Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (254)

Search Parameters:
Keywords = modified couple stress

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 8643 KB  
Article
2D to 3D Modification of Chang–Chang Criterion Considering Multiaxial Coupling Effects in Fiber and Inter-Fiber Directions for Continuous Fiber-Reinforced Composites
by Yingchi Chen, Junhua Guo and Wantao Guo
Polymers 2025, 17(17), 2416; https://doi.org/10.3390/polym17172416 - 5 Sep 2025
Viewed by 203
Abstract
Fiber-reinforced composites are widely used in aerospace and other fields due to their excellent specific strength, specific stiffness, and corrosion resistance, and further study of their failure criteria is essential to improve the accuracy and reliability of failure behavior prediction under complex loads. [...] Read more.
Fiber-reinforced composites are widely used in aerospace and other fields due to their excellent specific strength, specific stiffness, and corrosion resistance, and further study of their failure criteria is essential to improve the accuracy and reliability of failure behavior prediction under complex loads. There are still some limitations in the current composite failure criterion research, mainly reflected in the lack of promotion of three-dimensional stress state, lack of sufficient consideration of multi-modal coupling effects, and the applicability of the criteria under multiaxial stress and complex loading conditions, which limit the wider application of composites in the leading-edge fields to a certain degree. In this work, a generalized Mohr failure envelope function approach is adopted to obtain the stress on the failure surface as a power series form of independent variable, and the unknown coefficients are determined according to the damage conditions, to extend the Chang–Chang criterion to the three-dimensional stress state, and to consider the coupling effect between the fiber and matrix failure modes. The modified Chang–Chang criterion significantly enhances the failure prediction accuracy of composite materials under complex stress states, especially in the range of multi-axial loading and small off-axis angles, which provides a more reliable theoretical basis and practical guidance for the safe design and performance optimization of composite structures in aerospace and other engineering fields. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

14 pages, 3281 KB  
Article
Research on the Johnson–Cook Constitutive Model and Failure Behavior of TC4 Alloy
by Jiaxuan Zhu, Huidong Zhi, Tong Huang, Ning Ding and Zhaoming Yan
Metals 2025, 15(9), 951; https://doi.org/10.3390/met15090951 - 27 Aug 2025
Viewed by 317
Abstract
This study investigates the mechanical response characteristics and damage evolution behavior of TC4 alloy through quasi-static/dynamic coupled experimental methods. Quasi-static tensile tests at varying temperatures (293 K, 423 K, and 623 K) were conducted using a universal testing machine, while room-temperature dynamic tensile [...] Read more.
This study investigates the mechanical response characteristics and damage evolution behavior of TC4 alloy through quasi-static/dynamic coupled experimental methods. Quasi-static tensile tests at varying temperatures (293 K, 423 K, and 623 K) were conducted using a universal testing machine, while room-temperature dynamic tensile tests (strain rate 1000–3000 s−1) were performed with a Split Hopkinson Tensile Bar (SHTB). Key findings include the following: (1) Significant temperature-softening effect was observed, with flow stress decreasing markedly as temperature increased; (2) Notch size effect influenced mechanical properties, showing 50% enhancement in post-fracture elongation when notch radius increased from 3 mm to 6 mm; and (3) Strain-hardening effect exhibited rate dependence under dynamic loading, with reduced hardening index within the tested strain rate range. The Johnson–Cook constitutive model and failure criterion were modified and parameterized based on experimental data. A 3D tensile simulation model developed in ABAQUS demonstrated strong agreement with experimental results, achieving a 0.97 correlation coefficient for load–displacement curves, thereby validating the modified models. Scanning electron microscopy (SEM) analysis of fracture surfaces revealed temperature- and strain rate-dependent microstructural characteristics, dominated by ductile fracture mechanisms involving microvoid nucleation, growth, and coalescence. This research provides theoretical foundations for analyzing Ti alloy structures under impact loading through established temperature–rate-coupled constitutive models. Full article
(This article belongs to the Special Issue Structure and Mechanical Properties of Titanium Alloys)
Show Figures

Figure 1

20 pages, 2993 KB  
Article
ABAQUS Subroutine-Based Implementation of a Fractional Consolidation Model for Saturated Soft Soils
by Tao Zeng, Tao Feng and Yansong Wang
Fractal Fract. 2025, 9(8), 542; https://doi.org/10.3390/fractalfract9080542 - 17 Aug 2025
Viewed by 382
Abstract
This paper presents a finite element implementation of a fractional rheological consolidation model in ABQUS, in which the fractional Merchant model governs the mechanical behavior of the soil skeleton, and the water flow is controlled by the fractional Darcy’s law. The implementation generally [...] Read more.
This paper presents a finite element implementation of a fractional rheological consolidation model in ABQUS, in which the fractional Merchant model governs the mechanical behavior of the soil skeleton, and the water flow is controlled by the fractional Darcy’s law. The implementation generally involves two main parts: subroutine-based fractional constitutive models’ development and their coupling. Considering the formal similarity between the energy equation and the mass equation, the fractional Darcy’s law was implemented using the UMATHT subroutine. The fractional Merchant model was then realized through the UMAT subroutine. Both subroutines were individually verified and then successfully coupled. The coupling was achieved by modifying the stress update scheme based on Biot’s poroelastic theory and the effective stress principle in UMAT, enabling a finite element analysis of the fractional consolidation model. Finally, the model was applied to simulate the consolidation behavior of a multi-layered foundation. The proposed approach may serve as a reference for the finite element implementation of consolidation models incorporating a fractional seepage model in ABAQUS. Full article
(This article belongs to the Special Issue Fractional Derivatives in Mathematical Modeling and Applications)
Show Figures

Figure 1

21 pages, 6295 KB  
Article
Enhanced Tire–Snow Sinkage Modeling for Optimized Electric Vehicle Traction Control in Northern China Snow Conditions
by Jingyi Gu, Bo Li, Shaoyi Bei and Chenyu Hu
World Electr. Veh. J. 2025, 16(8), 466; https://doi.org/10.3390/wevj16080466 - 15 Aug 2025
Viewed by 372
Abstract
The interaction between tires and snow layer is fundamental for vehicle safety on snowy roads. Due to the instantaneous high torque output characteristics of electric vehicles, they are more prone to slipping when driving in snow, which exacerbates the complexity of tire–snow interaction. [...] Read more.
The interaction between tires and snow layer is fundamental for vehicle safety on snowy roads. Due to the instantaneous high torque output characteristics of electric vehicles, they are more prone to slipping when driving in snow, which exacerbates the complexity of tire–snow interaction. In order to construct a more accurate tire–snow interaction model in Northern China, the Bekker formula is introduced to establish the snow pressure–sinkage relationship formula, and the parameters are calibrated by disk experiments. Then the improved tire–snow interaction model is proposed by combining the use of the brush model on the rigid road surface and the dynamic discussion of the tire’s motion behavior on the snow. A coupled finite element (FE) tire model and discrete element (DE) snow terrain model are established, with interactions governed by snow–rubber contact mechanics. The simulation tests the sinking depth of tires on snowy road surface under different slip rates and different loads, as well as the force on tires. The model provides high-precision input to the EV snow traction control algorithm to optimize motor torque distribution to improve energy efficiency. By comparing and analyzing with theoretical values, the traditional empirical model, and the modified physical model, it is finally concluded that the modified model has better reliability than the original model. Compared with the empirical model, the improved model reduces the vertical stress prediction error from 5% to less than 1%, and the motion resistance error from 6% to approximately 2%, providing high-precision input for the snow traction control of electric vehicles. Full article
Show Figures

Figure 1

22 pages, 7227 KB  
Article
Mechanisms Driving Recent Sea-Level Acceleration in the Gulf of Guinea
by Ayinde Akeem Shola, Huaming Yu, Kejian Wu and Nir Krakauer
Remote Sens. 2025, 17(16), 2834; https://doi.org/10.3390/rs17162834 - 15 Aug 2025
Viewed by 492
Abstract
The Gulf of Guinea is undergoing accelerated sea-level rise (SLR), with localized rates surpassing 10 mm yr−1, more than double the global mean. Integrating GRACE/FO ocean mass data, reanalysis products, and machine learning, we identify a regime shift in the regional [...] Read more.
The Gulf of Guinea is undergoing accelerated sea-level rise (SLR), with localized rates surpassing 10 mm yr−1, more than double the global mean. Integrating GRACE/FO ocean mass data, reanalysis products, and machine learning, we identify a regime shift in the regional sea-level budget post-2015. Over 60% of observed SLR near major riverine outlets stems from ocean mass increase, driven primarily by intensified terrestrial hydrological discharge, marking a transition from steric to barystatic and manometric dominance. This shift coincides with enhanced monsoonal precipitation, wind-forced equatorial wave adjustments, and Atlantic–Pacific climate coupling. Piecewise regression reveals a significant 2015 breakpoint, with mean coastal SLR rates increasing from 2.93 ± 0.1 to 5.4 ± 0.25 mm yr−1 between 1993 and 2014, and 2015 and 2023. GRACE data indicate extreme mass accumulation (>10 mm yr−1) along the eastern Gulf coast, tied to elevated river discharge and estuarine retention. Dynamical analysis reveals the reorganization of wind field intensification, which modifies Rossby wave dispersion and amplifies zonal water mass convergence. Random forest modeling attributes 16% of extreme SLR variance to terrestrial runoff (comparable to wind stress at 19%), underscoring underestimated land–ocean interactions. Current climate models underrepresent manometric contributions by 20–45%, introducing critical projection biases for high-runoff regions. The societal implications are severe, with >400 km2 of urban land in Lagos and Abidjan vulnerable to inundation by 2050. These findings reveal a hybrid steric–manometric regime in the Gulf of Guinea, challenging existing paradigms and suggesting analogous dynamics may operate across tropical margins. This calls for urgent model recalibration and tailored regional adaptation strategies. Full article
Show Figures

Figure 1

19 pages, 4202 KB  
Article
Effect of Plate Thickness on Residual Stress Distribution of GH3039 Superalloy Subjected to Laser Shock Peening
by Yandong Ma, Maozhong Ge and Yongkang Zhang
Materials 2025, 18(15), 3682; https://doi.org/10.3390/ma18153682 - 5 Aug 2025
Viewed by 325
Abstract
To accurately assess the effect of different plate thicknesses on the residual stress field of laser shock peened GH3039 superalloy, residual stress measurements were performed on GH3039 alloy plates with thicknesses of 2 mm and 5 mm after laser shock peening (LSP) treatment. [...] Read more.
To accurately assess the effect of different plate thicknesses on the residual stress field of laser shock peened GH3039 superalloy, residual stress measurements were performed on GH3039 alloy plates with thicknesses of 2 mm and 5 mm after laser shock peening (LSP) treatment. Both quasi-static and high strain rate mechanical tests of GH3039 were conducted, and the Johnson-Cook (J-C) constitutive equation for GH3039 alloy at specific strain rates was fitted based on the experimental results. To obtain the parameter C in the J-C constitutive equation of GH3039 alloy under ultra-high strain rates, a modified method was proposed based on LSP experiment and finite element simulation results. Using the modified GH3039 alloy J-C constitutive equation, numerical simulations and comparative analyses of the residual stress field of GH3039 alloy plates of different thicknesses under LSP were carried out using ABAQUS software. The simulated residual stress fields of laser-shocked GH3039 alloy plates of different thicknesses were in good agreement with the experimental measurements, indicating that the modified GH3039 alloy J-C constitutive equation can accurately predict the mechanical behavior of GH3039 alloy under ultra-high strain rates. Based on the modified GH3039 alloy J-C constitutive equation, the effect of different plate thicknesses on the residual stress distribution of laser-shocked GH3039 alloy was studied, along with the underlying mechanisms. The unique distribution characteristics of residual stresses in laser-shocked GH3039 plates with varying thicknesses are primarily attributed to differences in plate bending stiffness and the detrimental coupling effects of reflected tensile waves. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

18 pages, 9314 KB  
Article
Damage Mechanism and Modeling of CFRP Laminates Impacted by Single Waterjets: Effect of the Impact Direction
by Naidan Hou, Yulong Li and Ping Liu
Materials 2025, 18(15), 3495; https://doi.org/10.3390/ma18153495 - 25 Jul 2025
Viewed by 345
Abstract
In engineering practice, liquid droplet impingement typically occurs at an oblique angle relative to the target surface, yet the influence of impact orientation on damage outcomes remains contentious and exhibits target-material dependency. In this paper, a typical single-waterjet-generating technique is applied to liquid [...] Read more.
In engineering practice, liquid droplet impingement typically occurs at an oblique angle relative to the target surface, yet the influence of impact orientation on damage outcomes remains contentious and exhibits target-material dependency. In this paper, a typical single-waterjet-generating technique is applied to liquid impact tests on a unidirectional carbon fiber-reinforced polymer (CFRP) laminate, with special focus on the effects of the impingement angle and the fiber orientation. Finite-element simulation is employed to help reveal the failure mechanism of oblique impacts. The results show that, in most cases, the damage caused by a 15° oblique impact is slightly larger than that of a normal impact, while the increase amplitude varies with different impact speeds. Resin removal is more prone to occur when the projection of the waterjet velocity on the impact surface is perpendicular (marked as the fiber orientation PE) rather than parallel (marked as the fiber orientation PA) to the fiber direction of the top layer. A PE fiber orientation can lead to mass material peeling in comparison with PA, and the damage range is even much larger than for a normal impact. The underlying mechanism can be attributed to the increased lateral jet-particle velocity and resultant shear stress along the impact projection direction. The distinct damage modes observed on the CFRP laminate with the different fiber orientations PE and PA originate from the asymmetric tensile properties in the longitudinal/transverse directions of laminates coupled with dissimilar fiber–matrix interfacial characteristics. A theoretical model for the surface damage area under a single-jet impact was established through experimental data fitting based on a modified water-hammer pressure contact-radius formulation. The model quantitatively characterizes the influence of critical parameters, including the jet velocity, diameter, and impact angle, on the central area of the surface failure ring. Full article
(This article belongs to the Section Mechanics of Materials)
Show Figures

Figure 1

39 pages, 7187 KB  
Review
Surface Coatings on Biomedical Magnesium Alloys
by Jiapeng Ren, Zhenyu Zhao, Hua Li, Dongsheng Wang, Cijun Shuai and Youwen Yang
Materials 2025, 18(14), 3411; https://doi.org/10.3390/ma18143411 - 21 Jul 2025
Viewed by 851
Abstract
Magnesium (Mg) alloys have demonstrated tremendous potential in biomedical applications, emerging as promising metallic biomaterials due to their biocompatibility, degradability, and favorable mechanical properties. However, their practical implementation faces significant limitations stemming from mechanical performance degradation and premature fracture failure caused by complex [...] Read more.
Magnesium (Mg) alloys have demonstrated tremendous potential in biomedical applications, emerging as promising metallic biomaterials due to their biocompatibility, degradability, and favorable mechanical properties. However, their practical implementation faces significant limitations stemming from mechanical performance degradation and premature fracture failure caused by complex physiological interactions, including flow erosion, corrosion fatigue, stress coupling effects, and dynamic wear under bodily conditions. Surface coating technology has been recognized as an effective strategy to prevent direct contact between magnesium substrates and corrosive media. This review systematically examines the fundamental degradation mechanisms of magnesium alloys in both vivo and vitro environments, presents recent advances in surface modification coatings for magnesium alloys, and critically analyses the interaction mechanisms between modified layers and electrolyte solutions. Special emphasis is placed on revealing the formation mechanisms, structural characteristics, and fracture behaviors of conversion coatings. Furthermore, the study discusses the current challenges in biomedical surface modification of magnesium alloys, proposes potential solutions to enhance their clinical applicability, and outlines future research directions to fully exploit the development potential of these advanced biomaterials. Full article
Show Figures

Figure 1

22 pages, 3727 KB  
Article
Johnson–Cook Constitutive Model Parameters Estimation of 22MnB5 Hot Stamping Steel for Automotive Application Produced via the TSCR Process
by Yuxin Song, Yaowen Xu and Gengwei Yang
Metals 2025, 15(7), 811; https://doi.org/10.3390/met15070811 - 20 Jul 2025
Viewed by 3179
Abstract
In the industrial practice of metal forming, the consistent and reasonable characterization of the material behavior under the coupling effect of strain, strain rate, and temperature on the material flow stress is very important for the design and optimization of process parameters. The [...] Read more.
In the industrial practice of metal forming, the consistent and reasonable characterization of the material behavior under the coupling effect of strain, strain rate, and temperature on the material flow stress is very important for the design and optimization of process parameters. The purpose of this work was to establish an appropriate constitutive model to characterize the rheological behavior of a hot-formed steel plate (22MnB5 steel) produced through the TSCR (Thin Slab Casting and Rolling) process under practical deformation temperatures (150–250 °C) and strain rates (0.001–3000 s−1). Subsequently, the material flow behavior was modeled and predicted using the Johnson–Cook flow stress constitutive model. In this study, uniaxial tensile tests were conducted on 22MnB5 steel at room temperature under varying strain rates, along with elevated-temperature tensile tests at different strain rates, to obtain the engineering stress–strain curves and analyze the mechanical properties under various conditions. The results show that during room-temperature tensile testing within the strain rate range of 10−3 to 300 s−1, the 22MnB5 steel exhibited overall yield strength and tensile strength of approximately 1500 MPa, and uniform elongation and fracture elongation of about 7% and 12%, respectively. When the strain rate reached 1000–3000 s−1, the yield strength and tensile strength were approximately 2000 MPa, while the uniform elongation and fracture elongation were about 6% and 10%, respectively. Based on the experimental results, a modified Johnson–Cook constitutive model was developed and calibrated. Compared with the original model, the modified Johnson–Cook model exhibited a higher coefficient of determination (R2), indicating improved fitting accuracy. In addition, to predict the material’s damage behavior, three distinct specimen geometries were designed for quasi-static strain rate uniaxial tensile testing at ambient temperature. The Johnson–Cook failure criterion was implemented, with its constitutive parameters calibrated through integrated finite element analysis to establish the damage model. The determined damage parameters from this investigation can be effectively implemented in metal forming simulations, providing valuable predictive capabilities regarding workpiece material performance. Full article
Show Figures

Figure 1

25 pages, 4094 KB  
Article
Risk–Cost Equilibrium for Grid Reinforcement Under High Renewable Penetration: A Bi-Level Optimization Framework with GAN-Driven Scenario Learning
by Feng Liang, Ying Mu, Dashun Guan, Dongliang Zhang and Wenliang Yin
Energies 2025, 18(14), 3805; https://doi.org/10.3390/en18143805 - 17 Jul 2025
Viewed by 441
Abstract
The integration of high-penetration renewable energy sources (RESs) into transmission networks introduces profound uncertainty that challenges traditional infrastructure planning approaches. Existing transmission expansion planning (TEP) models either rely on static scenario sets or over-conservative worst-case assumptions, failing to capture the operational stress triggered [...] Read more.
The integration of high-penetration renewable energy sources (RESs) into transmission networks introduces profound uncertainty that challenges traditional infrastructure planning approaches. Existing transmission expansion planning (TEP) models either rely on static scenario sets or over-conservative worst-case assumptions, failing to capture the operational stress triggered by rare but structurally impactful renewable behaviors. This paper proposes a novel bi-level optimization framework for transmission planning under adversarial uncertainty, coupling a distributionally robust upper-level investment model with a lower-level operational response embedded with physics and market constraints. The uncertainty space was not exogenously fixed, but instead dynamically generated through a physics-informed spatiotemporal generative adversarial network (PI-ST-GAN), which synthesizes high-risk renewable and load scenarios designed to maximally challenge the system’s resilience. The generator was co-trained using a composite stress index—combining expected energy not served, loss-of-load probability, and marginal congestion cost—ensuring that each scenario reflects both physical plausibility and operational extremity. The resulting bi-level model was reformulated using strong duality, and it was decomposed into a tractable mixed-integer structure with embedded adversarial learning loops. The proposed framework was validated on a modified IEEE 118-bus system with high wind and solar penetration. Results demonstrate that the GAN-enhanced planner consistently outperforms deterministic and stochastic baselines, reducing renewable curtailment by up to 48.7% and load shedding by 62.4% under worst-case realization. Moreover, the stress investment frontier exhibits clear convexity, enabling planners to identify cost-efficient resilience strategies. Spatial congestion maps and scenario risk-density plots further illustrate the ability of adversarial learning to reveal latent structural bottlenecks not captured by conventional methods. This work offers a new methodological paradigm, in which optimization and generative AI co-evolve to produce robust, data-aware, and stress-responsive transmission infrastructure designs. Full article
Show Figures

Figure 1

33 pages, 5578 KB  
Review
Underwater Drag Reduction Applications and Fabrication of Bio-Inspired Surfaces: A Review
by Zaixiang Zheng, Xin Gu, Shengnan Yang, Yue Wang, Ying Zhang, Qingzhen Han and Pan Cao
Biomimetics 2025, 10(7), 470; https://doi.org/10.3390/biomimetics10070470 - 17 Jul 2025
Viewed by 1041
Abstract
As an emerging energy-saving approach, bio-inspired drag reduction technology has become a key research direction for reducing energy consumption and greenhouse gas emissions. This study introduces the latest research progress on bio-inspired microstructured surfaces in the field of underwater drag reduction, focusing on [...] Read more.
As an emerging energy-saving approach, bio-inspired drag reduction technology has become a key research direction for reducing energy consumption and greenhouse gas emissions. This study introduces the latest research progress on bio-inspired microstructured surfaces in the field of underwater drag reduction, focusing on analyzing the drag reduction mechanism, preparation process, and application effect of the three major technological paths; namely, bio-inspired non-smooth surfaces, bio-inspired superhydrophobic surfaces, and bio-inspired modified coatings. Bio-inspired non-smooth surfaces can significantly reduce the wall shear stress by regulating the flow characteristics of the turbulent boundary layer through microstructure design. Bio-inspired superhydrophobic surfaces form stable gas–liquid interfaces through the construction of micro-nanostructures and reduce frictional resistance by utilizing the slip boundary effect. Bio-inspired modified coatings, on the other hand, realize the synergistic function of drag reduction and antifouling through targeted chemical modification of materials and design of micro-nanostructures. Although these technologies have made significant progress in drag reduction performance, their engineering applications still face bottlenecks such as manufacturing process complexity, gas layer stability, and durability. Future research should focus on the analysis of drag reduction mechanisms and optimization of material properties under multi-physical field coupling conditions, the development of efficient and low-cost manufacturing processes, and the enhancement of surface stability and adaptability through dynamic self-healing coatings and smart response materials. It is hoped that the latest research status of bio-inspired drag reduction technology reviewed in this study provides a theoretical basis and technical reference for the sustainable development and energy-saving design of ships and underwater vehicles. Full article
(This article belongs to the Section Biomimetic Surfaces and Interfaces)
Show Figures

Figure 1

19 pages, 3216 KB  
Article
The Mechanism of an Fe-Based MOF Material as a Foliar Inhibitor and Its Co-Mitigation Effects on Arsenic and Cadmium Accumulation in Rice Grains
by Tianyu Wang, Hao Cui, Weijie Li, Zhenmao Jiang, Lei Li, Lidan Lei and Shiqiang Wei
Agronomy 2025, 15(7), 1710; https://doi.org/10.3390/agronomy15071710 - 16 Jul 2025
Viewed by 456
Abstract
Arsenic (As) and cadmium (Cd) in rice grains are major global food safety concerns. Iron (Fe) can help reduce both, but current Fe treatments suffer from poor stability, low leaf absorption, and fast soil immobilization, with unclear underlying mechanisms. To address these issues, [...] Read more.
Arsenic (As) and cadmium (Cd) in rice grains are major global food safety concerns. Iron (Fe) can help reduce both, but current Fe treatments suffer from poor stability, low leaf absorption, and fast soil immobilization, with unclear underlying mechanisms. To address these issues, an Fe-based metal–organic framework (MIL-88) was modified with sodium alginate (SA) to form MIL-88@SA. Its stability as a foliar inhibitor and its leaf absorption were tested, and its effects on As and Cd accumulation in rice were compared with those of soluble Fe (FeCl3) and chelating Fe (HA + FeCl3) in a field study on As–Cd co-contaminated rice paddies. Compared with the control, MIL-88@SA outperformed or matched the other Fe treatments. A single foliar spray during the tillering stage increased the rice yield by 19% and reduced the inorganic As and Cd content in the grains by 22.8% and 67.8%, respectively, while the other Fe treatments required two sprays. Its superior performance was attributed to better leaf affinity and thermal stability. Laser ablation inductively coupled plasma–mass spectrometry (LA–ICP–MS) and confocal laser scanning microscopy (CLSM) analyses revealed that Fe improved photosynthesis and alleviated As–Cd stress in leaves, MIL-88@SA promoted As and Cd redistribution, and Fe–Cd co-accumulation in leaf veins enhanced Cd retention in leaves. Full article
(This article belongs to the Topic Effect of Heavy Metals on Plants, 2nd Volume)
Show Figures

Figure 1

17 pages, 2007 KB  
Review
Modulation of Redox-Sensitive Cardiac Ion Channels
by Razan Orfali, Al Hassan Gamal El-Din, Varnika Karthick, Elisanjer Lamis, Vanna Xiao, Alena Ramanishka, Abdullah Alwatban, Osama Alkhamees, Ali Alaseem, Young-Woo Nam and Miao Zhang
Antioxidants 2025, 14(7), 836; https://doi.org/10.3390/antiox14070836 - 8 Jul 2025
Viewed by 887
Abstract
Redox regulation is crucial for the cardiac action potential, coordinating the sodium-driven depolarization, calcium-mediated plateau formation, and potassium-dependent repolarization processes required for proper heart function. Under physiological conditions, low-level reactive oxygen species (ROS), generated by mitochondria and membrane oxidases, adjust ion channel function [...] Read more.
Redox regulation is crucial for the cardiac action potential, coordinating the sodium-driven depolarization, calcium-mediated plateau formation, and potassium-dependent repolarization processes required for proper heart function. Under physiological conditions, low-level reactive oxygen species (ROS), generated by mitochondria and membrane oxidases, adjust ion channel function and support excitation–contraction coupling. However, when ROS accumulate, they modify a variety of important channel proteins in cardiomyocytes, which commonly results in reducing potassium currents, enhancing sodium and calcium influx, and enhancing intracellular calcium release. These redox-driven alterations disrupt the cardiac rhythm, promote after-depolarizations, impair contractile force, and accelerate the development of heart diseases. Experimental models demonstrate that oxidizing agents reduce repolarizing currents, whereas reducing systems restore normal channel activity. Similarly, oxidative modifications of calcium-handling proteins amplify sarcoplasmic reticulum release and diastolic calcium leak. Understanding the precise redox-dependent modifications of cardiac ion channels would guide new possibilities for targeted therapies aimed at restoring electrophysiological homeostasis under oxidative stress, potentially alleviating myocardial infarction and cardiovascular dysfunction. Full article
Show Figures

Graphical abstract

24 pages, 3267 KB  
Article
Evaluation of Strength Model Under Deep Formations with High Temperature and High Pressure
by Fei Gao, Yan Zhang, Yuelong Liu and Hui Zhang
Buildings 2025, 15(13), 2335; https://doi.org/10.3390/buildings15132335 - 3 Jul 2025
Viewed by 390
Abstract
Elevated thermal conditions, rock formations exhibit distinct mechanical behaviors that significantly deviate from their characteristics under ambient temperature environments. This phenomenon raises critical questions regarding the applicability of conventional failure criteria in accurately assessing wellbore stability and maintaining the structural integrity of subsurface [...] Read more.
Elevated thermal conditions, rock formations exhibit distinct mechanical behaviors that significantly deviate from their characteristics under ambient temperature environments. This phenomenon raises critical questions regarding the applicability of conventional failure criteria in accurately assessing wellbore stability and maintaining the structural integrity of subsurface infrastructure within geothermal environments. Based on the least absolute deviation method, this paper studies the response characteristics of rock strength at different temperatures and evaluates the prediction performance of six commonly used strength criteria under various temperature and stress environments. The experimental findings reveal a pronounced nonlinear dependence of rock strength on confining pressure elevation. A comparative analysis of failure criteria demonstrates hierarchical predictive performance: the Hoek–Brown (HB) criterion achieves superior temperature-dependent strength prediction fidelity, outperforming the modified Griffith (MGC), Mohr–Lade (ML), and modified Wiebols–Cook (MWC) criteria by 12–18% in accuracy metrics. Notably, the Zhao–Zheng (ZZ) and conventional Mohr–Coulomb (MC) criteria exhibit statistically significant deviations across the tested thermal range. The HB criterion’s exceptional performance in high-temperature regimes is attributed to its dual incorporation of nonlinear confinement effects and thermally activated microcrack propagation mechanisms. The implementation of this optimized model in Well X’s borehole stability analysis yielded 89% alignment between predictions and field observations, with principal stress variations remaining within 7% of critical failure thresholds. These mechanistic insights offer critical theoretical and practical references for thermo-hydro-mechanical coupling analysis in enhanced geothermal systems and deep subsurface containment structures. Full article
Show Figures

Figure 1

19 pages, 2825 KB  
Article
A Modified Nonlocal Macro–Micro-Scale Damage Model for the Simulation of Hydraulic Fracturing
by Changgen Liu and Xiaozhou Xia
Modelling 2025, 6(3), 58; https://doi.org/10.3390/modelling6030058 - 26 Jun 2025
Viewed by 542
Abstract
The nonlocal macro–meso-scale damage (NMMD) model, implemented in the framework of the finite element method, has been demonstrated to be a promising numerical approach in simulating crack initiation and propagation with reliable efficacy and high accuracy. In this study, the NMMD model was [...] Read more.
The nonlocal macro–meso-scale damage (NMMD) model, implemented in the framework of the finite element method, has been demonstrated to be a promising numerical approach in simulating crack initiation and propagation with reliable efficacy and high accuracy. In this study, the NMMD model was further enhanced by employing an identical degradation mechanism for both the tensile and shear components of shear stiffness, thereby overcoming the limitation of equal degradation in shear and tensile stiffness inherent in the original model. Additionally, a more refined and physically sound seepage evolution function was introduced to characterize the variation in permeability in porous media with geometric damage, leading to the development of an improved NMMD model suitable for simulating coupled seepage–stress problems. The reliability of the enhanced NMMD model was verified by the semi-analytical solutions of the classical KGD problem. Finally, based on the modified NMMD model, the effects of preset fracture spacing and natural voids on hydraulic fracture propagation were investigated. Full article
Show Figures

Figure 1

Back to TopTop