = 693 m2·g−1), pronounced mesoporosity (≈73% of total pore volume), and the largest observed equilibrium capacities. KOH activation increased surface hydroxyl content but degraded textural properties; in MW samples, it induced severe pore collapse. Given the very fast uptake, kinetic modeling was treated cautiously: for non-activated biochars, Elovich adequately captured the time-course trend, whereas activated samples returned non-physical kinetic constants (e.g., negative k2) likely due to high post-adsorption pH (>11) and probable Pb(OH)2 precipitation. Equilibrium data (fitted over 50–500 mg·L−1) were better captured by the Freundlich and Redlich–Peterson models, indicating a mixed adsorption behaviour with contributions from heterogeneous site distribution and site-specific interactions. Optimal Pb(II) removal occurred at pH 4, with no measurable leaching from the biochar matrix. Overall, non-activated SP biochar is the most effective, sustainable and low-cost option among the tested materials for Pb(II) removal from water, avoiding aggressive chemical activation while maximizing adsorption performance. Full article
(This article belongs to the Special Issue Green Chemistry Approaches to Analysis and Environmental Remediation)
Show Figures

Figure 1

16 pages, 6023 KB  
Article
Electromagnetic Shielding Performance of Ta-Doped NiFe2O4 Composites Reinforced with Chopped Strands for 7–18 GHz Applications
by Mehriban Emek, Ethem İlhan Şahin, Jamal Eldin F. M. Ibrahim and Mesut Kartal
Nanomaterials 2025, 15(20), 1580; https://doi.org/10.3390/nano15201580 - 16 Oct 2025
Viewed by 343
Abstract
This study reports the synthesis, structural characterization, and electromagnetic shielding performance of tantalum (Ta)-doped nickel ferrite (NiFe2O4) composites reinforced with chopped strands. Ta-doped NiFe2O4 powders were prepared via the conventional mixed-oxide route and sintered at 1200 [...] Read more.
This study reports the synthesis, structural characterization, and electromagnetic shielding performance of tantalum (Ta)-doped nickel ferrite (NiFe2O4) composites reinforced with chopped strands. Ta-doped NiFe2O4 powders were prepared via the conventional mixed-oxide route and sintered at 1200 °C for 4 h, resulting in a well-crystallized single-phase spinel structure. Comprehensive structural and chemical analyses were carried out using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS), confirming the successful incorporation of Ta into the NiFe2O4 lattice and the uniform microstructural distribution. The ferrite powders were subsequently embedded with chopped strands and epoxy resin through hot pressing to fabricate composites with varying filler contents. The electromagnetic interference (EMI) shielding effectiveness (SE) of the composites was systematically evaluated in the 7–18 GHz frequency range using a network analyzer (NA). The optimized composite, with a thickness of 1.2 mm, demonstrated a maximum SE of 34.74 dB at 17.4 GHz, primarily attributed to interfacial polarization, dipolar relaxation, and multiple scattering effects induced by the chopped strands. The results indicate that the shielding performance of the composites can be precisely tuned by modifying the filler concentration and microstructural characteristics, enabling selective frequency-band applications. Overall, this work highlights the potential of Ta-doped NiFe2O4/chopped strand composites as lightweight, cost-effective, and high-performance candidates for advanced microwave absorption and electromagnetic shielding applications in defense, and next-generation communication technologies. Full article
(This article belongs to the Section Inorganic Materials and Metal-Organic Frameworks)
Show Figures

Graphical abstract

21 pages, 1985 KB  
Article
Bio-Solid Fuel from Wheat Straw via Microwave Torrefaction: Process Optimization and Environmental Assessment
by Yunji Pei, Zimo Liang, Xuexue Chen, Xinran Wang, Wenlin Zhou, Weiyu Lu and Li Jiang
Processes 2025, 13(10), 3302; https://doi.org/10.3390/pr13103302 - 15 Oct 2025
Viewed by 444
Abstract
There is a need to address the limitations of wheat straw (WS) as a raw biomass fuel, promote its valorisation into a high-quality renewable solid fuel, and enable this fuel to replace fossil fuels in applications such as power plants and industrial boilers. [...] Read more.
There is a need to address the limitations of wheat straw (WS) as a raw biomass fuel, promote its valorisation into a high-quality renewable solid fuel, and enable this fuel to replace fossil fuels in applications such as power plants and industrial boilers. This study focused on optimizing microwave torrefaction parameters to enhance key fuel properties. Optimal conditions were determined via the Box–Behnken design (BBD) within Response Surface Methodology (RSM) as 422.32 W of microwave power, 14.95 min of irradiation time, and a 15 g microwave absorber, resulting in a 69.12% mass yield, an 18.44 MJ/kg higher heating value (HHV) surpassing lignite at 16.76 MJ/kg, and a 25.50% Energy-Mass Co-efficiency Index (EMCI). Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis/derivative thermogravimetric analysis (TG/DTG) were conducted to gain insights about chemical composition and thermal stability variations due to torrefaction. LCA showed that electricity produced from 1 ton of torrefied WS reduces CO2 emissions by 259.26 kg CO2eq compared to electricity generated from bituminous coal. From an economic perspective, the usage of torrefied WS for power generation lead to a net profit of CNY 435.19/ton. This scalable technology, by valorising agricultural waste for fuel production, delivers dual environmental and economic benefits, laying the groundwork for industrial deployment. Full article
(This article belongs to the Special Issue Biofuels Production Processes)
Show Figures

Figure 1

16 pages, 842 KB  
Article
Traceability and Heavy Metal Contamination in Agrosystems of Two Rice-Producing Areas of the Ecuadorian Coast
by Jairo Jaime-Carvajal, Jaime Naranjo-Morán, Kevin Cedeño Vinces, José Ballesteros, Fernando Espinoza-Lozano, Ivan Chóez-Guaranda and Simón Pérez-Martinez
Agronomy 2025, 15(10), 2359; https://doi.org/10.3390/agronomy15102359 - 9 Oct 2025
Viewed by 537
Abstract
Rice (Oryza sativa) plays a fundamental role in the Ecuadorian diet. This study evaluated traceability and contamination by heavy metals in two rice-producing areas of Ecuador. Microwave-assisted digestion was used to process samples from rice agrosystems including irrigation water, soil, roots, [...] Read more.
Rice (Oryza sativa) plays a fundamental role in the Ecuadorian diet. This study evaluated traceability and contamination by heavy metals in two rice-producing areas of Ecuador. Microwave-assisted digestion was used to process samples from rice agrosystems including irrigation water, soil, roots, stems, and leaves. Inductively coupled plasma optical emission spectroscopy (ICP-OES) was employed for elemental analysis. Arsenic (As), cadmium (Cd), lead (Pb), and chromium (Cr) were measured in samples collected in Daule and Ventanas. In soils, the concentrations of As (1.50–2.82 mg/kg) and Cd (1.22–1.45 mg/kg) exceeded the internationally recommended safety thresholds. In irrigation water, the content of As (0.85–1.12 mg/L), Pb (0.25–0.38 mg/L), and Cr (0.37–0.53 mg/L) surpass the international/national permissible limits. However, the limits established by Ecuadorian legislation indicate that As in soils did not exceed contamination thresholds. Additionally, the bioaccumulation of As and Pb in roots from Daule and Ventanas, respectively, was observed, along with the movement of Pb to aerial parts in Daule. Finally, preliminary As found in commercial rice grains suggest a potential health concern to the Ecuadorian population. These findings highlight the need for stricter heavy metal restrictions for rice agrosystems and effective agricultural pollution mitigation. Full article
(This article belongs to the Section Agroecology Innovation: Achieving System Resilience)
Show Figures

Figure 1

34 pages, 4923 KB  
Review
Recent Developments and Applications of Terahertz Spectroscopy in Food Analysis
by Pengpeng Yu, Chaoping Shen, Wenhui Zhu, Wenya Zhang, Junhui Cheng and Jinxiu Song
Biosensors 2025, 15(10), 677; https://doi.org/10.3390/bios15100677 - 8 Oct 2025
Viewed by 1077
Abstract
The terahertz waves are electromagnetic waves with frequencies ranging from 0.1 to 10 THz, exhibiting characteristics of both microwave and infrared, including fingerprint characteristics, coherence, and safety. Due to the weak interactions among most organic macromolecules in substances, the vibrational modes of molecular [...] Read more.
The terahertz waves are electromagnetic waves with frequencies ranging from 0.1 to 10 THz, exhibiting characteristics of both microwave and infrared, including fingerprint characteristics, coherence, and safety. Due to the weak interactions among most organic macromolecules in substances, the vibrational modes of molecular frameworks, as well as dipole rotation and vibration transitions, often correspond to the terahertz spectral region. Consequently, there has been growing interest in applying terahertz technology within the food industry. This review summarizes the fundamental principles of terahertz spectroscopy for substance detection and highlights recent advances and applications in food analysis. Key applications include harmful contaminant detection, component analysis, quality assessment, and adulteration identification. Additionally, this review discusses current challenges in applying terahertz spectroscopy to food analysis, such as strong water absorption, matrix interference, and the lack of comprehensive spectral databases. Finally, the paper outlines future prospects, including the development of lightweight and cost-effective terahertz sources and detectors for on-site analysis, as well as the integration of terahertz spectroscopy with other modern detection technologies to enhance analytical performance. This work aims to serve as a reference for further research and development of terahertz spectroscopy in the food sector. Full article
Show Figures

Figure 1

Back to TopTop