Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,375)

Search Parameters:
Keywords = milk products and health

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1263 KB  
Article
Serotyping and Antibiotic Resistance Profiles of Salmonella spp. and Listeria monocytogenes Strains Isolated from Pet Food and Feed Samples: A One Health Perspective
by Nikolaos D. Andritsos, Antonia Mataragka, Nikolaos Tzimotoudis, Anastasia-Spyridoula Chatzopoulou, Maria Kotsikori and John Ikonomopoulos
Vet. Sci. 2025, 12(9), 844; https://doi.org/10.3390/vetsci12090844 (registering DOI) - 1 Sep 2025
Abstract
Foodborne pathogenic bacteria, like Salmonella spp. and Listeria monocytogenes, can be detected in the primary food production environment. On the other hand, and in the current context of One Health, antimicrobial resistance (AMR) is gaining increased attention worldwide, as it poses significant [...] Read more.
Foodborne pathogenic bacteria, like Salmonella spp. and Listeria monocytogenes, can be detected in the primary food production environment. On the other hand, and in the current context of One Health, antimicrobial resistance (AMR) is gaining increased attention worldwide, as it poses significant threat to public health. The purpose of this study was to confirm the presence of Salmonella spp. and L. monocytogenes in pet food and feed samples, by means of biochemical and/or serological testing of the microbial isolates, and then to screen for AMR against a panel of selected antibiotics. Serotyping of the isolates with multiplex polymerase chain reaction revealed the presence of three of the most common clinical Salmonella serovars (S. Enteritidis, S. Typhimurium, S. Thompson) and the major epidemiologically important L. monocytogenes serotypes (1/2a, 1/2b, 1/2c, 4b) in 15 and 9 confirmed isolates of the pathogens, respectively. Strains of Salmonella spp. showed resistance to tetracycline (n = 3) and combined AMR to tetracycline with either ampicillin (n = 2) or trimethoprim-sulfamethoxazole (n = 3), without any multidrug resistance (MDR) being recorded whatsoever. AMR in L. monocytogenes was documented in 55.5% of the bacterial strains (n = 5) tested against ciprofloxacin, meropenem, penicillin, trimethoprim-sulfamethoxazole, and tetracycline. Alarmingly, one strain of L. monocytogenes was MDR to the latter five antibiotics and deemed resistant in three antibiotic groups (carbapenems, penicillins, tetracyclines), after exhibiting minimum inhibitory concentrations (MICs) to meropenem (MIC = 4 μg/mL), penicillin (MIC = 4 μg/mL), and tetracycline (MIC = 48 μg/mL). To the best of our knowledge, finding an MDR L. monocytogenes in pet food is something reported for the first time herein. The results presented in this study highlight the presence of important foodborne bacterial pathogens, such as Salmonella spp. and L. monocytogenes, with increased AMR to antibiotics and possible MDR at the primary production and at the farm level, due to the misuse of pharmacological substances used to treat zoonotic diseases, probably resulting in detection of resistant strains of these pathogenic bacteria in animal-originated food products (e.g., meat, milk, eggs). Full article
Show Figures

Figure 1

23 pages, 1752 KB  
Systematic Review
Comparing the Effects of Dairy and Soybean on Bone Health in Women: A Food- and Component-Level Network Meta-Analysis
by Li You, Langrun Wang, Shiwen Zhou, Yiran Guan, Yan Liu, Ruixin Zhu, Huiyu Chen, Jie Guo, Keji Li, Xingyu Bao, Haotian Feng, Ignatius M. Y. Szeto, Jian He, Ran Wang and Jingjing He
Nutrients 2025, 17(17), 2833; https://doi.org/10.3390/nu17172833 - 30 Aug 2025
Abstract
Background/Objectives: Dairy and soybean are important potential dietary sources of bone health. However, their comparative effectiveness and the role of specific components remain unclear. In this network meta-analysis (NMA), we aimed to compare the effects of various dairy and soy products (food [...] Read more.
Background/Objectives: Dairy and soybean are important potential dietary sources of bone health. However, their comparative effectiveness and the role of specific components remain unclear. In this network meta-analysis (NMA), we aimed to compare the effects of various dairy and soy products (food level) and their key bioactive components (component level) on bone health in healthy women. Methods: We systematically searched PubMed, Embase, Cochrane Library, and Web of Science (up to 28 February 2025) for randomized controlled trials. A frequentist random-effects NMA was used to compare interventions for lumbar spine (LS) and total body (TB) bone mineral density (BMD) and bone turnover markers [osteocalcin (OC), deoxypyridinoline (DPD)]. Mean differences (MDs) and 95% confidence intervals were pooled. Interventions were ranked using the surface under the cumulative ranking curve (SUCRA). Results: Sixty RCTs involving 6284 participants (mean age: 54.2 years) were included. At the food level, no dairy or soy interventions significantly improved outcomes versus control, although milk + yogurt ranked numerically highest based on SUCRA values. At the bioactive-component level, the combination of casein + whey protein (MD 0.04 g/cm2, 95% CI 0.01–0.06) and soybean protein (MD: 0.03 g/cm2, 95% CI: 0.01–0.05) significantly increased TB BMD. Whey protein alone (SUCRA 74.4% for LS BMD) and casein + whey protein (SUCRA 86.3% for TB BMD and 75.9% for DPD) were among the highest-ranked interventions for bone health. Conclusions: The combination of milk and yogurt may be relatively promising among dairy products for bone health. Whey protein appears to be a key bioactive component beneficial for women’s bone health. Full article
29 pages, 807 KB  
Review
Microplastics in Dairy Products: Occurrence, Characterization, Contamination Sources, Detection Methods, and Future Challenges
by Hüseyin Ender Gürmeriç and Burhan Basaran
Appl. Sci. 2025, 15(17), 9411; https://doi.org/10.3390/app15179411 - 27 Aug 2025
Viewed by 286
Abstract
In this study, data from 17 studies reporting the presence of microplastics in milk and dairy products in the literature were examined with a product-based systematic approach. In addition, geographical comparisons were made between different countries. In milk and dairy products, the concentration [...] Read more.
In this study, data from 17 studies reporting the presence of microplastics in milk and dairy products in the literature were examined with a product-based systematic approach. In addition, geographical comparisons were made between different countries. In milk and dairy products, the concentration of microplastics has been reported to exhibit a broad range, extending from non-detectable levels to as high as 10,040 MPs per kilogram, contingent upon the specific product types. Milk powder (especially baby milk powder) stands out as the riskiest product group in terms of microplastic content. Although the sizes and colors of the detected microplastics vary significantly, the fiber form is generally predominant. While polyethylene, polypropylene, polyamide and polyester are among the polymers frequently detected, high-temperature-resistant industrial polymers such as polytetrafluoroethylene, polysulfone, polyurethane were also encountered. In addition, the presence of some polymers (such polyvinyl chloride, polyurethane) that are toxicologically risky for human health was reported in the studies. In addition, the study evaluated the chemical, enzymatic and physical methods used for the separation and identification of MPs; the advantages and limitations of FT-IR, Raman and other analysis techniques were revealed. This study reveals that MP contamination in milk and dairy products is a multidimensional problem. The findings show that milk and dairy products are highly susceptible to plastic contamination at every stage of production. Full article
(This article belongs to the Special Issue Advanced Research on Microplastics, Human Exposure and Food Safety)
Show Figures

Figure 1

19 pages, 634 KB  
Review
Computer Vision in Dairy Farm Management: A Literature Review of Current Applications and Future Perspectives
by Veronica Antognoli, Livia Presutti, Marco Bovo, Daniele Torreggiani and Patrizia Tassinari
Animals 2025, 15(17), 2508; https://doi.org/10.3390/ani15172508 - 26 Aug 2025
Viewed by 326
Abstract
Computer vision is rapidly transforming the field of dairy farm management by enabling automated, non-invasive monitoring of animal health, behavior, and productivity. This review provides a comprehensive overview of recent applications of computer vision in dairy farming management operations, including cattle identification and [...] Read more.
Computer vision is rapidly transforming the field of dairy farm management by enabling automated, non-invasive monitoring of animal health, behavior, and productivity. This review provides a comprehensive overview of recent applications of computer vision in dairy farming management operations, including cattle identification and tracking, and consequently the assessment of feeding and rumination behavior, body condition score, lameness and lying behavior, mastitis and milk yield, and social behavior and oestrus. By synthesizing findings from recent studies, we highlight how computer vision systems contribute to improving animal welfare and enhancing productivity and reproductive performance. The paper also discusses current technological limitations, such as variability in environmental conditions and data integration challenges, as well as opportunities for future development, particularly through the integration of artificial intelligence and machine learning. This review aims to guide researchers and practitioners toward more effective adoption of vision-based technologies in precision livestock farming. Full article
(This article belongs to the Special Issue Nutritional and Management Strategies for Heat-Stressed Ruminants)
Show Figures

Figure 1

17 pages, 1906 KB  
Article
Dietary Patterns and Feeding Behavior of Infants in Croatia: Findings from the National Food Consumption Survey on Infants and Children
by Ana Ilić, Ivana Rumbak, Martina Pavlić, Nataša Šarlija, Lidija Šoher, Daniela Čačić Kenjerić, Jasna Pucarin-Cvetković and Darja Sokolić
Children 2025, 12(9), 1125; https://doi.org/10.3390/children12091125 - 26 Aug 2025
Viewed by 327
Abstract
Background/Objectives: To prevent nutritional depletion and impaired weight status in infants, targeted public health policies and prevention programs based on scientific evidence are needed. This study provides an overview of the dietary patterns and feeding behavior of infants in Croatia as part [...] Read more.
Background/Objectives: To prevent nutritional depletion and impaired weight status in infants, targeted public health policies and prevention programs based on scientific evidence are needed. This study provides an overview of the dietary patterns and feeding behavior of infants in Croatia as part of the National Food Consumption Survey on Infants and Children. Methods: This cross-sectional study was conducted following the EU Menu methodology and included 322 healthy infants (54% boys; aged 3 months up to 12 months) from Croatia. Two-day dietary records were collected and analyzed using NutriCro 2.0 software. Results: The daily energy intake of infants was on average 886 ± 219 kcal, mainly from carbohydrates (47.0%), followed by fat (41.6%) and protein (9.9%). The main sources of energy and macronutrients were milk and dairy products, grains, grain products, potatoes and tubers and the fruit food group. One third of infants were breastfed, and more than 70% of infants were introduced to complementary foods. Parents started complementary feeding at the age of 5.37 ± 0.82 months, mostly with vegetables. Breastfeeding was associated with higher energy intake, especially in infants younger than 6 months, while formula feeding was associated with lower energy intake. The multivariate regression models showed age-related interactions that attenuated the patterns for energy and macronutrient intake. Conclusions: The study emphasizes that milk and dairy products are the main source of energy and macronutrients. The study highlights the important role of breastfeeding in promoting higher energy intake in early infancy and the decreasing effect of infant formula consumption with age. These results can be used as a basis for health policies, programs and strategies that address infant feeding habits in Croatia. Full article
(This article belongs to the Special Issue Infant and Early Childhood Nutrition (2nd Edition))
Show Figures

Figure 1

17 pages, 4812 KB  
Article
Metagenomic Analysis Reveals the Anti-Inflammatory Properties of Mare Milk
by Ran Wang, Wanlu Ren, Shibo Liu, Zexu Li, Luling Li, Shikun Ma, Xinkui Yao, Jun Meng, Yaqi Zeng and Jianwen Wang
Int. J. Mol. Sci. 2025, 26(17), 8239; https://doi.org/10.3390/ijms26178239 - 25 Aug 2025
Viewed by 523
Abstract
This study aimed to assess the anti-inflammatory properties of mare milk by analyzing immune markers in mice following gavage of mare milk. Metagenomic sequencing was employed to examine variations in the composition and functional profiles of the intestinal microbiota across different experimental groups. [...] Read more.
This study aimed to assess the anti-inflammatory properties of mare milk by analyzing immune markers in mice following gavage of mare milk. Metagenomic sequencing was employed to examine variations in the composition and functional profiles of the intestinal microbiota across different experimental groups. Bacterial diversity, abundance, and functional annotations of gut microbiota were evaluated for each group. The results show that, compared to the control group, the mare milk group exhibited a significant decrease in the pro-inflammatory cytokine IL-6 levels and a significant increase in secretory immunoglobulin A (SIgA) levels (p < 0.05). The fermented mare milk group and the pasteurized fermented mare milk group demonstrated a significant downregulation of the pro-inflammatory cytokines TNF-α and IL-1β, along with a significant increase in the anti-inflammatory cytokine IL-10 levels (p < 0.05). Additionally, metagenomic analysis revealed that both the mare milk and fermented mare milk groups were able to regulate the imbalance of the intestinal microenvironment by improving the diversity of the gut microbiota and reshaping its structure. Specifically, the mare milk group enhanced gut barrier function by increasing the abundance of Bacteroides acidifaciens, while the fermented mare milk group increased the proportion of Bacillota and the relative abundance of beneficial bacterial genera such as Faecalibaculum and Bifidobacterium. KEGG pathway annotation highlighted prominent functions related to carbohydrate and amino acid metabolism, followed by coenzyme and vitamin metabolism activities. In conclusion, mare milk and its fermented products demonstrate anti-inflammatory effects, particularly in modulating immune responses and inhibiting inflammatory cascades. Additionally, the administration of mare milk enhances the composition and metabolic activity of intestinal microbiota in mice, supporting intestinal microecological balance and overall gut health, and offering valuable insights for the development of mare milk-based functional foods. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

20 pages, 2273 KB  
Review
Adaptation and Outbreak of Highly Pathogenic Avian Influenza in Dairy Cattle: An Emerging Threat to Humans, Pets, and Peridomestic Animals
by Rifat Noor Shanta, Mahfuza Akther, M. Asaduzzaman Prodhan, Syeda Hasina Akter, Henry Annandale, Subir Sarker, Sam Abraham and Jasim Muhammad Uddin
Pathogens 2025, 14(9), 846; https://doi.org/10.3390/pathogens14090846 - 25 Aug 2025
Viewed by 1194
Abstract
Over the decades, cattle have not been considered primary hosts for influenza A viruses (IAV), and their role in influenza epidemiology has been largely unrecognized. While bovines are known reservoirs for influenza D virus, the recent emergence of highly pathogenic avian influenza (HPAI) [...] Read more.
Over the decades, cattle have not been considered primary hosts for influenza A viruses (IAV), and their role in influenza epidemiology has been largely unrecognized. While bovines are known reservoirs for influenza D virus, the recent emergence of highly pathogenic avian influenza (HPAI) H5N1 clade 2.3.4.4b in U.S. dairy cattle marks an alarming shift in influenza ecology. Since March 2024, this virus has affected thousands of dairy cows, causing clinical signs such as fever, reduced feed intake, drastic declines in milk production, and abnormal milk appearance. Evidence suggests that the virus may be replicated within mammary tissue, raising urgent concerns about milk safety, foodborne transmission, and occupational exposure. This review highlights the unprecedented expansion of viruses into bovine populations, exploring the potential for host adaptation, and interconnected roles of pets, peridomestic animals, and human exposure within shared environments. The potential impacts on dairy production, food safety, and zoonotic spillover highlight the urgent need for integrated One Health surveillance to stay ahead of this evolving threat. Full article
(This article belongs to the Section Viral Pathogens)
Show Figures

Figure 1

14 pages, 284 KB  
Article
Use of a Blend of Exogenous Enzymes in the Diet of Lactating Jersey Cows: Ruminal Fermentation In Vivo and In Vitro, and Its Effects on Productive Performance, Milk Quality, and Animal Health
by Maksuel Gatto de Vitt, Andrei Lucas Rebelatto Brunetto, Karoline Wagner Leal, Guilherme Luiz Deolindo, Natalia Gemelli Corrêa, Luiz Eduardo Lobo e Silva, Roger Wagner, Maria Eduarda Pieniz Hamerski, Gilberto Vilmar Kozloski, Melânia de Jesus da Silva, Amanda Regina Cagliari, Pedro Del Bianco Benedeti and Aleksandro Schafer da Silva
Fermentation 2025, 11(9), 495; https://doi.org/10.3390/fermentation11090495 - 25 Aug 2025
Viewed by 384
Abstract
The use of exogenous enzymes in the nutrition of dairy cows is an innovative and efficient strategy to maximize productivity and milk quality, with positive applications in the economic and environmental aspects of dairy farming. Therefore, the objective of this study was to [...] Read more.
The use of exogenous enzymes in the nutrition of dairy cows is an innovative and efficient strategy to maximize productivity and milk quality, with positive applications in the economic and environmental aspects of dairy farming. Therefore, the objective of this study was to evaluate whether the addition of a blend of exogenous enzymes to the diet of lactating Jersey cows has a positive effect on productive performance, milk quality, animal health, ruminal environment, and digestibility. Twenty-one primiparous Jersey cows, with 210 days in lactation (DL), were used. The exogenous enzymes used were blends containing mainly protease, in addition to cellulase, xylanase, and beta-glucanase. The animals were divided into three groups with seven replicates per group (each animal being the experimental unit), as follows: Control (T-0), basal diet without enzyme addition; Treatment (T-80), animals fed enzymes in the diet at a daily dose of 80 mg per kg of dry matter (DM); Treatment (T-160), animals fed enzymes in the diet at a daily dose of 160 mg per kg of DM. The study lasted 84 days, during which higher milk production was observed in the treated groups (T-80 and T-160) compared to the control group (p = 0.04). When calculating feed efficiency from days 1 to 84, greater efficiency was observed in both groups that received the blend compared to the control (p = 0.05). In the centesimal composition of the milk, it was observed that the percentage of protein in the milk of the T-160 group was higher compared to the control group (p = 0.03). The effect of the enzymes was verified for butyric (p = 0.05) and palmitic (p = 0.05) fatty acids. We also observed the effect of the enzyme blend on the amount of volatile fatty acids (VFAs), which were higher in the ruminal fluid of cows that received the enzymes (p = 0.01). Cows that consumed enzymes showed a higher apparent digestibility coefficient of crude protein (p = 0.01). In vitro, the main result is related to lower gas production in 24 and 48 h at T-160. We concluded that the use of a blend of exogenous enzymes in the diet of lactating Jersey cows was able to increase milk production in these animals, resulting in greater feed efficiency and also an increase in milk protein content, positively modulating the fatty acid profile in the rumen and improving the apparent digestibility of nutrients. Full article
(This article belongs to the Section Probiotic Strains and Fermentation)
19 pages, 9983 KB  
Article
Analysis of Lactation Performance and Mastitis Incidence in High- and Low-Yielding Dairy Cows Using DHI Data
by Qijun Zhou, Zijian Geng, Shuai Lian, Jianfa Wang and Rui Wu
Animals 2025, 15(17), 2495; https://doi.org/10.3390/ani15172495 - 25 Aug 2025
Viewed by 326
Abstract
The DHI data is crucial for monitoring the udder health of dairy cows during the breeding process. This study aimed to investigate the factors influencing milk production in dairy cows throughout this period. We analyzed DHI data from Holstein dairy cows in the [...] Read more.
The DHI data is crucial for monitoring the udder health of dairy cows during the breeding process. This study aimed to investigate the factors influencing milk production in dairy cows throughout this period. We analyzed DHI data from Holstein dairy cows in the Heilongjiang region, alongside the incidence of mastitis. The findings revealed that high-yielding cows demonstrated significantly higher peak milk yield days, peak milk yield, urea nitrogen levels, 305-day milk yield, and persistency (p < 0.0001) compared to their low-yielding counterparts. Conversely, high-yielding cows exhibited lower protein rates, fat-to-protein ratios, and milk fat rates (p < 0.0001). Additionally, the somatic cell count (SCC) in high-yielding cows was significantly lower than that in low-yielding cows (p < 0.0001). The multivariate linear regression analysis of the DHI data indicated that parity was the primary determinant affecting both milk yield and SCC. Statistical analysis of cows with clinical mastitis revealed that those experiencing a single episode of clinical mastitis during the lactation period were predominantly in their first and second parities, while recurrent cases were primarily observed in the second and third parities. These results suggest that as the number of lactations increases, the SCC also rises, reflecting the cumulative impact of parity on the udder health of dairy cows. Full article
(This article belongs to the Section Cattle)
Show Figures

Figure 1

21 pages, 1205 KB  
Article
Development and Fuzzy Logic-Based Optimization of Golden Milk Formulations Using RW-Dried Turmeric Powder: A Study on Shelf Life, Sensory Attributes, and Functional Properties
by Preetisagar Talukdar, Kamal Narayan Baruah, Pankaj Jyoti Barman, Shagufta Rizwana, Sonu Sharma and Ramagopal V. S. Uppaluri
Foods 2025, 14(17), 2948; https://doi.org/10.3390/foods14172948 - 24 Aug 2025
Viewed by 406
Abstract
The storage characteristics of folic acid and NaFeEDTA fortified in a refractance window-dried turmeric powder base and its subsequent application to the formulation of nutritionally functionalized golden milk have not been addressed in previous studies. Golden milk is a staple food and ideal [...] Read more.
The storage characteristics of folic acid and NaFeEDTA fortified in a refractance window-dried turmeric powder base and its subsequent application to the formulation of nutritionally functionalized golden milk have not been addressed in previous studies. Golden milk is a staple food and ideal matrix for the fortification of important nutrients such as iron and folic acid. With this motivation, the present study assesses refractance window (RW)-dried turmeric powder fortified with folic acid and NaFeEDTA in terms of its moisture isotherm, permeability of packing material, and storage parameters to calculate its shelf life. Further, a sensory analysis was conducted based on the fuzzy logic method to obtain the best constitution of RW-dried turmeric powder in milk. For the best formulation of golden milk, the characteristics of the product under unrefrigerated and refrigerated conditions were evaluated in addition to the storage study. Additionally, moisture content (MC), total flavonoid content (TFC), total phenolic content (TPC), antioxidant activity (AA), curcumin content (CC), color indices, bulk densities, solubility, swelling power, and water binding capacities were studied with respect to time. The results demonstrated a healthy shelf life of 184, 187, and 183 days for RW-dried, folic acid-fortified, and NaFeEDTA-fortified RW-dried turmeric powder samples, respectively, in the zipper pouch system. The fuzzy scores ranked the sample with 1 g concentration of turmeric powder as the best, considering taste, aroma, mouthfeel, aftertaste, consistency, and overall acceptability. The TPC, TFC, AA, and CC values for RW-dried turmeric powder in milk were 876.21 mg GAE/100 mL, 784.61 mg quercetin/100 mL, 24.50% and 4.20% w/w, respectively. Marginal alterations were found for the RW-dried fortified and unfortified turmeric samples. This fortified golden milk has the potential for use as a health drink. Full article
(This article belongs to the Section Food Packaging and Preservation)
Show Figures

Figure 1

42 pages, 1210 KB  
Review
Comprehensive Prevention and Control of Mastitis in Dairy Cows: From Etiology to Prevention
by Wenjing Yu, Zixuan Zhang, Zhonghua Wang, Xueyan Lin, Xusheng Dong and Qiuling Hou
Vet. Sci. 2025, 12(9), 800; https://doi.org/10.3390/vetsci12090800 - 23 Aug 2025
Viewed by 742
Abstract
Mastitis, an inflammatory disease caused by the invasion of various pathogenic microorganisms into mammary gland tissue, is a core health issue plaguing the global dairy industry. The consequences of this disease are manifold. In addition to directly compromising the health and welfare of [...] Read more.
Mastitis, an inflammatory disease caused by the invasion of various pathogenic microorganisms into mammary gland tissue, is a core health issue plaguing the global dairy industry. The consequences of this disease are manifold. In addition to directly compromising the health and welfare of dairy cows, it also precipitates a substantial decline in lactation function, a precipitous drop in raw milk production, and alterations in milk composition (e.g., increased somatic cell counts and imbalanced ratios of milk protein to fat). These changes result in a marked degradation of milk quality and safety, and in turn, engender significant economic losses for the livestock industry. Therefore, the establishment and implementation of a comprehensive prevention and control system is a key strategy to effectively curb the occurrence of mastitis, reduce its incidence rate, and minimise economic losses. This review systematically explores the complex etiological factors and pathogenic mechanisms of mastitis in dairy cows, and summarises various diagnostic methods, including milk apparent indicators monitoring, pathogen detection, physiological parameter monitoring, omics technologies, and emerging technologies. Furthermore, it undertakes an analysis of treatment protocols for mastitis in dairy cows, with a particular emphasis on the significance of rational antibiotic use and alternative therapies. Moreover, it delineates preventive measures encompassing both environmental and hygiene management, and dairy cow health management. The objective of this paper is to provide a comprehensive and scientific theoretical basis and practical guidance for dairy farming practices. This will help to improve the health of dairy cows, ensure a stable supply of high-quality dairy products, and promote the sustainable and healthy development of the dairy farming industry. Full article
(This article belongs to the Special Issue Mammary Development and Health: Challenges and Advances)
Show Figures

Figure 1

17 pages, 1289 KB  
Article
Live Yeast Supplementation Attenuates the Effects of Heat Stress in Dairy Cows
by Ana R. J. Cabrita, Júlio Carvalheira and António J. M. Fonseca
Vet. Sci. 2025, 12(9), 791; https://doi.org/10.3390/vetsci12090791 - 22 Aug 2025
Viewed by 352
Abstract
High temperature typically decreases feed intake, milk production, and efficiency and increases metabolic disorders and health problems, greatly impacting farm economics. Supplements based on Saccharomyces cerevisiae have been suggested to benefit cows under heat stress, but effects on dairy cow performance are contradictory. [...] Read more.
High temperature typically decreases feed intake, milk production, and efficiency and increases metabolic disorders and health problems, greatly impacting farm economics. Supplements based on Saccharomyces cerevisiae have been suggested to benefit cows under heat stress, but effects on dairy cow performance are contradictory. This study aimed to evaluate the influence of heat stress on the effects of live yeast supplementation on the performance of dairy cows. Environmental temperature parameters were compared to two thermal humidity indices (THI1 and THI2) using wet bulb or dew point temperatures, as explanatory variables of dairy cow performance during the hot season. The experiment followed a randomized complete block design with 12 Holstein cows blocked by lactation number, days in milk, and milk production (two cows per block) and within each block, each cow was randomly assigned to a maize silage-based TMR with a concentrate mixture containing no yeast culture (Control) or 1 g/kg concentrate dry matter of a live yeast culture based on S. cerevisiae (Yeast) for 35 days. The experiment lasted for 35 d. Dry matter intake (DMI) was significantly higher for Yeast than it was for Control for all classes of temperature and THIs studied with an average increase of 2 kg DM per day, except for mean THI1 (from 54 to 60), for which the DMI was similar between treatments. Yeast promoted significantly higher milk yield than Control for all classes of daily maximum and mean temperature, averaging an increase of 4 kg of milk per day. Results suggest a more marked effect of temperature and indicate that yeast supplementation improved lactation performance of dairy cows exposed to hot weather. Full article
Show Figures

Figure 1

18 pages, 771 KB  
Article
Effects of a Phytogenic Mycotoxin Detoxifier on Oxidative Status, Health, and Performance in Dairy Sheep
by Georgios I. Papakonstantinou, Christos Eliopoulos, Eleftherios Meletis, Insaf Riahi, Evangelos-Georgios Stampinas, Dimitrios Arapoglou, Dimitrios Gougoulis, Konstantina Dimoveli, Dimitrios Filippou, Alexandros Manouras, Nikolaos Tsekouras, Lampros Fotos, Polychronis Kostoulas, Georgios Christodoulopoulos and Vasileios G. Papatsiros
Toxins 2025, 17(8), 425; https://doi.org/10.3390/toxins17080425 - 21 Aug 2025
Viewed by 1028
Abstract
Mycotoxins are common feed contaminants that can affect the health, immune function, and productivity of ruminants by causing oxidative stress and organ dysfunction. In this field study, the effects of a phytogenic multicomponent mycotoxin detoxifier on oxidative status, liver function, udder health, and [...] Read more.
Mycotoxins are common feed contaminants that can affect the health, immune function, and productivity of ruminants by causing oxidative stress and organ dysfunction. In this field study, the effects of a phytogenic multicomponent mycotoxin detoxifier on oxidative status, liver function, udder health, and productive parameters were investigated in dairy ewes. One hundred clinically healthy ewes were randomly assigned to either a control group or a treatment group, with the latter receiving 1.5 kg/ton of the detoxifier over a 90-day period during lactation. The detoxifying agent contained adsorptive clays as well as phytogenic ingredients such as silymarin and curcumin, which are known for their hepatoprotective and antioxidant properties. Blood, milk, and colostrum samples were collected and analyzed for oxidative stress markers (TBARS and protein carbonyl (CARBS)), total antioxidant capacity (TAC), liver enzymes (ALT, AST, and ALP), and milk quality parameters (fat, protein, and solid content). Clinical assessments included mastitis scoring, udder inflammation, and fecal consistency. The treated ewes showed a statistically significant reduction in blood plasma and milk oxidative stress markers and liver enzyme levels while at the same time improving the fat and solid content of the milk. The incidence and severity of mastitis, udder reddening, and lactation abnormalities were lower in the treatment group. Brix refractometry indicated improved colostrum quality in the treated ewes. These results suggest that the detoxifier improved the oxidative balance, liver function, and overall health and productivity of dairy ewes under field conditions, supporting its use as a practical nutritional measure. Full article
(This article belongs to the Section Mycotoxins)
Show Figures

Figure 1

29 pages, 1115 KB  
Article
Influence of Lactation, Age and Foaling Factors on the Quality Composition, Fatty and Amino Acid Profile of Mare’s Milk Under Pasture Conditions
by Togzhan Boranbayeva, Zhanna Dossimova, Dulat Zhalelov, Aruzhan Zhunisbek, Ayazhan Bolat and Maxat Toishimanov
Foods 2025, 14(16), 2880; https://doi.org/10.3390/foods14162880 - 19 Aug 2025
Viewed by 507
Abstract
This study investigated the effects of lactation period, foaling month and number, mare age, and regional factors on the quality parameters, amino acid composition, fatty acid profile, and nutritional indices of Kazakh mare’s milk under pasture conditions. A total of 240 milk samples [...] Read more.
This study investigated the effects of lactation period, foaling month and number, mare age, and regional factors on the quality parameters, amino acid composition, fatty acid profile, and nutritional indices of Kazakh mare’s milk under pasture conditions. A total of 240 milk samples were collected from Almaty and Zhambyl regions during the summer and autumn lactation periods. Standard physicochemical analyses determined fat, protein, casein, TS, and SNF contents, while amino acids were quantified via HPLC and fatty acids by GC. Significant seasonal differences were observed: summer milk contained higher PUFA (18.29%) and n-3 (5.71%) levels and exhibited lower SFA and AI values, indicating superior nutritional quality. Milk from younger mares (4 to 6 years) showed elevated essential amino acids and better lipid health indices compared to older mares. Zhambyl region samples had higher unsaturated fatty acids and SNF, while Almaty milk exhibited higher SFA and casein content. Amino acid profiling revealed that summer milk was enriched in glutamic acid, aspartic acid, serine, and histidine, whereas autumn milk contained more valine, leucine, methionine, and cysteine. PCA revealed distinct clustering based on season, mare age, and foaling period, confirming their substantial roles in shaping milk composition. These findings highlight that mare age, lactation period, and foaling timing significantly affect the nutritional quality of the mare’s milk. These results provide valuable insights for optimizing milk production and kumys fermentation strategies under traditional pasture-based systems. Full article
(This article belongs to the Section Dairy)
Show Figures

Figure 1

24 pages, 928 KB  
Article
Enhancing Sheep Vitality Through Diverse Pastures and Seaweed Bio-Stimulants: Effects on Performance, Health, and Product Quality
by Sagara N. Kumara, Anita Fleming, Fabiellen Pereira, Ashna Khan, Simon Kelly, Gwen-Aelle Grelet and Pablo Gregorini
Agriculture 2025, 15(16), 1764; https://doi.org/10.3390/agriculture15161764 - 17 Aug 2025
Viewed by 469
Abstract
This on-farm study explored the effects of diverse pasture systems and seaweed bio-stimulants (AgriSea NZ Seaweed Products, Paeroa, New Zealand) on sheep performance, metabolic health, milk composition, and carcass characteristics. A 3 × 2 factorial design was used to compare three pasture systems; [...] Read more.
This on-farm study explored the effects of diverse pasture systems and seaweed bio-stimulants (AgriSea NZ Seaweed Products, Paeroa, New Zealand) on sheep performance, metabolic health, milk composition, and carcass characteristics. A 3 × 2 factorial design was used to compare three pasture systems; ryegrass-white clover (RW), a 23-species diverse mix (DI), and functionally diverse strip swards (ST), with (SW) or without (CO) a seaweed bio-stimulant. Ninety pregnant ewes were stratified by live weight and allocated across six treatment groups (15 ewes per treatment). Lambing occurred on treatment paddocks. At weaning, 90 lambs (15 per treatment) were selected based on body weight and sex balance to continue through to finishing. Pasture chemical composition differed among treatments: ST had lower fibre (neutral detergent fibre, NDF; acid detergent fibre, ADF) than RW and DI, while SW increased dry matter digestibility (DMD) and metabolisable energy (ME), and reduced NDF and ADF (p < 0.05). Strip pastures improved lamb average daily gain (ADG) by 17% from lambing to weaning compared to DI, and by 14% from weaning to finishing compared to RW (p < 0.05). Seaweed bio-stimulant treatment enhanced lamb ADG by up to 12% and improved carcass traits, including loin and shoulder yields (p < 0.05). Ewes and lambs on seaweed-treated pastures exhibited lower serum non-esterified fatty acid (NEFA) concentrations (p < 0.05), indicating better energy balance. Milk from ST and/or SW treated ewes had elevated omega-6 fatty acids and essential amino acids, suggesting enhanced nutritional value. These findings demonstrate that combining botanical diversity with natural bio-stimulants can improve animal growth, metabolic health, and product quality, offering a promising strategy for sustainable and welfare-oriented sheep production systems. Full article
Show Figures

Figure 1

Back to TopTop