Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,356)

Search Parameters:
Keywords = mode converter

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2236 KB  
Article
A UV-C LED Sterilization Lamp Driver Circuit with Boundary Conduction Mode Control Power Factor Correction
by Chun-An Cheng, Ching-Min Lee, En-Chih Chang, Cheng-Kuan Lin, Long-Fu Lan and Sheng-Hong Hou
Electronics 2025, 14(20), 3985; https://doi.org/10.3390/electronics14203985 (registering DOI) - 11 Oct 2025
Abstract
The increasing prevalence of common cold viruses and bacteria in daily life has heightened interest in sterilization lamp technologies. Compared with traditional mercury-based ultraviolet (UV) lamps, modern UV lamps offer advantages including extended operational lifespan, high energy efficiency, compact form factor, and the [...] Read more.
The increasing prevalence of common cold viruses and bacteria in daily life has heightened interest in sterilization lamp technologies. Compared with traditional mercury-based ultraviolet (UV) lamps, modern UV lamps offer advantages including extended operational lifespan, high energy efficiency, compact form factor, and the absence of hazardous materials, rendering them both safer and environmentally sustainable. In particular, UV-C LED lamps, which emit at short wavelengths, are capable of disrupting the molecular structure of DNA or RNA in microbial cells, thereby inhibiting cellular replication and achieving effective disinfection and sterilization. Conventional UV-C LED sterilization lamp driver circuits frequently employ a two-stage architecture, which requires a large number of components, occupies substantial physical space, and exhibits reduced efficiency due to multiple stages of power conversion. To address these limitations, this paper proposes a UV-C LED sterilization lamp driver circuit for an AC voltage supply, employing boundary conduction mode (BCM) control with integrated power factor correction (PFC). The proposed single-stage, single-switch topology combines a buck PFC converter and a flyback converter while recovering transformer leakage energy to further improve efficiency. Compared with conventional two-stage designs, the proposed circuit reduces the number of power switches and components, thereby lowering manufacturing cost and enhancing overall energy conversion efficiency. The operating principles of the proposed driver circuit are analyzed, and a prototype is developed for a 110 V AC input with an output specification of 10.8 W (90 V/0.12 A). Experimental results demonstrate that the prototype achieves an efficiency exceeding 92%, a power factor of 0.91, an output voltage ripple of 1.298%, and an output current ripple of 4.44%. Full article
Show Figures

Figure 1

23 pages, 4758 KB  
Article
Virtual Inertia of Electric Vehicle Fast Charging Stations with Dual Droop Control and Augmented Frequency Support
by Nargunadevi Thangavel Sampathkumar, Anbuselvi Shanmugam Velu, Brinda Rajasekaran and Kumudini Devi Raguru Pandu
Sustainability 2025, 17(20), 8997; https://doi.org/10.3390/su17208997 - 10 Oct 2025
Abstract
High penetration of Inverter-Based Resources (IBRs) into the power grid could diminish the rotational inertia offered by a traditional power system and thus impact frequency stability. Several techniques are adopted to provide virtual inertial support to the grid for a short duration in [...] Read more.
High penetration of Inverter-Based Resources (IBRs) into the power grid could diminish the rotational inertia offered by a traditional power system and thus impact frequency stability. Several techniques are adopted to provide virtual inertial support to the grid for a short duration in the presence of IBRs. This paper uses the combined inertia support of a Dual Active Bridge (DAB) and a Voltage Source Converter (VSC)-fed Electric Vehicle Fast Charging System (EVFCS) is used to provide virtual inertia support to the grid. The Voltage Source Converter is designed to provide DC bus voltage regulation. Coordinated control of DAB converters and VSCs for mitigating frequency oscillations using cascaded droop-integrated Proportional Integral (PI) controllers is proposed. An aggregated low-frequency model of a DAB converter is considered in this work. The inertia of the DC link capacitor of the VSCs and battery is sequentially extracted to offer grid frequency support. In this work, the single droop control, dual droop control, grid-forming and Augmented Frequency Support (AFS) modes are explored to provide virtual inertia support to the grid. Full article
Show Figures

Figure 1

26 pages, 5816 KB  
Article
Disturbance-Free Switching Control Strategy for Grid-Following/Grid-Forming Modes of Energy Storage Converters
by Geling Jiang, Siyu Kan, Yuhang Li and Xiaorong Zhu
Electronics 2025, 14(19), 3963; https://doi.org/10.3390/electronics14193963 - 9 Oct 2025
Abstract
To address the problem of transient disturbance arising during the grid-following (GFL) and grid-forming (GFM) mode switching of energy storage converters, this paper proposes a dual-mode seamless switching control strategy. First, we conduct an in-depth analysis of the mechanism behind switching transients, identifying [...] Read more.
To address the problem of transient disturbance arising during the grid-following (GFL) and grid-forming (GFM) mode switching of energy storage converters, this paper proposes a dual-mode seamless switching control strategy. First, we conduct an in-depth analysis of the mechanism behind switching transients, identifying that sudden changes in current commands and angle-control misalignment are the key factors triggering oscillations in system power and voltage frequency. To overcome this, we design a virtual synchronous generator (VSG) control angle-tracking technique based on the construction of triangular functions, which effectively eliminates the influence of periodic phase-angle jumps on tracking accuracy and achieves precise pre-synchronization of the microgrid phase in GFM mode. Additionally, we employ a current-command seamless switching technique involving real-time latching and synchronization of the inner-loop current references between the two modes, ensuring continuity of control commands at the switching instant. The simulation and hardware-in-the-loop (HIL) experimental results show that the proposed strategy does not require retuning of the parameters after switching, greatly suppresses voltage and frequency fluctuations during mode transition, and achieves smooth, rapid, seamless switching between the GFL and GFM modes of the energy storage converter, thereby improving the stability of microgrid operation. Full article
Show Figures

Figure 1

25 pages, 4694 KB  
Article
Research on Fractional-Order Sliding Mode Control of Fractional-Order Permanent Magnet Direct-Drive Wind Power System
by Junhua Xu, Yue Lan, Chunwei Wang, Bin Liu, Yingheng Li and Yongzeng Xie
Machines 2025, 13(10), 928; https://doi.org/10.3390/machines13100928 - 8 Oct 2025
Viewed by 172
Abstract
A large number of practical systems show pronounced fractional-order features. In comparison with integer-order calculus, fractional-order calculus has been demonstrated to possess enhanced precision in the description of the dynamic behavior of complex systems. The increase in control accuracy and flexibility results from [...] Read more.
A large number of practical systems show pronounced fractional-order features. In comparison with integer-order calculus, fractional-order calculus has been demonstrated to possess enhanced precision in the description of the dynamic behavior of complex systems. The increase in control accuracy and flexibility results from this improvement. This study explores a direct-drive wind power generation system featuring permanent magnets, which incorporates fractional-order direct current bus (DC-bus) capacitor and fractional-order inductor–capacitor–inductor (FOLCL) grid-connected filter. For the machine-side rectifier, a fractional-order sliding mode (FOSM) speed outer-loop control and a fractional-order proportional–integral (FOPI) current inner-loop control were designed. A voltage outer-loop control using FOSM and a current inner-loop control using FOPI were developed for the grid-side inverter. Through simulation analyses under various wind speeds and grid fault conditions, it is demonstrated that compared to a control strategy using FOPI controllers in both inner and outer loops, the proposed control scheme which employs a FOSM outer-loop and reduces the overshoot of DC-bus voltage and grid-connected current by 21.51% and 32.49%, respectively, under sudden wind speed changes. Furthermore, during grid voltage sag faults, the maximum drop in DC-bus voltage and grid-connected active power are reduced by 65.38% and 33.38%, respectively. These results highlight the proposed method’s superior dynamic and static performance, as well as enhanced resistance to disturbances. Full article
(This article belongs to the Section Electromechanical Energy Conversion Systems)
Show Figures

Figure 1

14 pages, 2439 KB  
Article
A Traceable Low-Frequency Attenuation Standard from 1 kHz to 10 MHz for Next-Generation Wireless and EMC Calibration
by Anton Widarta
Sensors 2025, 25(19), 6227; https://doi.org/10.3390/s25196227 - 8 Oct 2025
Viewed by 187
Abstract
The growing demand for traceable, high-precision attenuation measurements in electromagnetic compatibility (EMC) testing and low-frequency wireless communication systems has driven the development of a primary attenuation standard covering 1 kHz to 10 MHz. The system employs a dual channel null-detection method using an [...] Read more.
The growing demand for traceable, high-precision attenuation measurements in electromagnetic compatibility (EMC) testing and low-frequency wireless communication systems has driven the development of a primary attenuation standard covering 1 kHz to 10 MHz. The system employs a dual channel null-detection method using an inductive voltage divider (IVD) as a reference, ensuring the highest accuracy and traceability while eliminating sensitivity to detector nonlinearity. Attenuation at 1 kHz, 9 kHz, and 10 kHz is measured directly against the IVD ratio, while higher-frequency measurements (100 kHz–10 MHz) are performed via heterodyne detection, down-converting signals to 1 kHz for comparison. To ensure comparable accuracy at higher attenuation levels, a double-step method is applied at 9 kHz and 10 kHz to mitigate the increased IVD uncertainty above 1 kHz. Linearity is ensured by suppressing common-mode currents with toroidal ferrite chokes and minimizing inter-channel coupling. Type B (non-statistical) measurement uncertainties are evaluated, with major contributions from the IVD reference, system errors, and mismatch. The expanded uncertainties are 2.2 × 10−3 dB at 20 dB, 3.0 × 10−3 dB at 40 dB, and 4.0 × 10−3 dB at 60 dB attenuation. To facilitate wider dissemination and extend the calibration range, a resistive step attenuator with 10 dB pads is evaluated as a practical transfer standard, providing a simple and robust solution for traceable attenuation calibration in this frequency range. Full article
(This article belongs to the Special Issue Novel Signal Processing Techniques for Wireless Communications)
Show Figures

Figure 1

20 pages, 17566 KB  
Article
An Isolated AC-DC LED Electronic Lighting Driver Circuit with Power Factor Correction
by Chun-An Cheng, Hung-Liang Cheng, En-Chih Chang and Man-Tang Chang
Electronics 2025, 14(19), 3953; https://doi.org/10.3390/electronics14193953 - 7 Oct 2025
Viewed by 209
Abstract
Light-emitting diodes (LEDs) have gained widespread adoption as solid-state lighting sources due to their compact size, long operational lifetime, high brightness, and mechanical robustness. This paper presents the development and implementation of an isolated AC-DC LED electronic lighting driver circuit that integrates a [...] Read more.
Light-emitting diodes (LEDs) have gained widespread adoption as solid-state lighting sources due to their compact size, long operational lifetime, high brightness, and mechanical robustness. This paper presents the development and implementation of an isolated AC-DC LED electronic lighting driver circuit that integrates a modified flyback converter with a lossless snubber circuit, along with inherent power factor correction (PFC). The proposed design operates the transformer’s magnetizing inductor in the discontinuous conduction mode (DCM), thereby naturally achieving PFC without the need for complex control circuitry. Furthermore, the circuit is capable of recycling the energy stored in the transformer’s leakage inductance, improving overall efficiency. The input current harmonics are shown to comply with the IEC 61000-3-2 Class C standard. A 72 W (36 V/2 A) prototype has been constructed and tested under a 110 V AC input. Experimental results confirm the effectiveness of the proposed design, achieving a power factor of 0.9816, a total harmonic distortion (THD) of 12.094%, an output voltage ripple factor of 9.7%, and an output current ripple factor of 11.22%. These results validate the performance and practical viability of the proposed LED driver architecture. Full article
Show Figures

Figure 1

29 pages, 9652 KB  
Article
Overcurrent Limiting Strategy for Grid-Forming Inverters Based on Current-Controlled VSG
by Alisher Askarov, Pavel Radko, Yuly Bay, Ivan Gusarov, Vagiz Kabirov, Pavel Ilyushin and Aleksey Suvorov
Mathematics 2025, 13(19), 3207; https://doi.org/10.3390/math13193207 - 7 Oct 2025
Viewed by 251
Abstract
A key direction of the development of modern power systems is the application of a continuously increasing number of grid-forming power converters to provide various system services. One of the possible strategies for the implementation of grid-forming control is a control algorithm based [...] Read more.
A key direction of the development of modern power systems is the application of a continuously increasing number of grid-forming power converters to provide various system services. One of the possible strategies for the implementation of grid-forming control is a control algorithm based on a virtual synchronous generator (VSG). However, at present, the problem of VSG operation under abnormal conditions associated with an increase in output current remains unsolved. Existing current saturation algorithms (CSAs) lead to the degradation of grid-forming properties during overcurrent limiting or reduce the possible range of current output. In this regard, this paper proposes to use the structure of modified current-controlled VSG (CC-VSG) instead of traditional voltage-controlled VSG. A current vector amplitude limiter is used to limit the output current in the CC-VSG structure. At the same time, the angle of the current reference vector continues to be regulated based on the emerging operating conditions due to the voltage feedback in the used VSG equations. The presented simulation results have shown that it was possible to achieve a wide operating range for the current phase from 0° to 180° in comparison with a traditional VSG algorithm. At the same time, the properties of the grid-forming inverter, such as power synchronization without phase-locked loop controller, voltage, and frequency control, are preserved. In addition, in order to avoid saturation of the voltage controller, it is proposed to use a simple algorithm of blocking and switching the reference signal from the setpoint to the current voltage level. Due to this structure, it was possible to prevent saturation of integrators in the control loops and to provide a guaranteed exit from the limiting mode. The results of adding this structure showed a five-second reduction in the overvoltage that occurs when it is absent. A comparison with conditional integration also showed that it prevented lock-up in the limiting mode. The results of experimental verification of the developed prototype of the inverter with CC-VSG control and CSA are also given, including a comparison with the serial model of the hybrid inverter. The results obtained showed that the developed algorithm excludes both the dead time and the load current loss when the external grid is disconnected. In addition, there is no tripping during overload, unlike a hybrid inverter. Full article
(This article belongs to the Special Issue Applied Mathematics and Intelligent Control in Electrical Engineering)
Show Figures

Figure 1

15 pages, 5603 KB  
Article
Fluidic Response and Sensing Mechanism of Meissner’s Corpuscles to Low-Frequency Mechanical Stimulation
by Si Chen, Tonghe Yuan, Zhiheng Yang, Weimin Ru and Ning Yang
Sensors 2025, 25(19), 6151; https://doi.org/10.3390/s25196151 - 4 Oct 2025
Viewed by 249
Abstract
Meissner’s corpuscles are essential mechanoreceptors that detect low-frequency vibrations. However, the internal fluid dynamic processes that convert directional mechanical stimuli into neural signals are not yet fully understood. This study aims to clarify the direction-specific sensing mechanism by analyzing internal fluid flow and [...] Read more.
Meissner’s corpuscles are essential mechanoreceptors that detect low-frequency vibrations. However, the internal fluid dynamic processes that convert directional mechanical stimuli into neural signals are not yet fully understood. This study aims to clarify the direction-specific sensing mechanism by analyzing internal fluid flow and shear stress distribution under different vibration modes. A biomimetic microfluidic platform was developed and coupled with a dynamic mesh computational fluid dynamics (CFD) model to simulate the response of the corpuscle to 20 Hz normal and tangential vibrations. The simulation results showed clear differences in fluid behavior. Normal vibration produced localized vortices and peak wall shear stress greater than 0.0054 Pa along the short axis. In contrast, tangential vibration generated stable laminar flow with a lower average shear stress of about 0.0012 Pa along the long axis. These results suggest that the internal structure of the Meissner corpuscle is important for converting mechanical inputs from different directions into specific fluid patterns. This study provides a physical foundation for understanding mechanotransduction and supports the design of biomimetic sensors with improved directional sensitivity for use in smart skin and soft robotic systems. Full article
(This article belongs to the Section Biosensors)
Show Figures

Graphical abstract

25 pages, 9362 KB  
Review
In Situ Raman Spectroscopy Reveals Structural Evolution and Key Intermediates on Cu-Based Catalysts for Electrochemical CO2 Reduction
by Jinchao Zhang, Honglin Gao, Zhen Wang, Haiyang Gao, Li Che, Kunqi Xiao and Aiyi Dong
Nanomaterials 2025, 15(19), 1517; https://doi.org/10.3390/nano15191517 - 3 Oct 2025
Viewed by 583
Abstract
Electrochemical CO2 reduction reaction (CO2RR) is a key technology for achieving carbon neutrality and efficient utilization of renewable energy, capable of converting CO2 into high-value-added carbon-based fuels and chemicals. Copper (Cu)-based catalysts have attracted significant attention due to their [...] Read more.
Electrochemical CO2 reduction reaction (CO2RR) is a key technology for achieving carbon neutrality and efficient utilization of renewable energy, capable of converting CO2 into high-value-added carbon-based fuels and chemicals. Copper (Cu)-based catalysts have attracted significant attention due to their unique performance in generating multi-carbon (C2+) products such as ethylene and ethanol; however, there are still many controversies regarding their complex reaction mechanisms, active sites, and the dynamic evolution of intermediates. In situ Raman spectroscopy, with its high surface sensitivity, applicability in aqueous environments, and precise detection of molecular vibration modes, has become a powerful tool for studying the structural evolution of Cu catalysts and key reaction intermediates during CO2RR. This article reviews the principles of electrochemical in situ Raman spectroscopy and its latest developments in the study of CO2RR on Cu-based catalysts, focusing on its applications in monitoring the dynamic structural changes of the catalyst surface (such as Cu+, Cu0, and Cu2+ oxide species) and identifying key reaction intermediates (such as *CO, *OCCO(*O=C-C=O), *COOH, etc.). Numerous studies have shown that Cu-based oxide precursors undergo rapid reduction and surface reconstruction under CO2RR conditions, resulting in metallic Cu nanoclusters with unique crystal facets and particle size distributions. These oxide-derived active sites are considered crucial for achieving high selectivity toward C2+ products. Time-resolved Raman spectroscopy and surface-enhanced Raman scattering (SERS) techniques have further revealed the dynamic characteristics of local pH changes at the electrode/electrolyte interface and the adsorption behavior of intermediates, providing molecular-level insights into the mechanisms of selectivity control in CO2RR. However, technical challenges such as weak signal intensity, laser-induced damage, and background fluorescence interference, and opportunities such as coupling high-precision confocal Raman technology with in situ X-ray absorption spectroscopy or synchrotron radiation Fourier transform infrared spectroscopy in researching the mechanisms of CO2RR are also put forward. Full article
Show Figures

Graphical abstract

18 pages, 12224 KB  
Article
A Phase-Adjustable Noise-Shaping SAR ADC for Mitigating Parasitic Capacitance Effects from PIP Capacitors
by Xuelong Ouyang, Hua Kuang, Dalin Kong, Zhengxi Cheng and Honghui Yuan
Sensors 2025, 25(19), 6029; https://doi.org/10.3390/s25196029 - 1 Oct 2025
Viewed by 204
Abstract
High parasitic capacitance from poly-insulator-poly capacitors in complementary metal oxide semiconductor (CMOS) processes presents a major bottleneck to achieving high-resolution successive approximation register (SAR) analog-to-digital converters (ADCs) in imaging systems. This study proposes a Phase-Adjustable SAR ADC that addresses this limitation through a [...] Read more.
High parasitic capacitance from poly-insulator-poly capacitors in complementary metal oxide semiconductor (CMOS) processes presents a major bottleneck to achieving high-resolution successive approximation register (SAR) analog-to-digital converters (ADCs) in imaging systems. This study proposes a Phase-Adjustable SAR ADC that addresses this limitation through a reconfigurable architecture. The design utilizes a phase-adjustable logic unit to switch between a conventional SAR mode for high-speed operation and a noise-shaping (NS) SAR mode for high-resolution conversion, actively suppressing in-band quantization noise. An improved SAR logic unit facilitates the insertion of an adjustable phase while concurrently achieving an 86% area reduction in the core logic block. A prototype was fabricated and measured in a 0.35-µm CMOS process. In conventional mode, the ADC achieved a 7.69-bit effective number of bits at 2 MS/s. By activating the noise-shaping circuitry, performance was significantly enhanced to an 11.06-bit resolution, corresponding to a signal-to-noise-and-distortion ratio (SNDR) of 68.3 dB, at a 125 kS/s sampling rate. The results demonstrate that the proposed architecture effectively leverages the trade-off between speed and accuracy, providing a practical method for realizing high-performance ADCs despite the inherent limitations of non-ideal passive components. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

27 pages, 7591 KB  
Article
Switching Frequency Figure of Merit for GaN FETs in Converter-on-Chip Power Conversion
by Liron Cohen, Joseph B. Bernstein, Roni Zakay, Aaron Shmaryahu and Ilan Aharon
Electronics 2025, 14(19), 3909; https://doi.org/10.3390/electronics14193909 - 30 Sep 2025
Viewed by 263
Abstract
Power converters are increasingly pushing toward higher switching frequencies, with current designs typically operating between tens of kilohertz and a few megahertz. The commercialization of gallium nitride (GaN) power transistors has opened new possibilities, offering performance far beyond the limitations of conventional silicon [...] Read more.
Power converters are increasingly pushing toward higher switching frequencies, with current designs typically operating between tens of kilohertz and a few megahertz. The commercialization of gallium nitride (GaN) power transistors has opened new possibilities, offering performance far beyond the limitations of conventional silicon devices. Despite this promise, the potential of GaN technology remains underutilized. This paper explores the feasibility of achieving sub-gigahertz switching frequencies using GaN-based switch-mode power converters, a regime currently inaccessible to silicon-based counterparts. To reach such operating speeds, it is essential to understand and quantify the intrinsic frequency limitations imposed by GaN device physics and associated parasitics. Existing power conversion topologies and control techniques are unsuitable at these frequencies due to excessive switching losses and inadequate drive capability. This work presents a detailed, systematic study of GaN transistor behavior at high frequencies, aiming to identify both fundamental and practical switching limits. A compact analytical model is developed to estimate the maximum soft-switching frequency, considering only intrinsic device parameters. Under idealized converter conditions, this upper bound is derived as a function of internal losses and the system’s target efficiency. From this, a soft-switching figure of merit is proposed to guide the design and layout of GaN field-effect transistors for highly integrated power systems. The key contribution of this study lies in its analytical insight into the performance boundaries of GaN transistors, highlighting the roles of parasitic elements and loss mechanisms. These findings provide a foundation for developing next-generation, high-frequency, chip-scale power converters. Full article
(This article belongs to the Topic Wide Bandgap Semiconductor Electronics and Devices)
Show Figures

Graphical abstract

14 pages, 2705 KB  
Article
A PSO-VMD-LSTM-Based Photovoltaic Power Forecasting Model Incorporating PV Converter Characteristics
by Hailong Pan, Chao Li, Fuming Xiao, Hai Zhou and Binxin Zhu
Appl. Sci. 2025, 15(19), 10612; https://doi.org/10.3390/app151910612 - 30 Sep 2025
Viewed by 152
Abstract
High-precision photovoltaic (PV) power generation prediction models are essential for ensuring secure and stable grid operation and optimized dispatch. Existing models often ignore the significant variations in PV grid-connected inverter loss distributions and exhibit inadequate data decomposition processing, which influences the accuracy of [...] Read more.
High-precision photovoltaic (PV) power generation prediction models are essential for ensuring secure and stable grid operation and optimized dispatch. Existing models often ignore the significant variations in PV grid-connected inverter loss distributions and exhibit inadequate data decomposition processing, which influences the accuracy of the prediction models. This paper proposes a PSO-VMD-LSTM prediction model that includes PV converter loss characteristics. Firstly, the Particle Swarm Optimization (PSO) algorithm is employed to optimize the parameters of Variational Mode Decomposition (VMD), enabling effective decomposition of data under different weather conditions. Secondly, the decomposed sub-modes are individually fed into Long Short-Term Memory (LSTM) networks for prediction, and the results are subsequently reconstructed to obtain preliminary predictions. Finally, a neural network-based equivalent model for inverter losses is constructed; the preliminary predictions are fed into this model to obtain the final prediction results. Simulation case studies demonstrate that the proposed PSO-VMD-LSTM-based model can comprehensively consider the impact of uneven converter loss distribution and effectively improve the accuracy of PV power prediction models. Full article
(This article belongs to the Section Energy Science and Technology)
Show Figures

Figure 1

17 pages, 23202 KB  
Article
A Port-Hamiltonian Perspective on Dual Active Bridge Converters: Modeling, Analysis, and Experimental Validation
by Yaoqiang Wang, Zhaolong Sun, Peiyuan Li, Jian Ai, Chan Wu, Zhan Shen and Fujin Deng
Energies 2025, 18(19), 5197; https://doi.org/10.3390/en18195197 - 30 Sep 2025
Viewed by 283
Abstract
The operational stability and performance of dual active bridge (DAB) converters are dictated by an intricate coupling of electrical, magnetic, and thermal dynamics. Conventional modeling paradigms fail to capture these interactions, creating a critical gap between design predictions and real performance. A unified [...] Read more.
The operational stability and performance of dual active bridge (DAB) converters are dictated by an intricate coupling of electrical, magnetic, and thermal dynamics. Conventional modeling paradigms fail to capture these interactions, creating a critical gap between design predictions and real performance. A unified Port-Hamiltonian model (PHM) is developed, embedding nonlinear, temperature-dependent material physics within a single, energy-conserving structure. Derived from first principles and experimentally validated, the model reproduces high-frequency dynamics, including saturation-driven current spikes, with superior fidelity. The energy-based structure systematically exposes the converter’s stability boundaries, revealing not only thermal runaway limits but also previously obscured electro-thermal oscillatory modes. The resulting framework provides a rigorous foundation for the predictive co-design of magnetics, thermal management, and control, enabling guaranteed stability and optimized performance across the full operational envelope. Full article
(This article belongs to the Section A1: Smart Grids and Microgrids)
Show Figures

Figure 1

27 pages, 10042 KB  
Article
CFD Study of a Novel Wave Energy Converter in Survival Mode
by Cassandre Senocq, Daniel Clemente, Mailys Bertrand, Paulo Rosa-Santos and Gianmaria Giannini
Energies 2025, 18(19), 5189; https://doi.org/10.3390/en18195189 - 30 Sep 2025
Viewed by 320
Abstract
Harnessing Europe’s strong wave energy could support net-zero emissions goals, but extreme ocean loads still make wave energy expensive and delay the rollout of commercial wave-energy converters (WECs). To address this, the twin-floater CECO WEC has been redesigned into a single-pivot device called [...] Read more.
Harnessing Europe’s strong wave energy could support net-zero emissions goals, but extreme ocean loads still make wave energy expensive and delay the rollout of commercial wave-energy converters (WECs). To address this, the twin-floater CECO WEC has been redesigned into a single-pivot device called the Pivoting WEC (PWEC), which includes a passive duck diving survival mode to reduce extreme wave impacts. Its performance is evaluated using detailed wave simulations based on Reynolds-Averaged Navier–Stokes (RANS) equations and the Volume-of-Fluid (VoF) method in OpenFOAM-olaFlow, which is validated with data from small-scale (1:20) wave tank experiments. Extreme non-breaking and breaking waves are simulated based on 100-year hindcast data for the case study site of Matosinhos (Portugal) using a modified Miche criterion. These are validated using data of surface elevation and force sensors. Wave height errors averaged 5.13%, and period errors remain below 0.75%. The model captures well major wave loads with a root mean square error down to 47 kN compared to a peak load of 260 kN and an R2 up to 0.80. The most violent plunging waves increase peak forces by 5 to 30% compared to the highest non-breaking crests. The validated numerical approach provides accurate extreme load predictions and confirms the effectiveness of the PWEC’s passive duck diving survival mode. The results contribute to the development of structurally resilient WECs, supporting the progress of WECs toward higher readiness levels. Full article
(This article belongs to the Special Issue Advancements in Marine Renewable Energy and Hybridization Prospects)
Show Figures

Figure 1

26 pages, 7761 KB  
Article
Artificial Intelligence-Based Optimized Nonlinear Control for Multi-Source Direct Current Converters in Hybrid Electric Vehicle Energy Systems
by Atif Rehman, Rimsha Ghias and Hammad Iqbal Sherazi
Energies 2025, 18(19), 5152; https://doi.org/10.3390/en18195152 - 28 Sep 2025
Viewed by 295
Abstract
The integration of multiple renewable and storage units in electric vehicle (EV) hybrid energy systems presents significant challenges in stability, dynamic response, and disturbance rejection, limitations often encountered with conventional sliding mode control (SMC) and super-twisting SMC (STSMC) schemes. This paper proposes a [...] Read more.
The integration of multiple renewable and storage units in electric vehicle (EV) hybrid energy systems presents significant challenges in stability, dynamic response, and disturbance rejection, limitations often encountered with conventional sliding mode control (SMC) and super-twisting SMC (STSMC) schemes. This paper proposes a condition-based integral terminal super-twisting sliding mode control (CBITSTSMC) strategy, with gains optimally tuned using an improved gray wolf optimization (I-GWO) algorithm, for coordinated control of a multi-source DC–DC converter system comprising photovoltaic (PV) arrays, fuel cells (FCs), lithium-ion batteries, and supercapacitors. The CBITSTSMC ensures finite-time convergence, reduces chattering, and dynamically adapts to operating conditions, thereby achieving superior performance. Compared to SMC and STSMC, the proposed controller delivers substantial reductions in steady-state error, overshoot, and undershoot, while improving rise time and settling time by up to 50%. Transient stability and disturbance rejection are significantly enhanced across all subsystems. Controller-in-the-loop (CIL) validation on a Delfino C2000 platform confirms the real-time feasibility and robustness of the approach. These results establish the CBITSTSMC as a highly effective solution for next-generation EV hybrid energy management systems, enabling precise power-sharing, improved stability, and enhanced renewable energy utilization. Full article
Show Figures

Figure 1

Back to TopTop