Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (439)

Search Parameters:
Keywords = mixed oxide nanoparticles

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 7630 KB  
Article
Effects of Small Amounts of Metal Nanoparticles on the Glass Transition, Crystallization, Electrical Conductivity, and Molecular Mobility of Polylactides: Mixing vs. In Situ Polymerization Preparation
by Panagiotis A. Klonos, Rafail O. Ioannidis, Kyriaki Lazaridou, Apostolos Kyritsis and Dimitrios N. Bikiaris
Electronics 2025, 14(19), 3826; https://doi.org/10.3390/electronics14193826 - 26 Sep 2025
Abstract
The synthesis of two series of poly(lactic acid) (PLA)-based polymer nanocomposites (PNCs) filled with small amounts (0.5 and 1%) of Ag and Cu nanoparticles (NPs) was performed. Moreover, two methods for the PNC synthesis were performed, namely, ‘conventional mixing techniques’ and ‘in situ [...] Read more.
The synthesis of two series of poly(lactic acid) (PLA)-based polymer nanocomposites (PNCs) filled with small amounts (0.5 and 1%) of Ag and Cu nanoparticles (NPs) was performed. Moreover, two methods for the PNC synthesis were performed, namely, ‘conventional mixing techniques’ and ‘in situ ring opening polymerization (ROP)’. The latter method was employed for the first time; moreover, it was found to be more effective in achieving very good NP dispersion in the polymer matrix as well as the formation of interfacial polymer–NP interactions. The in situ ROP for PLA/Cu was not productive due to the oxidation of Cu NPs being faster than the initiation of ROP. The presence of NPs resulted in suppression of the glass transition temperature, Tg (23–60 °C), with the effects being by far stronger in the case of ROP-based PNCs, e.g., exhibiting Tg decrease by tens of K. Due to that surprising result, the ROP-based PLA/Ag PNCs exhibited elevated ionic conductivity phenomena (at room temperature). This can be exploited in specific applications, e.g., mimicking the facilitated small molecules permeation. The effects of NPs on crystallinity (2–39%) were found opposite between the two series. Crystallinity was facilitated/suppressed in the mixing/ROP -based PNCs, respectively. The local and segmental molecular mobility map was constructed for these systems for the first time. Combining the overall data, a concluding scenario was employed, that involved the densification of the polymer close to the NPs’ surface and the free volume increase away from them. Finally, an exceptional effect was observed in PLA + 0.5% Ag (ROP). The crystallization involvement resulted in a severe suppression of Tg (−25 °C). Full article
(This article belongs to the Special Issue Sustainable Printed Electronics: From Materials to Applications)
Show Figures

Figure 1

16 pages, 1864 KB  
Article
Influence of Temperature on the Structural Evolution of Iron–Manganese Oxide Nanoparticles in the Hydrothermal Method
by Oscar Eduardo Cigarroa-Mayorga, Indira Torres-Sandoval, María del Rosario Munguía-Fuentes and Yazmín Mariela Hernández-Rodríguez
Crystals 2025, 15(9), 808; https://doi.org/10.3390/cryst15090808 - 13 Sep 2025
Viewed by 320
Abstract
This study is focused on the hydrothermal synthesis of iron–manganese oxide nanostructures, focusing on the influence of Fe:Mn precursor ratios, temperature, and reaction time on phase formation, morphology, and structural characteristics. Three molar ratios (Fe:Mn = 2:1, 1:1, and 1:2) were explored under [...] Read more.
This study is focused on the hydrothermal synthesis of iron–manganese oxide nanostructures, focusing on the influence of Fe:Mn precursor ratios, temperature, and reaction time on phase formation, morphology, and structural characteristics. Three molar ratios (Fe:Mn = 2:1, 1:1, and 1:2) were explored under variable conditions (80 °C, 120 °C, and 200 °C; 4, 12, and 24 h). X-ray diffraction (XRD) analysis revealed distinct phase selectivity depending on precursor composition: FeMn2O4 was obtained with 1:2 ratio, Fe3Mn3O8 with 1:1, and Fe2MnO4 with 2:1, each without phase mixing. Scanning electron microscopy (FESEM) showed a pronounced effect of temperature and time on nanoparticle morphology, ranging from compact agglomerates to well-defined rod-like structures at 200 °C/24 h. Dynamic light scattering (DLS) indicated narrow size distributions for samples synthesized at 120 °C/12 h, with hydrodynamic diameters between 20 and 50 nm. Raman spectroscopy confirmed the presence of characteristic vibrational modes of spinel-type structures and validated structural integrity. High-resolution transmission electron microscopy (HRTEM) evidenced well-ordered lattice fringes with interplanar spacings of ~0.48–0.52 nm, consistent with spinel phases and indicative of high crystallinity. These findings demonstrate that controlled atomic binding and thermal parameters enable selective synthesis of pure iron–manganese oxide phases with tailored morphologies, offering a scalable route for designing advanced functional materials in catalysis, energy, and biomedical applications. Full article
Show Figures

Figure 1

20 pages, 4902 KB  
Article
Comparative Evaluation of Antioxidant and Antidiabetic Activities of ZrO2 and MgO Nanoparticles Biosynthesized from Unripe Solanum trilobatum Fruits: Insights from In Vitro and In Silico Studies
by Kumaresan Rathika, Periyanayagam Arockia Doss, John Rose Arul Hency Sheela, Velayutham Gurunathan, K. J. Senthil Kumar, Chidambaram Sathishkumar, Vediyappan Thirumal and Jinho Kim
Nanomaterials 2025, 15(17), 1372; https://doi.org/10.3390/nano15171372 - 5 Sep 2025
Viewed by 604
Abstract
Herbs offer people not just sustenance and housing but also serve as a key supplier of pharmaceuticals. This research is designed to assess the antioxidant and antidiabetic properties of green-produced zirconium dioxide and magnesium oxide nanoparticles (ZrO2 and MgO NPs) utilizing extracts [...] Read more.
Herbs offer people not just sustenance and housing but also serve as a key supplier of pharmaceuticals. This research is designed to assess the antioxidant and antidiabetic properties of green-produced zirconium dioxide and magnesium oxide nanoparticles (ZrO2 and MgO NPs) utilizing extracts from unripe Solanum trilobatum fruit. ZrO2 and MgO NPs have garnered considerable interest owing to their superior bioavailability, lower toxicity, and many uses across the healthcare and commercial industries. Scientific approaches, such as diverse spectroscopic and microscopic approaches, validated the creation of agglomerated spherical ZrO2 and MgO NPs, measuring between 15 and 30 and 60 and 80 nm, with a mixed-phase composition consisting of monoclinic and tetragonal phases for ZrO2 and a face-centered cubic structure for MgO NPs. UV–vis studies revealed a distinct peak at 378 and 290 nm for ZrO2 and MgO NPs, suggesting efficient settling through the phytonutrients in S. trilobatum. The antioxidant capacity of ZrO2 and MgO NPs was evaluated utilizing DPPH and FRAP reducing power assays. The diabetic effectiveness of ZrO2 and MgO NPs was examined by alpha-amylase and alpha-glucosidase assays. The optimum doses of 500 and 1000 μg/mL were shown to be efficient in reducing radical species. Green-produced ZrO2 and MgO NPs exhibited a dose-dependent reaction, with greater amounts of ZrO2 and MgO NPs exerting a more pronounced inhibitory effect on the catalytic sites of enzymes. This work suggests that ZrO2 and MgO NPs may attach to charge-carrying entities and function as rival inhibitors, therefore decelerating the enzyme–substrate reaction and inhibiting enzymatic degradation. Molecular docking analysis of ZrO2 and MgO NPs with three proteins (2F6D, 2QV4, and 3MNG) implicated in antidiabetic and antioxidant studies demonstrated the interaction of ZrO2 and MgO NPs with the target proteins. The results indicated the in vitro effectiveness of phytosynthesized ZrO2 and MgO NPs as antidiabetic antioxidant agents, which may be used in the formulation of alternative treatment strategies against diabetes and oxidative stress. In summary, the green production of ZrO2 and MgO NPs with Solanum trilobatum unripe fruit extract is an efficient, environmentally sustainable process that yields nanomaterials with significant antioxidant and antidiabetic characteristics, underscoring their prospective uses in biomedical research. Full article
Show Figures

Graphical abstract

23 pages, 3909 KB  
Article
Recyclable TiO2–Fe3O4 Magnetic Composites for the Photocatalytic Degradation of Paracetamol: Comparative Effect of Pure Anatase and Mixed-Phase P25 TiO2
by Kata Saszet, Simona Guliman, Lilla Szalma, István Székely, Romulus Tetean, Milica Todea, Ákos Szamosvölgyi, Marieta Mureșan-Pop, Lucian Barbu-Tudoran, Klára Magyari, Lucian-Cristian Pop, Zsolt Pap and Lucian Baia
Catalysts 2025, 15(9), 839; https://doi.org/10.3390/catal15090839 - 1 Sep 2025
Viewed by 740
Abstract
Magnetically separable TiO2-based composite photocatalysts have gained significant interest in the past two decades; however, the optimization of their synthesis and the stabilization of the magnetic iron oxide within the composite is still an open challenge. The present study investigates the [...] Read more.
Magnetically separable TiO2-based composite photocatalysts have gained significant interest in the past two decades; however, the optimization of their synthesis and the stabilization of the magnetic iron oxide within the composite is still an open challenge. The present study investigates the photocatalytic behavior and recyclability of TiO2-Fe3O4 composites, with emphasis on a possible correlation between pollutant degradation efficiency, recyclability, iron oxide stability, and the phase composition of the chosen TiO2 base. Magnetite nanoparticles were synthesized under varied temperature and alkaline conditions to identify optimal parameters for achieving the desirable magnetic properties. The magnetic nanoparticles were integrated into composite systems with either commercial TiO2 (Evonik Aeroxide P25 with anatase–rutile mixed phase) or a hydrothermally synthesized anatase TiO2. The P25-based composite removed 99% paracetamol from aqueous solutions under UV-A irradiation and demonstrated successful recyclability, maintaining 96% paracetamol degradation efficiency after four uses. In contrast, the anatase TiO2-based magnetic composite exhibited a lower performance (70%) and a significantly hindered recyclability (45% after four cycles). The difference in performance was attributed to variations in the phase composition of the employed TiO2 in the composites and, consequently, in their charge separation mechanisms. Full article
(This article belongs to the Special Issue TiO2 Photocatalysts: Design, Optimization and Application)
Show Figures

Figure 1

17 pages, 3794 KB  
Article
Synergistic Effect of In2O3-rGO Hybrid Composites for Electrochemical Applications
by Alina Matei, Cosmin Obreja, Cosmin Romaniţan, Oana Brîncoveanu, Marius Stoian and Vasilica Țucureanu
Coatings 2025, 15(8), 958; https://doi.org/10.3390/coatings15080958 - 16 Aug 2025
Viewed by 674
Abstract
In the present paper, the interaction between metal oxide nanoparticles and carbon materials was studied, and the results showed a synergetic effect, leading to an improvement in the properties of the obtained hybrid composites. The In2O3 NPs were prepared by [...] Read more.
In the present paper, the interaction between metal oxide nanoparticles and carbon materials was studied, and the results showed a synergetic effect, leading to an improvement in the properties of the obtained hybrid composites. The In2O3 NPs were prepared by the precipitation method and thermal treatment at 550 °C. The composites were obtained using an ex situ method, by mixing the In2O3 NPs with reduced oxide graphene (rGO) in a ratio of 10:1. The structural, morphological, and chemical composition studies of the In2O3 NPs and In2O3-rGO composites were investigates by FTIR and EDX spectroscopy, SEM microscopy, and XRD analysis. These techniques have highlighted the obtaining of In2O3 of high purity, and crystallinity, with the mean particle size in the range of 8–25 nm, but also, the dispersion of In2O3 NPs onto rGO sheets. We examined the influence of the In2O3 nanostructure morphology and In2O3-rGO composites on the electrochemical properties using cyclic voltammetry. The surface properties of the In2O3 and composite films were studied by contact angles, which indicate the maintenance of the hydrophilic nature. The obtained results establish the synergy between the main components to form In2O3-rGO, which can be used for the development of biosensors to enhance the device performance. Full article
(This article belongs to the Special Issue Smart Coatings: Adapting to the Future)
Show Figures

Graphical abstract

24 pages, 8010 KB  
Article
Mono-(Ni, Au) and Bimetallic (Ni-Au) Nanoparticles-Loaded ZnAlO Mixed Oxides as Sunlight-Driven Photocatalysts for Environmental Remediation
by Monica Pavel, Liubovi Cretu, Catalin Negrila, Daniela C. Culita, Anca Vasile, Razvan State, Ioan Balint and Florica Papa
Molecules 2025, 30(15), 3249; https://doi.org/10.3390/molecules30153249 - 2 Aug 2025
Viewed by 545
Abstract
A facile and versatile strategy to obtain NPs@ZnAlO nanocomposite materials, comprising controlled-size nanoparticles (NPs) within a ZnAlO matrix is reported. The mono-(Au, Ni) and bimetallic (Ni-Au) NPs serving as an active phase were prepared by the polyol-alkaline method, while the ZnAlO support was [...] Read more.
A facile and versatile strategy to obtain NPs@ZnAlO nanocomposite materials, comprising controlled-size nanoparticles (NPs) within a ZnAlO matrix is reported. The mono-(Au, Ni) and bimetallic (Ni-Au) NPs serving as an active phase were prepared by the polyol-alkaline method, while the ZnAlO support was obtained via the thermal decomposition of its corresponding layered double hydroxide (LDH) precursors. X-ray diffraction (XRD) patterns confirmed the successful fabrication of the nanocomposites, including the synthesis of the metallic NPs, the formation of LDH-like structure, and the subsequent transformation to ZnO phase upon LDH calcination. The obtained nanostructures confirmed the nanoplate-like morphology inherited from the original LDH precursors, which tended to aggregate after the addition of gold NPs. According to the UV-Vis spectroscopy, loading NPs onto the ZnAlO support enhanced the light absorption and reduced the band gap energy. ATR-DRIFT spectroscopy, H2-TPR measurements, and XPS analysis provided information about the functional groups, surface composition, and reducibility of the materials. The catalytic performance of the developed nanostructures was evaluated by the photodegradation of bisphenol A (BPA), under simulated solar irradiation. The conversion of BPA over the bimetallic Ni-Au@ZnAlO reached up to 95% after 180 min of irradiation, exceeding the monometallic Ni@ZnAlO and Au@ZnAlO catalysts. Its enhanced activity was correlated with good dispersion of the bimetals, narrower band gap, and efficient charge carrier separation of the photo-induced e/h+ pairs. Full article
Show Figures

Graphical abstract

17 pages, 3389 KB  
Article
Enhanced OH Transport Properties of Bio-Based Anion-Exchange Membranes for Different Applications
by Suer Kurklu-Kocaoglu, Daniela Ramírez-Espinosa and Clara Casado-Coterillo
Membranes 2025, 15(8), 229; https://doi.org/10.3390/membranes15080229 - 31 Jul 2025
Viewed by 1064
Abstract
The demand for anion exchange membranes (AEMs) is growing due to their applications in water electrolysis, CO2 reduction conversion and fuel cells, as well as water treatment, driven by the increasing energy demand and the need for a sustainable future. However, current [...] Read more.
The demand for anion exchange membranes (AEMs) is growing due to their applications in water electrolysis, CO2 reduction conversion and fuel cells, as well as water treatment, driven by the increasing energy demand and the need for a sustainable future. However, current AEMs still face challenges, such as insufficient permeability and stability in strongly acidic or alkaline media, which limit their durability and the sustainability of membrane fabrication. In this study, polyvinyl alcohol (PVA) and chitosan (CS) biopolymers are selected for membrane preparation. Zinc oxide (ZnO) and porous organic polymer (POP) nanoparticles are also introduced within the PVA-CS polymer blends to make mixed-matrix membranes (MMMs) with increased OH transport sites. The membranes are characterized based on typical properties for AEM applications, such as thickness, water uptake, KOH uptake, Cl and OH permeability and ion exchange capacity (IEC). The OH transport of the PVA-CS blend is increased by at least 94.2% compared with commercial membranes. The incorporation of non-porous ZnO and porous POP nanoparticles into the polymer blend does not compromise the OH transport properties. On the contrary, ZnO nanoparticles enhance the membrane’s water retention capacity, provide basic surface sites that facilitate hydroxide ion conduction and reinforce the mechanical and thermal stability. In parallel, POPs introduce a highly porous architecture that increases the internal surface area and promotes the formation of continuous hydrated pathways, essential to efficient OH mobility. Furthermore, the presence of POPs also contributes to reinforcing the mechanical integrity of the membrane. Thus, PVA-CS bio-based membranes are a promising alternative to conventional ion exchange membranes for various applications. Full article
(This article belongs to the Special Issue Membrane Technologies for Water Purification)
Show Figures

Figure 1

22 pages, 13925 KB  
Article
Strontium-Decorated Ag2O Nanoparticles Obtained via Green Synthesis/Polyvinyl Alcohol Films for Wound Dressing Applications
by Vanita Ghatti, Sharanappa Chapi, Yogesh Kumar Kumarswamy, Nagaraj Nandihalli and Deepak R. Kasai
Materials 2025, 18(15), 3568; https://doi.org/10.3390/ma18153568 - 30 Jul 2025
Viewed by 623
Abstract
This study involved the fabrication of poly (vinyl alcohol) (PVA) nanocomposite films using the solution-casting process, which incorporated strontium-coated silver oxide (Sr-Ag2O) nanoparticles generated by a plant-extract assisted method. Various characterization techniques, such as XRD, SEM, TEM, UV, and FTIR, showed [...] Read more.
This study involved the fabrication of poly (vinyl alcohol) (PVA) nanocomposite films using the solution-casting process, which incorporated strontium-coated silver oxide (Sr-Ag2O) nanoparticles generated by a plant-extract assisted method. Various characterization techniques, such as XRD, SEM, TEM, UV, and FTIR, showed the formation and uniform distribution of Sr-Ag2O nanoparticles in the PVA film, which are biocompatible nanocomposite films. The presence of hydroxyl groups leads to appreciable mixing and interaction between the Sr-Ag2O nanoparticles and the PVA polymer. Mechanical and thermal results suggest enhanced tensile strength and increased thermal stability. In addition, the sample of PVA/Sr-Ag2O (1.94/0.06 wt. ratio) nanocomposite film showed decreased hydrophilicity, lower hemolysis, non-toxicity, and appreciable cell migration activity, with nearly 19.95% cell migration compared to the standard drug, and the presence of Sr-Ag2O nanoparticles favored the adhesion and spreading of cells, which triggered the reduction in the gaps. These research findings suggest that PVA/Sr-Ag2O nanocomposite films with good mechanical, antimicrobial, non-toxic, and biocompatible properties could be applied in biological wound-healing applications. Full article
(This article belongs to the Special Issue Nanoparticle Assembly: Fundamentals and Applications)
Show Figures

Figure 1

16 pages, 4134 KB  
Article
Effect of Oxygen-Containing Functional Groups on the Performance of Palladium/Carbon Catalysts for Electrocatalytic Oxidation of Methanol
by Hanqiao Xu, Hongwei Li, Xin An, Weiping Li, Rong Liu, Xinhong Zhao and Guixian Li
Catalysts 2025, 15(8), 704; https://doi.org/10.3390/catal15080704 - 24 Jul 2025
Viewed by 503
Abstract
The methanol oxidation reaction (MOR) of direct methanol fuel cells (DMFCs) is limited by the slow kinetic process and high reaction energy barrier, significantly restricting the commercial application of DMFCs. Therefore, developing MOR catalysts with high activity and stability is very important. In [...] Read more.
The methanol oxidation reaction (MOR) of direct methanol fuel cells (DMFCs) is limited by the slow kinetic process and high reaction energy barrier, significantly restricting the commercial application of DMFCs. Therefore, developing MOR catalysts with high activity and stability is very important. In this paper, oxygen-functionalised activated carbon (FAC) with controllable oxygen-containing functional groups was prepared by adjusting the volume ratio of H2SO3/HNO3 mixed acid, and Pd/AC and Pd/FAC catalysts were synthesised via the hydrazine hydrate reduction method. A series of characterisation techniques and electrochemical performance tests were used to study the catalyst. The results showed that when V(H2SO3):V(HNO3) = 2:3, more defects were generated on the surface of the AC, and more oxygen-containing functional groups represented by C=O and C–OH were attached to the surface of the support, which increased the anchor sites of Pd and improved the dispersion of Pd nanoparticles (Pd NPs) on the support. At the same time, the mass–specific activity of Pd/FAC for MOR was 2320 mA·mgPd, which is 1.5 times that of Pd/AC, and the stability was also improved to a certain extent. In situ infrared spectroscopy further confirmed that oxygen functionalisation treatment promoted the formation and transformation of *COOH intermediates, accelerated the transformation of COL into COB, reduced the poisoning of COads species adsorbed to the catalyst, optimised the reaction path and improved the catalytic kinetic performance. Full article
Show Figures

Graphical abstract

23 pages, 36719 KB  
Article
The Impact of Hybrid Bionanomaterials Based on Gold Nanoparticles on Liver Injury in an Experimental Model of Thioacetamide-Induced Hepatopathy
by Mara Filip, Simona Valeria Clichici, Mara Muntean, Luminița David, Bianca Moldovan, Vlad Alexandru Toma, Cezar Login and Şoimița Mihaela Suciu
Biomolecules 2025, 15(8), 1068; https://doi.org/10.3390/biom15081068 - 24 Jul 2025
Viewed by 498
Abstract
The present study aimed to evaluate the therapeutic benefits of a hybrid material based on gold nanoparticles and natural extracts on an experimental model of thioacetamide-induced (TAA) liver injury in rats. The nanomaterials were synthesized using a green method, with Cornus sanguinea L. [...] Read more.
The present study aimed to evaluate the therapeutic benefits of a hybrid material based on gold nanoparticles and natural extracts on an experimental model of thioacetamide-induced (TAA) liver injury in rats. The nanomaterials were synthesized using a green method, with Cornus sanguinea L. extract as a reducing and capping agent (NPCS), and were then mixed with Vaccinium myrtillus L. (VL) extract in order to achieve a final mixture with enhanced properties (NPCS-VL). NPCSs were characterized using UV–vis spectrophotometry and transmission electron microscopy (TEM), which demonstrated the formation of spherical, stable gold nanoparticles with an average diameter of 20 nm. NPCS-VL’s hepatoprotective effects were evaluated through an analysis of oxidative stress, inflammation, hepatic cytolysis, histology assays, and TEM in comparison to silymarin on an animal model of thioacetamide (TAA)-induced toxic hepatitis. TAA administration determined hepatotoxicity, as it triggered redox imbalance, increased proinflammatory cytokine levels and alanine aminotransferase (ALAT) activity, and induced morphological and ultrastructural changes characteristic of liver fibrosis. In rats treated with NPCS-VL, all these pathological processes were attenuated, suggesting a potential antifibrotic effect of this hybrid bionanomaterial. Full article
Show Figures

Figure 1

14 pages, 2050 KB  
Article
Electrospun PANI/PEO-Luffa Cellulose/TiO2 Nanofibers: A Sustainable Biocomposite for Conductive Applications
by Gözde Konuk Ege, Merve Bahar Okuyucu and Özge Akay Sefer
Polymers 2025, 17(14), 1989; https://doi.org/10.3390/polym17141989 - 20 Jul 2025
Viewed by 691
Abstract
Herein, electrospun nanofibers composed of polyaniline (PANI), polyethylene oxide (PEO), and Luffa cylindrica (LC) cellulose, reinforced with titanium dioxide (TiO2) nanoparticles, were synthesized via electrospinning to investigate the effect of TiO2 nanoparticles on PANI/PEO/LC nanocomposites and the effect of conductivity [...] Read more.
Herein, electrospun nanofibers composed of polyaniline (PANI), polyethylene oxide (PEO), and Luffa cylindrica (LC) cellulose, reinforced with titanium dioxide (TiO2) nanoparticles, were synthesized via electrospinning to investigate the effect of TiO2 nanoparticles on PANI/PEO/LC nanocomposites and the effect of conductivity on nanofiber morphology. Cellulose extracted from luffa was added to the PANI/PEO copolymer solution, and two different ratios of TiO2 were mixed into the PANI/PEO/LC biocomposite. The morphological, vibrational, and thermal characteristics of biocomposites were systematically investigated using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). As anticipated, the presence of TiO2 enhanced the electrical conductivity of biocomposites, while the addition of Luffa cellulose further improved the conductivity of the cellulose-based nanofibers. FTIR analysis confirmed chemical interactions between Luffa cellulose and PANI/PEO matrix, as evidenced by the broadening of the hydroxyl (OH) absorption band at 3500–3200 cm−1. Additionally, the emergence of characteristic peaks within the 400–1000 cm−1 range in the PANI/PEO/LC/TiO2 spectra signified Ti–O–Ti and Ti–O–C vibrations, confirming the incorporation of TiO2 into the biocomposite. SEM images of the biocomposites reveal that the thickness of nanofibers decreases by adding Luffa to PANI/PEO nanofibers because of the nanofibers branching. In addition, when blending TiO2 nanoparticles with the PANI/PEO/LC biocomposite, this increment continued and obtained thinner and smother nanofibers. Furthermore, the incorporation of cellulose slightly improved the crystallinity of the nanofibers, while TiO2 contributed to the enhanced crystallinity of the biocomposite according to the XRD and DCS results. Similarly, the TGA results supported the DSC results regarding the increasing thermal stability of the biocomposite nanofibers with TiO2 nanoparticles. These findings demonstrate the potential of PANI/PEO/LC/TiO2 nanofibers for advanced applications requiring conductive and structurally optimized biomaterials, e.g., for use in humidity or volatile organic compound (VOC) sensors, especially where flexibility and environmental sustainability are required. Full article
Show Figures

Figure 1

18 pages, 3127 KB  
Article
Influence of the pH Synthesis of Fe3O4 Magnetic Nanoparticles on Their Applicability for Magnetic Hyperthermia: An In Vitro Analysis
by Bárbara Costa, Eurico Pereira, Vital C. Ferreira-Filho, Ana Salomé Pires, Laura C. J. Pereira, Paula I. P. Soares, Maria Filomena Botelho, Fernando Mendes, Manuel P. F. Graça and Sílvia Soreto Teixeira
Pharmaceutics 2025, 17(7), 844; https://doi.org/10.3390/pharmaceutics17070844 - 27 Jun 2025
Cited by 2 | Viewed by 1753
Abstract
Nanotechnology, specifically magnetic nanoparticles (MNPs), is revolutionizing cancer treatment. Magnetic hyperthermia is a treatment that, using MNPs, can selectively kill cancer cells without causing damage to the surrounding tissues. Background/Objectives: This work aimed to analyze how the synthesis conditions, namely, how the [...] Read more.
Nanotechnology, specifically magnetic nanoparticles (MNPs), is revolutionizing cancer treatment. Magnetic hyperthermia is a treatment that, using MNPs, can selectively kill cancer cells without causing damage to the surrounding tissues. Background/Objectives: This work aimed to analyze how the synthesis conditions, namely, how the pH of the reaction can influence the magnetic properties of Fe3O4 nanoparticles for magnetic hyperthermia, using the hydrothermal synthesis. Methods: For the hydrothermal synthesis, FeCl3·6H2O and FeCl2·4H2O were mixed with different quantities of NaOH to adjust the pH. After obtaining a black precipitate, the samples were placed in an autoclave at 200 °C for 60 h, followed by a washing and drying phase. The obtained MNPs were analyzed using X-Ray Diffraction (XRD), Transmission Electron Microscopy, a Superconducting Quantum Interference Device, Specific Absorption Rate analysis, and cytotoxicity assays. Results: Different MNPs were analyzed (9.06 < pH < 12.75). The XRD results showed the presence of various iron oxide phases (magnetite, maghemite, and hematite), resulting from the oxidization of the iron phases present in the autoclave. In terms of the average particle size, it was verified that, by increasing the pH value, the size decreases (from 53.53 nm to 9.49 nm). Additionally, MNPs possess a superparamagnetic behaviour with high SAR values (above 69.3 W/g). Conclusions: It was found that the pH of the reaction can influence the size, morphology, magnetization, and thermal efficiency of the MNP. The MNP with the highest composition of Fe3O4 was synthesized with a pH of 12.75, with a cubic morphology and a SAR value of 92.7 ± 3.2 W/g. Full article
(This article belongs to the Special Issue Novel Drug Delivery Systems: Magnetic Gels)
Show Figures

Graphical abstract

20 pages, 5663 KB  
Article
Nanoparticle-Enhanced Engine Oils for Automotive Applications: Thermal Conductivity and Heat Capacity Improvements
by G. D. C. P. Galpaya, M. D. K. M. Gunasena, D. K. A. Induranga, H. V. V. Priyadarshana, S. V. A. A. Indupama, E. R. J. M. D. D. P. Wijesekara, M. I. Ishra, M. M. M. G. P. G. Mantilaka and K. R. Koswattage
Molecules 2025, 30(13), 2695; https://doi.org/10.3390/molecules30132695 - 22 Jun 2025
Cited by 1 | Viewed by 938
Abstract
The poor thermal and physical properties of conventional engine oils limit vehicle performance and durability. This research aims to investigate the effect of nanoparticles such as fullerene C60, titanium dioxide (TiO2), iron oxide (Fe2O3), and [...] Read more.
The poor thermal and physical properties of conventional engine oils limit vehicle performance and durability. This research aims to investigate the effect of nanoparticles such as fullerene C60, titanium dioxide (TiO2), iron oxide (Fe2O3), and reduced graphene oxide (rGO) nanoparticles on 10W30 Mobil engine oil. In this study, the effect of nanoparticle concentrations at different mass fractions (0.01, 0.05, and 0.1) was examined within the temperature range 30–120 °C. The nanofluids were prepared using a two-step direct mixing method and thermal properties were measured using a LAMBDA thermal conductivity meter, which uses the transient hot wire method according to the ISO standards. Due to the low concentrations of the nanofluids, surfactants were not required at all, and the stability of the nanofluids was visually monitored over a period of four weeks. Accordingly, the largest improvement in thermal conductivity occurred with TiO2/10W30 at a mass fraction of 0.1 wt.% at 80 °C, and the specific heat capacity improved due to Fe2O3/10W30 addition at a mass fraction of 0.1 at 70 °C; these were 5.8% and 14.4%, respectively, for the base oil. Thermal diffusivity remained largely unaffected by the addition of the nanoparticles, and fullerene C60 showed no significant effect on any thermal property. It was concluded that the thermal properties of the engine oil were considerably enhanced by the added nanoparticles at different weight fractions and temperature values. Full article
Show Figures

Figure 1

19 pages, 8776 KB  
Article
Exploring the Impact of Bi Content in Nanostructured Pd-Bi Catalysts Used for Selective Oxidation of Glucose: Synthesis, Characterization and Catalytic Properties
by Mariya P. Shcherbakova-Sandu, Semyon A. Gulevich, Eugene P. Meshcheryakov, Kseniya I. Kazantseva, Aleksandr V. Chernyavskii, Alexey N. Pestryakov, Ajay K. Kushwaha, Ritunesh Kumar, Akshay K. Sonwane, Sonali Samal and Irina A. Kurzina
Inorganics 2025, 13(6), 205; https://doi.org/10.3390/inorganics13060205 - 19 Jun 2025
Viewed by 697
Abstract
This work is devoted to the study of the effect of small Bi additives on the functional properties of Pdx:Bi/Al2O3 catalysts in the selective oxidation of glucose to gluconic acid. The catalysts obtained by the joint impregnation method were characterized [...] Read more.
This work is devoted to the study of the effect of small Bi additives on the functional properties of Pdx:Bi/Al2O3 catalysts in the selective oxidation of glucose to gluconic acid. The catalysts obtained by the joint impregnation method were characterized (TEM) by high dispersion of bimetallic nanoparticles with a median diameter of 4–5 nm. The structure of the Pd-Bi solid solution was confirmed via XPS and showed a change in the valence state of Pd and Bi depending on the Bi content, as well as the fraction of the oxidized state of Bi. TPR-H2 revealed various forms of Pd, including PdO and mixed Pd-O-Bi structures. The Pd10:Bi1/Al2O3 catalyst demonstrated the highest efficiency (77.2% glucose conversion, 96% sodium gluconate selectivity), which is due to the optimal ratio between Pd and Bi, ensuring the stabilization of metallic Pd and preventing its oxidation. Full article
(This article belongs to the Section Inorganic Materials)
Show Figures

Graphical abstract

9 pages, 1926 KB  
Communication
Surface Modification of Fe-Based Perovskite Oxide via Sr0.95Ce0.05CoO3−δ Infiltration: A Strategy for Thermochemical Stability
by Taeheun Lim and Heesoo Lee
Nanomaterials 2025, 15(12), 934; https://doi.org/10.3390/nano15120934 - 16 Jun 2025
Viewed by 746
Abstract
Cobalt-based perovskite oxides exhibit remarkable catalytic activity owing to abundant oxygen vacancies and mixed ionic–electronic conductivity, but they suffer from structural instability. In contrast, iron-based perovskite oxides are thermochemically stable under oxidizing and reducing conditions but are catalytically limited. To combine these complementary [...] Read more.
Cobalt-based perovskite oxides exhibit remarkable catalytic activity owing to abundant oxygen vacancies and mixed ionic–electronic conductivity, but they suffer from structural instability. In contrast, iron-based perovskite oxides are thermochemically stable under oxidizing and reducing conditions but are catalytically limited. To combine these complementary properties, a composite perovskite oxide was designed and prepared by infiltrating Sr0.95Ce0.05CoO3−δ (SCC) into Ba0.5Sr0.5Fe0.8Cu0.2O3−δ (BSFC). The SCC precursor solution was dropwise applied to a BSFC|SDC|BSFC symmetric cell and heat treated. Surface morphology and compositional analyses confirmed the distribution of SCC nanoparticles on the BSFC surface. High-temperature X-ray diffraction and Rietveld refinement results revealed that both BSFC and SCC retained the cubic perovskite structure (space group Pm-3m) at room temperature. No phase transition or secondary phase formation was observed during heating from 200 to 800 °C, and the peak shifts are attributed to thermal expansion and possible oxygen loss at elevated temperatures. Upon cooling, the diffraction patterns returned to their initial state, confirming a high-temperature structural stability. XPS analysis showed an increase in the satellite peak intensity associated with Fe3+ after SCC infiltration, and the average oxidation state of Fe decreased from 3.52 (BSFC) to 3.49 (composite perovskite oxide). The O 1s spectra revealed a higher relative content of surface-adsorbed oxygen species in the composite, indicating increased oxygen vacancy formation. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Graphical abstract

Back to TopTop