Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (204)

Search Parameters:
Keywords = mobile sinks

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 20226 KB  
Article
Mitigation of Switching Ringing of GaN HEMT Based on RC Snubbers
by Xi Liu, Hui Li, Jinshu Lin, Chen Song, Honglang Zhang, Yuxiang Xue and Hengbin Zhang
Aerospace 2025, 12(10), 885; https://doi.org/10.3390/aerospace12100885 - 30 Sep 2025
Abstract
Gallium nitride high electron mobility transistors (GaN HEMTs), characterized by their extremely high switching speeds and superior high-frequency performance, have demonstrated significant advantages, and gained extensive applications in fields such as aerospace and high-power-density power supplies. However, their unique internal architecture renders these [...] Read more.
Gallium nitride high electron mobility transistors (GaN HEMTs), characterized by their extremely high switching speeds and superior high-frequency performance, have demonstrated significant advantages, and gained extensive applications in fields such as aerospace and high-power-density power supplies. However, their unique internal architecture renders these devices highly sensitive to circuit parasitic parameters. Conventional circuit design methodologies often induce severe issues such as overshoot and high-frequency oscillations, which significantly constrain the realization of their high-frequency performance. To solve this problem, this paper investigates the nonlinear dynamic behavior of GaN HEMTs during switching transients by establishing an equivalent impedance model. Based on this model, a detailed analysis is implemented to elucidate the mechanism by which RC Snubber circuits influence the system’s resonance frequency and the amplitude at the resonant frequency. Through this analysis, an optimal RC Snubber circuit parameter is derived, enabling effective suppression of high-frequency oscillations during the switching transient of GaN HEMT. Experimental results demonstrate that the proposed design achieves a maximum reduction of 40% in voltage overshoot, shortens the ringing time to one-twentieth of the original value, and suppresses noise by 20 dB in the high-frequency range of 20 MHz to 30 MHz, thereby significantly enhancing the stability and reliability of circuit operation. Additionally, considering the heat dissipation requirements in high power density scenarios, this work optimizes the layout of devices, and heat sinks to maintain operational temperatures within safe limits, further mitigating the impact of parasitic parameters on overall system performance. Full article
(This article belongs to the Section Aeronautics)
16 pages, 3843 KB  
Article
Electro-Thermal Analysis of Lithium-Ion Battery Modules Equipped with Thermal Barrier Pad for Urban Air Mobility During Flight Scenarios
by Geesoo Lee
Energies 2025, 18(18), 5006; https://doi.org/10.3390/en18185006 - 20 Sep 2025
Viewed by 213
Abstract
This study presents an electro-thermal analysis of high-power lithium-ion battery modules for urban air mobility (UAM) applications, focusing on assessing the operational impact of installing a thermal barrier pad (TBP)—designed for thermal runaway delay—to ensure that the module maintains acceptable performance during normal [...] Read more.
This study presents an electro-thermal analysis of high-power lithium-ion battery modules for urban air mobility (UAM) applications, focusing on assessing the operational impact of installing a thermal barrier pad (TBP)—designed for thermal runaway delay—to ensure that the module maintains acceptable performance during normal operations. An integrated electro-thermal simulation model was developed and validated through single-cell experiments under step-load conditions, showing good agreement with measured voltage and temperature. In the baseline module without a TBP, higher discharge rates resulted in increased heat generation and cell temperatures, with approximately 42.5% of the electrical output dissipated as heat under the 5C condition. When the TBP was applied, the cooling performance of the heat sink decreased, leading to higher module temperatures and increased temperature differences between the cell and the heat sink, particularly as the TBP thickness increased. A simplified UAM flight scenario was simulated to evaluate temperature behavior throughout various operating phases. For the 1.5 mm TBP model, the maximum temperature (75.7 °C) remained within the design limit (80 °C). However, increasing the maximum take-off discharge rate to 6C or higher caused the module to reach its thermal limit or cut-off voltage before mission completion. These results indicate that TBP installation can be applied without unacceptable performance degradation under normal operation, provided that its thickness is optimized by considering cooling performance, thermal safety, and weight/volume constraints in UAM applications. Full article
Show Figures

Figure 1

39 pages, 2012 KB  
Article
Extending WSN Lifetime via Optimized Mobile Sink Trajectories: Linear Programming and Cuckoo Search Approaches with Overhearing-Aware Energy Models
by Ghada Turki Al-Mamari, Fatma Bouabdallah and Asma Cherif
IoT 2025, 6(3), 54; https://doi.org/10.3390/iot6030054 - 14 Sep 2025
Viewed by 260
Abstract
Maximizing the lifetimes of Wireless Sensor Networks (WSNs) is a prominent area of research. The energy hole problem is a major cause of network shutdown, where nodes within the Sink coverage deplete their energy faster due to the high energy cost of forwarding [...] Read more.
Maximizing the lifetimes of Wireless Sensor Networks (WSNs) is a prominent area of research. The energy hole problem is a major cause of network shutdown, where nodes within the Sink coverage deplete their energy faster due to the high energy cost of forwarding data from distant nodes to the Sink. Several research works have proposed solutions to address this issue, including the use of a mobile Sink to balance energy consumption throughout the network. However, most Sink mobility models overlook the energy consumption caused by overhearing, which is a critical factor in WSNs. In this paper, we introduce Linear Programming (LP) and Cuckoo Search (CS) metaheuristic optimization-based solutions to maximize the lifetime of WSNs by determining the optimal Sink sojourn points and associated durations. The proposed approaches consider the energy consumption levels of both reception and transmission, in addition to accounting for overhearing as an additional source of energy consumption. This allows for a comparison between the LP and CS solutions in terms of their effectiveness. To further enhance our solution, we apply the Travel Salesman Problem (TSP) to find the shortest path between the Sink sojourn points. By incorporating the TSP, we can optimize the routing path for the mobile Sink, thereby minimizing energy consumption and maximizing network lifetime. Test results demonstrate that the LP solution provides more accurate Sink sojourn times and locations, while the CS solution is faster, particularly for large WSNs. Moreover, our findings indicate that overlooking overhearing leads to a 48% decrease in WSN lifetime, making it essential to consider this factor if one is to achieve realistic results. Full article
Show Figures

Figure 1

19 pages, 5918 KB  
Article
Multidimensional Analysis of Phosphorus Release Processes from Reservoir Sediments and Implications for Water Quality and Safety
by Hang Zhang, Junqi Zhou, Teng Miao, Nianlai Zhou, Ting Yu, Yi Zhang, Chen He, Laiyin Shen, Chi Zhou and Yu Huang
Processes 2025, 13(8), 2495; https://doi.org/10.3390/pr13082495 - 7 Aug 2025
Viewed by 454
Abstract
Phosphorus (P) release from reservoir sediments critically influences water quality and ecosystem stability. This study analyzed surface sediments from four representative zones to investigate phosphorus fraction distribution, key influencing factors, and implications for water quality. Results showed that total phosphorus (TP) content in [...] Read more.
Phosphorus (P) release from reservoir sediments critically influences water quality and ecosystem stability. This study analyzed surface sediments from four representative zones to investigate phosphorus fraction distribution, key influencing factors, and implications for water quality. Results showed that total phosphorus (TP) content in sediments from main and tributary inflow zones was significantly higher than in open-water and transition zones. Inorganic phosphorus (IP) was the dominant form, with iron-bound phosphorus (Fe-P) accounting for 33.2–42.0% of IP. A strong correlation existed between P release and the Fe/P molar ratio; notably, when the ratio approached 10, phosphorus desorption increased significantly, indicating a shift from sink to source. Sediments with grain sizes <0.01 mm had the highest P release rates, suggesting particle size, Fe content, and hydrodynamics jointly regulate P mobilization. Using the Diffusive Gradients in Thin Films (DGT) technique, phosphorus release in inflow zones exceeded 1 g/m2 in all hydrological periods, contributing substantially to internal loading. Sediment-derived P primarily influenced bottom water, while surface water was more affected by external inputs. These findings highlight the spatial heterogeneity of P release and underscore the need for zone-specific management strategies in reservoir systems. Full article
Show Figures

Figure 1

22 pages, 19937 KB  
Article
Development and Evaluation of a Two-Dimensional Extension/Contraction-Driven Rover for Sideslip Suppression During Slope Traversal
by Kenta Sagara, Daisuke Fujiwara and Kojiro Iizuka
Aerospace 2025, 12(8), 699; https://doi.org/10.3390/aerospace12080699 - 6 Aug 2025
Viewed by 354
Abstract
Wheeled rovers are widely used in lunar and planetary exploration missions owing to their mechanical simplicity and energy efficiency. However, they face serious mobility challenges on sloped soft terrain, especially in terms of sideslip and loss of attitude angle when traversing across slopes. [...] Read more.
Wheeled rovers are widely used in lunar and planetary exploration missions owing to their mechanical simplicity and energy efficiency. However, they face serious mobility challenges on sloped soft terrain, especially in terms of sideslip and loss of attitude angle when traversing across slopes. Previous research proposed using wheelbase extension/contraction and intentionally sinking wheels into the ground, thereby increasing shear resistance and reducing sideslip. Building upon this concept, this study proposes a novel recovery method that integrates beam extension/contraction and Archimedean screw-shaped wheels to enable lateral movement without rotating the rover body. The beam mechanism allows for independent wheel movement, maintaining stability by anchoring stationary wheels during recovery. Meanwhile, the helical structure of the screw wheels helps reduce lateral earth pressure by scraping soil away from the sides, improving lateral drivability. Driving experiments on a sloped sandbox test bed confirmed that the proposed 2DPPL (two-dimensional push-pull locomotion) method significantly reduces sideslip and prevents a drop in attitude angle during slope traversal. Full article
Show Figures

Figure 1

16 pages, 1170 KB  
Article
Plate and K-Wire Show Advantages to Nailing for Distal Diametaphyseal Radius Fracture in Children: A Retrospective, Two-Center Study
by Frederik Weil, Lucas Fabarius, Luisa Weil, Paul A. Grützner, Michael Boettcher, Christel Weiß and Stefan Studier-Fischer
J. Clin. Med. 2025, 14(13), 4626; https://doi.org/10.3390/jcm14134626 - 30 Jun 2025
Viewed by 600
Abstract
Background/Objectives: Distal forearm fractures are the most common fractures in children. Three surgical techniques are most commonly used at the level of the radial diametaphysis on the distal forearm in children: K-wire, ascending ESIN (elastic stable intramedullary nail) or plate osteosynthesis. The [...] Read more.
Background/Objectives: Distal forearm fractures are the most common fractures in children. Three surgical techniques are most commonly used at the level of the radial diametaphysis on the distal forearm in children: K-wire, ascending ESIN (elastic stable intramedullary nail) or plate osteosynthesis. The aim of this study was to compare these procedures in children with distal diametaphyseal radius fractures regarding operative and functional outcome. Methods: A retrospective study was conducted in two level 1 trauma centers. Children and adolescents aged 2 to 15 years were included. The study period was from January 2010 to December 2022. The hospital information system was used to record patient age, gender, height, weight, fracture location, degree of angular deformity postoperatively, surgical procedure and postoperative complications, which were described in the medical records of the hospital information system. Complications graded by modified Clavien–Dindo–Sink served as the primary outcome. Reduction accuracy, operative and fluoroscopy times, immobilization length and postoperative motion were the secondary endpoints. Results: A total of 213 children were included in the study. K-wire osteosynthesis was performed in 25%, nailing in 19% and volar plate osteosynthesis in 55%. All ESIN were inserted in ascending technique. Complications occurred in 22% of patients and did not differ overall between techniques (p = 0.20). Severe complications were significantly more frequent after ESIN (20%) than after K-wires (7%) or plates (4%) (p = 0.04). Plate fixation achieved the most accurate alignment (≤5° angular deformity in 93% vs. 57% K-wires and 61% ESIN; p < 0.0001) and the fewest late motion restrictions (p = 0.02). K-wire surgery was fastest technique and required the least fluoroscopy, but necessitated the longest postoperative cast. Conclusions: Volar plating combines reliable anatomical reduction with a low rate of major complications and early mobilization, supporting its use in older children whose remodeling potential is limited. K-wires are a swift, minimally invasive option for younger patients, albeit with less precise reduction and prolonged immobilization. Conventional ESIN showed the highest burden of severe complications. Full article
Show Figures

Figure 1

20 pages, 2661 KB  
Article
Cooperative Jamming for RIS-Assisted UAV-WSN Against Aerial Malicious Eavesdropping
by Juan Li, Gang Wang, Weijia Wu, Jing Zhou, Yingkun Liu, Yangqin Wei and Wei Li
Drones 2025, 9(6), 431; https://doi.org/10.3390/drones9060431 - 13 Jun 2025
Viewed by 797
Abstract
As the low-altitude economy undergoes rapid growth, unmanned aerial vehicles (UAVs) have served as mobile sink nodes in wireless sensor networks (WSNs), significantly enhancing data collection efficiency. However, the open nature of wireless channels and spectrum scarcity pose severe challenges to data security, [...] Read more.
As the low-altitude economy undergoes rapid growth, unmanned aerial vehicles (UAVs) have served as mobile sink nodes in wireless sensor networks (WSNs), significantly enhancing data collection efficiency. However, the open nature of wireless channels and spectrum scarcity pose severe challenges to data security, particularly when legitimate UAVs (UAV-L) receive confidential information from ground sensor nodes (SNs), which is vulnerable to interception by eavesdropping UAVs (UAV-E). In response to this challenge, this study presents a cooperative jamming (CJ) scheme for Reconfigurable Intelligent Surfaces (RIS)-assisted UAV-WSN to combat aerial malicious eavesdropping. The multi-dimensional optimization problem (MDOP) of system security under quality of service (QoS) constraints is addressed by collaboratively optimizing the transmit power (TP) of SNs, the flight trajectories (FT) of the UAV-L, the frame length (FL) of time slots, and the phase shift matrix (PSM) of the RIS. To address the challenge, we put forward a Cooperative Jamming Joint Optimization Algorithm (CJJOA) scheme. Specifically, we first apply the block coordinate descent (BCD) to decompose the original MDOP into several subproblems. Then, each subproblem is convexified by successive convex approximation (SCA). The numerical results demonstrate that the designed algorithm demonstrates extremely strong stability and reliability during the convergence process. At the same time, it shows remarkable advantages compared with traditional benchmark testing methods, effectively and practically enhancing security. Full article
(This article belongs to the Special Issue UAV-Assisted Mobile Wireless Networks and Applications)
Show Figures

Figure 1

20 pages, 9089 KB  
Article
Investigation and Monitoring of Sinkhole Subsidence and Collapse: Additional Data on the Case Study in Alcalá de Ebro (Zaragoza, Spain)
by Alberto Gracia, Francisco Javier Torrijo, Alberto García and Alberto Boix
Land 2025, 14(5), 1006; https://doi.org/10.3390/land14051006 - 6 May 2025
Viewed by 738
Abstract
Alcalá de Ebro is located 35 km northwest of the city of Zaragoza, on the right bank of the Ebro River at the outlet of a ravine (Juan Gastón) towards the river, with a catchment area of more than 230 km2. [...] Read more.
Alcalá de Ebro is located 35 km northwest of the city of Zaragoza, on the right bank of the Ebro River at the outlet of a ravine (Juan Gastón) towards the river, with a catchment area of more than 230 km2. Over time, urbanisation and agricultural development have eliminated the last stretch of the drainage channel, and these water inputs have been channelled underground, filtering through the ground. This section of the Ebro Valley rests on a marly tertiary substratum, which promotes dissolution-subbing processes that can lead to sinkholes. The ground tends to sink gradually or suddenly collapse. Many studies have been carried out to understand not only the origin of the phenomenon but also its geometry and the area affected by it in the town of Alcalá de Ebro. In this sense, it has been possible to model an area around the main access road, where numerous collapsing sinkholes have been found, blocking the road and affecting houses. It also affects the embankment that protects the town from the floods of the river Ebro. These studies have provided specific knowledge, enabling us to evaluate and implement underground consolidation measures, which have shown apparent success. Several injection campaigns have been carried out, initially with expansion resins and finally with columnar development, using special low-mobility mortars to fill and consolidate the undermined areas and prevent new subsidence. These technical solutions propose a method of ground treatment that we believe is novel for this type of geological process. The results have been satisfactory, but it is considered necessary to continue monitoring the situation and to extend attention to a wider area to prevent, as far as possible, new problems of subsidence and collapse. In this sense, the objective is to continue the control and monitoring of possible phenomena related to subsidence problems in the affected area and its immediate surroundings, to detect and, if necessary, anticipate subsidence or collapse phenomena that could affect the body of the embankment. Full article
Show Figures

Figure 1

15 pages, 5685 KB  
Article
Six-Wheeled Mobile Manipulator for Brush Cleaning in Difficult Areas: Stability Analysis and Grip Condition Estimation
by Giandomenico Di Massa, Stefano Pagano, Ernesto Rocca and Sergio Savino
Machines 2025, 13(5), 359; https://doi.org/10.3390/machines13050359 - 25 Apr 2025
Cited by 1 | Viewed by 541
Abstract
This paper aims to analyze a six-wheeled mobile manipulator as a solution for brush clearing difficult areas. To this end, a rover with a rocker–bogie suspension system, like those used for space explorations, is considered; the cutting head is moved by a robotic [...] Read more.
This paper aims to analyze a six-wheeled mobile manipulator as a solution for brush clearing difficult areas. To this end, a rover with a rocker–bogie suspension system, like those used for space explorations, is considered; the cutting head is moved by a robotic arm fixed to the rover so that it can reach areas to clean in front of the rover or on its sides. The change of the pose of the robotic arm shifts the centre of mass of the rover and, although the shift is not important, it can be used to improve stability, to overcome an obstacle, or to change the load distribution between the wheels to prevent the wheels from slipping or sinking. Some analyses of the interaction between the rover and robotic arm are reported in this paper. To prevent the rover from entering a low-grip area, the possibility of estimating the grip conditions of the terrain is considered, using the front wheels as tactile sensors. By keeping the rear wheels stationary and gradually increasing the torque on the front wheels, it is possible to evaluate the conditions under which slippage occurs. In case of poor grip, using the other drive wheels, the rover can reverse its direction and look for an alternative path. Full article
Show Figures

Figure 1

26 pages, 6053 KB  
Communication
Hybrid Reliable Clustering Algorithm with Heterogeneous Traffic Routing for Wireless Sensor Networks
by Sreenu Naik Bhukya and Chandra Sekhara Rao Annavarapu
Sensors 2025, 25(3), 864; https://doi.org/10.3390/s25030864 - 31 Jan 2025
Cited by 1 | Viewed by 1233
Abstract
Wireless sensor networks (WSNs) are vulnerable to several challenges. Congestion control, the utilization of trust to ensure security, and the incorporation of clustering schemes demand much attention. Algorithms designed to deal with congestion control fail to ensure security and address challenges faced due [...] Read more.
Wireless sensor networks (WSNs) are vulnerable to several challenges. Congestion control, the utilization of trust to ensure security, and the incorporation of clustering schemes demand much attention. Algorithms designed to deal with congestion control fail to ensure security and address challenges faced due to congestion in the network. To resolve this issue, a Hybrid Trust-based Congestion-aware Cluster Routing (HTCCR) protocol is proposed to effectively detect attacker nodes and reduce congestion via optimal routing through clustering. In the proposed HTCCR protocol, node probability is determined based on the trust factor, queue congestion status, residual energy (RE), and distance from the mobile base station (BS) by using hybrid K-Harmonic Means (KHM) and the Enhanced Gravitational Search Algorithm (EGSA). Sensor nodes select cluster heads (CHs) with better fitness values and transmit data through them. The CH forwards data to a mobile sink once the sink comes into the range of CH. Priority-based data delivery is incorporated to effectively control packet forwarding based on priority level, thus decreasing congestion. It is evident that the propounded HTCCR protocol offers better performance in contrast to the benchmarked TBSEER, CTRF, and TAGA based on the average delay, packet delivery ratio (PDR), throughput, detection ratio, packet loss ratio (PLR), overheads, and energy through simulations. The proposed HTCCR protocol involves 2.5, 2.3, and 1.7 times less delay; an 18.1%, 12.5%, and 5.5% better detection ratio; 2.9, 2.6, and 1.8 times less energy; a 2.2, 1.9, and 1.5 times lower PLR; a 14.5%, 10.5%, and 5.2% better PDR; a 30.7%, 28.5%, and 18.4% better throughput; and 2.27, 1.91, and 1.66 times lower routing overheads in contrast to the TBSEER, CTRF, and TAGA protocols, respectively. The HTCCR protocol involves 4.1% less delay for the ‘C1’ and ‘C2’ RT packets, and the average throughput of RT is 10.4% better when compared with NRT. Full article
Show Figures

Figure 1

15 pages, 3756 KB  
Article
Moss Cover Modulates Soil Fungal Functional Communities and Nutrient Cycling in Alpine Forests
by Maolu Wei, Qian Sun and Dongyan Liu
Forests 2025, 16(1), 138; https://doi.org/10.3390/f16010138 - 14 Jan 2025
Cited by 2 | Viewed by 1076
Abstract
Moss–cyanobacteria associations serve as significant nitrogen fixers and represent the primary nitrogen sink in boreal forests. Fungi, which are essential for soil biogeochemical cycling, have community structures intrinsically linked to forest ecosystem health and productivity. Using high-throughput sequencing, we investigated differences between moss-covered [...] Read more.
Moss–cyanobacteria associations serve as significant nitrogen fixers and represent the primary nitrogen sink in boreal forests. Fungi, which are essential for soil biogeochemical cycling, have community structures intrinsically linked to forest ecosystem health and productivity. Using high-throughput sequencing, we investigated differences between moss-covered and non-moss soils in two alpine forests (both plantation and natural forests) by examining soil nitrogen contents, fungal community structure, composition, and functional guilds. Results demonstrated that moss cover enhanced soil nutrient contents, including total carbon, total nitrogen, and inorganic nitrogen. It also altered fungal community characteristics, resulting in higher Chao1 and Shannon diversity indices, as well as a more complex fungal network. Notable changes in functional guilds included an increase in saprotrophic fungi abundance and a decrease in ectomycorrhizal fungi. Our findings support the concept that moss cover creates distinct soil environments: moss-covered soils attract decomposers and nutrient-mobilizing fungi (particularly saprotrophs and ectomycorrhiza), while non-moss soils favor ectomycorrhizal fungi that relieve nutrient limitation through extensional mycelial networks. These findings highlight the critical role of moss cover in sustaining forest soil health and resilience, positioning it as a cornerstone of carbon and nutrient cycling within forest ecosystems. Full article
(This article belongs to the Special Issue Biogeochemical Cycles in Forests)
Show Figures

Figure 1

26 pages, 9559 KB  
Article
Thermodynamic Analysis and Optimization of Mobile Nuclear System
by Guobin Jia, Guifeng Zhu, Yuwen Ma, Jingen Chen and Yang Zou
Energies 2025, 18(1), 113; https://doi.org/10.3390/en18010113 - 30 Dec 2024
Viewed by 710
Abstract
This paper develops a system–component integrated design method for a closed Brayton cycle in a nuclear-powered emergency power vehicle, optimizing the thermodynamic performance by varying the maximum operating temperature and pressure, minimum operating temperature, helium–xenon gas molar mass, and PCHE parameters to maximize [...] Read more.
This paper develops a system–component integrated design method for a closed Brayton cycle in a nuclear-powered emergency power vehicle, optimizing the thermodynamic performance by varying the maximum operating temperature and pressure, minimum operating temperature, helium–xenon gas molar mass, and PCHE parameters to maximize the specific power and thermal efficiency. The key results are as follows: (1) The maximum allowable pressure decreases with the temperature, and the specific power increases for both the SRC and the IRC without considering the ultimate heat sink. (2) The PCHE weight is minimized at a helium–xenon gas molar mass of 25 g/mol, while the turbomachine’s weight decreases with an increasing molar mass, leading to an overall system weight reduction. (3) The thermal efficiency decreases with lower minimum operating temperatures, optimizing at 350 K due to a precooler weight increase. (4) The thermal efficiency plateaus after a certain number of PCHE channels, with the recuperator effectiveness significantly impacting the performance. (5) The SRC, with a specific power and a thermal efficiency of 194.38 kW/kg and 39.19%, is preferred over the IRC for the SIMONS due to its mobility and rapid deployment. This study offers a comprehensive analysis for optimizing closed Brayton cycle systems in emergency power applications. Full article
(This article belongs to the Special Issue Economic Analysis of Nuclear Energy)
Show Figures

Figure 1

15 pages, 5412 KB  
Article
Patient-Reported Outcomes in Children Undergoing the Modified Green Procedure for Treating Sprengel’s Deformity: Results from a Multicentric Study
by Giovanni Trisolino, Paola Zarantonello, Marco Todisco, Giovanni Luigi Di Gennaro, Grazia Chiara Menozzi, Philipp Scheider, Alessandro Depaoli, Diego Antonioli, Gino Rocca and Sebastian Farr
Children 2025, 12(1), 18; https://doi.org/10.3390/children12010018 - 26 Dec 2024
Cited by 1 | Viewed by 1240
Abstract
Background: Sprengel’s Deformity (SD) is a rare condition of the shoulder girdle, appearing as the principal congenital anomaly of the shoulder in paediatric patients. The aim of this study is to document the combined experience of two paediatric orthopaedic departments in managing SD [...] Read more.
Background: Sprengel’s Deformity (SD) is a rare condition of the shoulder girdle, appearing as the principal congenital anomaly of the shoulder in paediatric patients. The aim of this study is to document the combined experience of two paediatric orthopaedic departments in managing SD using the modified Green Procedure, with a specific emphasis on the clinical and functional outcomes reported by patients; Methods: from June 2010 to February 2023, 42 shoulders in 40 paediatric patients were surgically treated for SD at two paediatric orthopaedic departments. All patients were treated using the modified Green Procedure with or without clavicle osteotomy. To better evaluate the deformity, the Cavendish’s classification for aesthetic appearance and the Rigault’s classification for radiological aspect were used, while movements of abduction and flexion were quantified to assess shoulder mobility. Several dedicated questionnaires such as QuickDASH, the Shoulder Pain Index and the Shoulder Disability Index (SPADI) and finally the UCLA Shoulder Scale were submitted to assess the quality of life of the subjects and the ability to practice certain activities, including work and sports. Complications were evaluated according to the modified Clavien–Dindo–Sink classification; Results: The mean follow-up was 5 years (range, 1.0–13.6). Clavicular osteotomy, performed in 15 patients, improved post-operative abduction by a mean of 25° (95% CI: 11–39°; p = 0.001). Three patients had complications (7.1%), with two requiring re-operation. At follow-up, 67.5% of patients had a qDASH score < 7, highlighting excellent functional outcomes. Shoulder function showed moderate correlation with pre- and post-operative flexion. The SPADI and UCLASS scores indicated significant improvement, with 70.0% reporting high satisfaction. Factors like sex, associated anomalies, and surgical technique did not impact patient-reported outcomes or satisfaction; Conclusions: The modified Green’s technique has proven to be a safe procedure with a low rate of complications and satisfactory clinical and functional patient-reported outcomes. Full article
(This article belongs to the Special Issue Pediatric Upper Extremity Pathology)
Show Figures

Figure 1

23 pages, 5895 KB  
Article
Energy-Efficient Data Fusion in WSNs Using Mobility-Aware Compression and Adaptive Clustering
by Emad S. Hassan, Marwa Madkour, Salah E. Soliman, Ahmed S. Oshaba, Atef El-Emary, Ehab S. Ali and Fathi E. Abd El-Samie
Technologies 2024, 12(12), 248; https://doi.org/10.3390/technologies12120248 - 28 Nov 2024
Cited by 4 | Viewed by 2190
Abstract
To facilitate energy-efficient information dissemination from multiple sensors to the sink within Wireless Sensor Networks (WSNs), in-network data fusion is imperative. This paper presents a new WSN topology that incorporates the Mobility-Efficient Data Fusion (MEDF) algorithm, which integrates a data-compression protocol with an [...] Read more.
To facilitate energy-efficient information dissemination from multiple sensors to the sink within Wireless Sensor Networks (WSNs), in-network data fusion is imperative. This paper presents a new WSN topology that incorporates the Mobility-Efficient Data Fusion (MEDF) algorithm, which integrates a data-compression protocol with an adaptive-clustering mechanism. The primary goals of this topology are, first, to determine a dynamic sequence of cluster heads (CHs) for each data transmission round, aiming to prolong network lifetime by implementing an adaptive-clustering mechanism resilient to network dynamics, where CH selection relies on residual energy and minimal communication distance; second, to enhance packet delivery ratio (PDR) through the application of a data-compression technique; and third, to mitigate the hot-spot issue, wherein sensor nodes nearest to the base station endure higher relay burdens, consequently influencing network longevity. To address this issue, mobility models provide a straightforward solution; specifically, a Random Positioning of Grid Mobility (RPGM) model is employed to alleviate the hot-spot problem. The simulation results show that the network topology incorporating the proposed MEDF algorithm effectively enhances network longevity, optimizes average energy consumption, and improves PDR. Compared to the Energy-Efficient Multiple Data Fusion (EEMDF) algorithm, the proposed algorithm demonstrates enhancements in PDR and energy efficiency, with gains of 5.2% and 7.7%, respectively. Additionally, it has the potential to extend network lifetime by 13.9%. However, the MEDF algorithm increases delay by 0.01% compared to EEMDF. The proposed algorithm is also evaluated against other algorithms, such as the tracking-anchor-based clustering method (TACM) and Energy-Efficient Dynamic Clustering (EEDC), the obtained results emphasize the MEDF algorithm’s ability to conserve energy more effectively than the other algorithms. Full article
(This article belongs to the Special Issue Perpetual Sensor Nodes for Sustainable Wireless Network Applications)
Show Figures

Figure 1

15 pages, 5787 KB  
Review
A Review of Ku-Band GaN HEMT Power Amplifiers Development
by Jihoon Kim
Micromachines 2024, 15(11), 1381; https://doi.org/10.3390/mi15111381 - 15 Nov 2024
Cited by 5 | Viewed by 3692
Abstract
This review article investigates the current status and advances in Ku-band gallium nitride (GaN) high-electron mobility transistor (HEMT) high-power amplifiers (HPAs), which are critical for satellite communications, unmanned aerial vehicle (UAV) systems, and military radar applications. The demand for high-frequency, high-power amplifiers is [...] Read more.
This review article investigates the current status and advances in Ku-band gallium nitride (GaN) high-electron mobility transistor (HEMT) high-power amplifiers (HPAs), which are critical for satellite communications, unmanned aerial vehicle (UAV) systems, and military radar applications. The demand for high-frequency, high-power amplifiers is growing, driven by the global expansion of high-speed data communication and enhanced national security requirements. First, we compare the main GaN HEMT process technologies employed in Ku-band HPA development, categorizing the HPAs into monolithic microwave integrated circuits (MMICs) and internally matched power amplifier modules (IM-PAMs) and examining their respective characteristics. Then, by reviewing the literature, we explore design topologies, major issues like oscillation prevention and bias circuits, and heat sink technologies for thermal management. Our findings indicate that silicon carbide (SiC) substrates with gate lengths of 0.25 μm and 0.15 μm are predominantly used, with ongoing developments enabling MMICs and IM-PAMs to achieve up to 100 W output power and 30% power-added efficiency. Notably, the performance of MMIC power amplifiers is advancing more rapidly than that of IM-PAMs, highlighting MMICs as a promising direction for achieving higher efficiency and integration in future Ku-band applications. This paper can provide insights into the overall key technologies for Ku-band GaN HPA design and future development directions. Full article
Show Figures

Figure 1

Back to TopTop