Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (234)

Search Parameters:
Keywords = modified theory of gravity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 419 KB  
Review
Modified Gravity with Nonminimal Curvature–Matter Couplings: A Framework for Gravitationally Induced Particle Creation
by Francisco S. N. Lobo, Tiberiu Harko and Miguel A. S. Pinto
Universe 2025, 11(11), 356; https://doi.org/10.3390/universe11110356 - 28 Oct 2025
Viewed by 78
Abstract
Modified gravity theories with a nonminimal coupling between curvature and matter offer a compelling alternative to dark energy and dark matter by introducing an explicit interaction between matter and curvature invariants. Two of the main consequences of such an interaction are the emergence [...] Read more.
Modified gravity theories with a nonminimal coupling between curvature and matter offer a compelling alternative to dark energy and dark matter by introducing an explicit interaction between matter and curvature invariants. Two of the main consequences of such an interaction are the emergence of an additional force and the non-conservation of the energy–momentum tensor, which can be interpreted as an energy exchange between matter and geometry. By adopting this interpretation, one can then take advantage of many different approaches in order to investigate the phenomenon of gravitationally induced particle creation. One of these approaches relies on the so-called irreversible thermodynamics of open systems formalism. By considering the scalar–tensor formulation of one of these theories, we derive the corresponding particle creation rate, creation pressure, and entropy production, demonstrating that irreversible particle creation can drive a late-time de Sitter acceleration through a negative creation pressure, providing a natural alternative to the cosmological constant. Furthermore, we demonstrate that the generalized second law of thermodynamics holds: the total entropy, from both the apparent horizon and enclosed matter, increases monotonically and saturates in the de Sitter phase, imposing constraints on the allowed particle production dynamics. Furthermore, we present brief reviews of other theoretical descriptions of matter creation processes. Specifically, we consider approaches based on the Boltzmann equation and quantum-based aspects and discuss the generalization of the Klein–Gordon equation, as well as the problem of its quantization in time-varying gravitational fields. Hence, gravitational theories with nonminimal curvature–matter couplings present a unified and testable framework, connecting high-energy gravitational physics with cosmological evolution and, possibly, quantum gravity, while remaining consistent with local tests through suitable coupling functions and screening mechanisms. Full article
31 pages, 2176 KB  
Article
Models of Charged Gravastars in f(T)-Gravity
by Mohamed A. Bakry and Ali Eid
Universe 2025, 11(10), 353; https://doi.org/10.3390/universe11100353 - 21 Oct 2025
Viewed by 175
Abstract
This study investigates three distinct charged gravastar models within the framework of fT modified gravity, considering the functional forms fT=T, fT=a+bT, and fT=T2. Inspired by the [...] Read more.
This study investigates three distinct charged gravastar models within the framework of fT modified gravity, considering the functional forms fT=T, fT=a+bT, and fT=T2. Inspired by the Mazur–Mottola conjecture, we propose these models as singularity-free alternatives to black holes, each characterized by a three-region structure: (i) an interior de Sitter core, (ii) an intermediate thin shell composed of ultrarelativistic matter, and (iii) an exterior region described by the Reisner Nordstrom solution and other novel spherically symmetric vacuum solutions. We derive a complete set of exact, singularity-free solutions for the charged gravastar configuration, demonstrating their mathematical consistency and physical viability in the context of alternative gravity theories. Notably, the field equations governing the thin shell are solved using an innovative approach based on Killing vector symmetries, eliminating the need for approximations commonly employed in prior studies. Furthermore, we analyze key physical properties of the thin shell, including its proper length, entropy distribution, and energy content. A thorough examination of the energy conditions reveals the thermodynamic stability and viability of these models. Our results contribute to the growing body of work on exotic compact objects and provide new insights into the interplay between modified gravity, electromagnetism, and non-singular black hole alternatives. Full article
(This article belongs to the Section Gravitation)
Show Figures

Figure 1

13 pages, 305 KB  
Article
The General Property of the Tensor Gravitational Memory Effect in Theories of Gravity: The Linearized Case
by Shaoqi Hou
Symmetry 2025, 17(10), 1703; https://doi.org/10.3390/sym17101703 - 11 Oct 2025
Viewed by 251
Abstract
In this work, it is shown that, based on the linear analysis, as long as a theory of gravity is diffeomorphism invariant and possesses the tensor degrees of freedom propagating at a constant, isotropic speed without dispersion, its asymptotic symmetry group of an [...] Read more.
In this work, it is shown that, based on the linear analysis, as long as a theory of gravity is diffeomorphism invariant and possesses the tensor degrees of freedom propagating at a constant, isotropic speed without dispersion, its asymptotic symmetry group of an isolated system contains the (extended/generalized) Bondi–Metzner–Sachs group. These asymptotic symmetries preserve the causal structure of the tensor degrees of freedom. They possess the displacement, spin and center-of-mass memory effects. These effects depend on the asymptotic shear tensor. The displacement memory effect is the vacuum transition and parameterized by a supertranslation transformation. All of these hold even when the Lorentz symmetry is broken by a special timelike direction. Full article
(This article belongs to the Special Issue Symmetry in Gravitational Waves and Astrophysics)
28 pages, 587 KB  
Article
The Lyra–Schwarzschild Spacetime
by M. C. Bertin, R. R. Cuzinatto, J. A. Paquiyauri and B. M. Pimentel
Universe 2025, 11(9), 315; https://doi.org/10.3390/universe11090315 - 12 Sep 2025
Viewed by 584
Abstract
In this paper, we provide a complete analysis of the most general spherical solution of the Lyra scalar-tensor (LyST) gravitational theory based on the proper definition of a Lyra manifold. Lyra’s geometry features the metric tensor and a scale function as fundamental fields, [...] Read more.
In this paper, we provide a complete analysis of the most general spherical solution of the Lyra scalar-tensor (LyST) gravitational theory based on the proper definition of a Lyra manifold. Lyra’s geometry features the metric tensor and a scale function as fundamental fields, resulting in generalizations of geometrical quantities such as the affine connection, curvature, torsion, and non-metricity. A proper action is defined considering the correct invariant volume element and the scalar curvature, obeying the symmetry of Lyra’s reference frame transformations and resulting in a generalization of the Einstein–Hilbert action. The LyST gravity assumes zero torsion in a four-dimensional metric-compatible spacetime. In this work, geometrical quantities are presented and solved via Cartan’s technique for a spherically symmetric line element. Birkhoff’s theorem is demonstrated so that the solution is proven to be static, resulting in the Lyra–Schwarzschild metric, which depends on both the geometrical mass (through a modified version of the Schwarzschild radius rS) and an integration constant dubbed the Lyra radius rL. We study particle and light motion in Lyra–Schwarzschild spacetime using the Hamilton–Jacobi method. The motion of massive particles includes the determination of the rISCO and the periastron shift. The study of massless particle motion shows the last photon’s unstable orbit. Gravitational redshift in Lyra–Schwarzschild spacetime is also reviewed. We find a coordinate transformation that casts Lyra–Schwarzschild spacetime in the form of the standard Schwarzschild metric; the physical consequences of this fact are discussed. Full article
(This article belongs to the Section Gravitation)
Show Figures

Figure 1

20 pages, 764 KB  
Article
Black Hole Solution in f(R,G) Gravitational Theory Coupled with Scalar Field
by G. G. L. Nashed and A. Eid
Symmetry 2025, 17(8), 1360; https://doi.org/10.3390/sym17081360 - 20 Aug 2025
Cited by 1 | Viewed by 652
Abstract
In this work, we explore a class of spherically symmetric black hole (BH) solutions within the framework of modified gravity, focusing on a non-ghost-free f(R,G) theory coupled to a scalar field. We present a novel black hole geometry [...] Read more.
In this work, we explore a class of spherically symmetric black hole (BH) solutions within the framework of modified gravity, focusing on a non-ghost-free f(R,G) theory coupled to a scalar field. We present a novel black hole geometry that arises as a deformation of the Schwarzschild solution and analyze its physical and thermodynamic properties. Our results show that the model satisfies stability conditions, with the Ricci scalar R, as well as its first and second derivatives, remaining positive throughout the spacetime. The solution admits multiple horizons and exhibits strong curvature singularities compared to those in general relativity. Furthermore, it supports a non-trivial scalar field potential. A comprehensive thermodynamic analysis is performed, including evaluations of the entropy, temperature, heat capacity, and quasi-local energy. We find that the black hole exhibits thermodynamic stability within certain ranges of model parameters. In addition, we investigate geodesic deviation and derive the conditions necessary for stability within the f(R,G) gravitational framework. Full article
(This article belongs to the Section Physics)
Show Figures

Figure 1

14 pages, 3378 KB  
Article
The pcGR Within the Hořava-Lifshitz Gravity and the Wheeler-deWitt Quantization
by Peter O. Hess, César A. Zen Vasconcellos and Dimiter Hadjimichef
Galaxies 2025, 13(4), 85; https://doi.org/10.3390/galaxies13040085 - 1 Aug 2025
Cited by 1 | Viewed by 903
Abstract
We investigate pseudo-complex General Relativity (pcGR)—a coordinate-extended formulation of General Relativity (GR)—within the framework of Hořava-Lifshitz gravity, a regularized theory featuring anisotropic scaling. The pcGR framework bridges GR with modified gravitational theories through the introduction of a minimal length scale. Focusing on Schwarzschild [...] Read more.
We investigate pseudo-complex General Relativity (pcGR)—a coordinate-extended formulation of General Relativity (GR)—within the framework of Hořava-Lifshitz gravity, a regularized theory featuring anisotropic scaling. The pcGR framework bridges GR with modified gravitational theories through the introduction of a minimal length scale. Focusing on Schwarzschild black holes, we derive the Wheeler-deWitt equation, obtaining a quantized description of pcGR. Using perturbative methods and semi-classical approximations, we analyze the solutions of the equations and their physical implications. A key finding is the avoidance of the central singularity due to nonlinear interaction terms in the Hořava-Lifshitz action. Notably, extrinsic curvature (kinetic energy) contributions prove essential for singularity resolution, even in standard GR. Furthermore, the theory offers new perspectives on dark energy, proposing an alternative mechanism for its accumulation. Full article
(This article belongs to the Special Issue Cosmology and the Quantum Vacuum—2nd Edition)
Show Figures

Figure 1

23 pages, 556 KB  
Review
Evolving Wormholes in a Cosmological Background
by Mahdi Kord Zangeneh and Francisco S. N. Lobo
Universe 2025, 11(7), 236; https://doi.org/10.3390/universe11070236 - 19 Jul 2025
Viewed by 457
Abstract
Wormholes are non-trivial topological structures that arise as exact solutions to Einstein’s field equations, theoretically connecting distinct regions of spacetime via a throat-like geometry. While static traversable wormholes necessarily require exotic matter that violates the classical energy conditions, subsequent studies have sought to [...] Read more.
Wormholes are non-trivial topological structures that arise as exact solutions to Einstein’s field equations, theoretically connecting distinct regions of spacetime via a throat-like geometry. While static traversable wormholes necessarily require exotic matter that violates the classical energy conditions, subsequent studies have sought to minimize such violations by introducing time-dependent geometries embedded within cosmological backgrounds. This review provides a comprehensive survey of evolving wormhole solutions, emphasizing their formulation within both general relativity and alternative theories of gravity. We explore key developments in the construction of non-static wormhole spacetimes, including those conformally related to static solutions, as well as dynamically evolving geometries influenced by scalar fields. Particular attention is given to the wormholes embedded into Friedmann–Lemaître–Robertson–Walker (FLRW) universes and de Sitter backgrounds, where the interplay between the cosmic expansion and wormhole dynamics is analyzed. We also examine the role of modified gravity theories, especially in hybrid metric–Palatini gravity, which enable the realization of traversable wormholes supported by effective stress–energy tensors that do not violate the null or weak energy conditions. By systematically analyzing a wide range of time-dependent wormhole solutions, this review identifies the specific geometric and physical conditions under which wormholes can evolve consistently with null and weak energy conditions. These findings clarify how such configurations can be naturally integrated into cosmological models governed by general relativity or modified gravity, thereby contributing to a deeper theoretical understanding of localized spacetime structures in an expanding universe. Full article
(This article belongs to the Special Issue Experimental and Observational Constraints on Wormhole Models)
Show Figures

Figure 1

15 pages, 395 KB  
Article
1PN Effective Binary Lagrangian for the Gravity–Kalb–Ramond Sector in the Conservative Regime
by Vegard Undheim, Eirik Eik Svanes and Alex B. Nielsen
Galaxies 2025, 13(4), 79; https://doi.org/10.3390/galaxies13040079 - 8 Jul 2025
Viewed by 741
Abstract
Within the framework of string theory, a number of new fields can arise that correct the Einstein–Hilbert action, including the Kalb–Ramond two-form field. In this work, we derive explicitly first-order relativistic corrections to conservative dynamics in the presence of a Kalb–Ramond field using [...] Read more.
Within the framework of string theory, a number of new fields can arise that correct the Einstein–Hilbert action, including the Kalb–Ramond two-form field. In this work, we derive explicitly first-order relativistic corrections to conservative dynamics in the presence of a Kalb–Ramond field using the effective field theory approach. The resulting additional terms in the Lagrangian governing conservative binary dynamics are presented explicitly. Full article
(This article belongs to the Special Issue Cosmology and the Quantum Vacuum—2nd Edition)
Show Figures

Figure 1

14 pages, 805 KB  
Article
Ultra-Cold Neutrons in qBounce Experiments as Laboratory for Test of Chameleon Field Theories and Cosmic Acceleration
by Derar Altarawneh and Roman Höllwieser
J. Nucl. Eng. 2025, 6(3), 20; https://doi.org/10.3390/jne6030020 - 26 Jun 2025
Viewed by 701
Abstract
The study of scalar field theories like the chameleon field model is of increasing interest due to the Universe’s accelerated expansion, which is believed to be caused in part by dark energy. These fields can elude experimental bounds set on them in high-density [...] Read more.
The study of scalar field theories like the chameleon field model is of increasing interest due to the Universe’s accelerated expansion, which is believed to be caused in part by dark energy. These fields can elude experimental bounds set on them in high-density environments since they interact with matter in a density-dependent way. This paper analyzes the effect of chameleon fields on the quantum gravitational states of ultra-cold neutrons (UCNs) in qBounce experiments with mirrors. We discuss the deformation of the neutron wave function due to chameleon interactions and quantum systems in potential wells from gravitational forces and chameleon fields. Unlike other works that aim to put bounds on the chameleon field parameters, this work focuses on the quantum mechanics of the chameleonic neutron. The results deepen our understanding of the interplay between quantum states and modified gravity, as well as fundamental physics experiments carried out in the laboratory. Full article
Show Figures

Figure 1

21 pages, 2916 KB  
Article
Reissner–Nordström and Kerr-like Solutions in Finsler–Randers Gravity
by Georgios Miliaresis, Konstantinos Topaloglou, Ioannis Ampazis, Nefeli Androulaki, Emmanuel Kapsabelis, Emmanuel N. Saridakis, Panayiotis C. Stavrinos and Alkiviadis Triantafyllopoulos
Universe 2025, 11(7), 201; https://doi.org/10.3390/universe11070201 - 20 Jun 2025
Cited by 1 | Viewed by 634
Abstract
In a previous study we investigated the spherically symmetric Schwarzschild and Schwarzschild–de Sitter solutions within a Finsler–Randers-type geometry. In this work, we extend our analysis to charged and rotating solutions, focusing on the Reissner–Nordström and Kerr-like metrics in the Finsler–Randers gravitational framework. In [...] Read more.
In a previous study we investigated the spherically symmetric Schwarzschild and Schwarzschild–de Sitter solutions within a Finsler–Randers-type geometry. In this work, we extend our analysis to charged and rotating solutions, focusing on the Reissner–Nordström and Kerr-like metrics in the Finsler–Randers gravitational framework. In particular, we extract the modified gravitational field equations and we examine the geodesic equations, analyzing particle trajectories and quantifying the deviations from their standard counterparts. Moreover, we compare the results with the predictions of general relativity, and we discuss how potential deviations from Riemannian geometry could be reached observationally. Full article
Show Figures

Figure 1

50 pages, 8738 KB  
Review
From Barthel–Randers–Kropina Geometries to the Accelerating Universe: A Brief Review of Recent Advances in Finslerian Cosmology
by Amine Bouali, Himanshu Chaudhary, Lehel Csillag, Rattanasak Hama, Tiberiu Harko, Sorin V. Sabau and Shahab Shahidi
Universe 2025, 11(7), 198; https://doi.org/10.3390/universe11070198 - 20 Jun 2025
Cited by 1 | Viewed by 845
Abstract
We present a review of recent developments in cosmological models based on Finsler geometry, as well as geometric extensions of general relativity formulated within this framework. Finsler geometry generalizes Riemannian geometry by allowing the metric tensor to depend not only on position but [...] Read more.
We present a review of recent developments in cosmological models based on Finsler geometry, as well as geometric extensions of general relativity formulated within this framework. Finsler geometry generalizes Riemannian geometry by allowing the metric tensor to depend not only on position but also on an additional internal degree of freedom, typically represented by a vector field at each point of the spacetime manifold. We examine in detail the possibility that Finsler-type geometries can describe the physical properties of the gravitational interaction, as well as the cosmological dynamics. In particular, we present and review the implications of a particular implementation of Finsler geometry, based on the Barthel connection, and of the (α,β) geometries, where α is a Riemannian metric, and β is a one-form. For a specific construction of the deviation part β, in these classes of geometries, the Barthel connection coincides with the Levi–Civita connection of the associated Riemann metric. We review the properties of the gravitational field, and of the cosmological evolution in three types of geometries: the Barthel–Randers geometry, in which the Finsler metric function F is given by F=α+β, in the Barthel–Kropina geometry, with F=α2/β, and in the conformally transformed Barthel–Kropina geometry, respectively. After a brief presentation of the mathematical foundations of the Finslerian-type modified gravity theories, the generalized Friedmann equations in these geometries are written down by considering that the background Riemannian metric in the Randers and Kropina line elements is of Friedmann–Lemaitre–Robertson–Walker type. The matter energy balance equations are also presented, and they are interpreted from the point of view of the thermodynamics of irreversible processes in the presence of particle creation. We investigate the cosmological properties of the Barthel–Randers and Barthel–Kropina cosmological models in detail. In these scenarios, the additional geometric terms arising from the Finslerian structure can be interpreted as an effective geometric dark energy component, capable of generating an effective cosmological constant. Several cosmological solutions—both analytical and numerical—are obtained and compared against observational datasets, including Cosmic Chronometers, Type Ia Supernovae, and Baryon Acoustic Oscillations, using a Markov Chain Monte Carlo (MCMC) analysis. A direct comparison with the standard ΛCDM model is also carried out. The results indicate that Finslerian cosmological models provide a satisfactory fit to the observational data, suggesting they represent a viable alternative to the standard cosmological model based on general relativity. Full article
(This article belongs to the Special Issue Cosmological Models of the Universe)
Show Figures

Figure 1

19 pages, 3412 KB  
Article
Neutron Stars in the Theory of Gravity with Non-Minimal Derivative Coupling and Realistic Equations of State
by Pavel E. Kashargin, Alexander A. Lebedev and Sergey V. Sushkov
Symmetry 2025, 17(6), 910; https://doi.org/10.3390/sym17060910 - 9 Jun 2025
Viewed by 806
Abstract
We numerically construct compact stars in the scalar–tensor theory of gravity with non-minimal derivative coupling of a scalar field to the curvature and nonzero cosmological constant. There are two free parameters in this model of gravity: the non-minimal derivative coupling parameter and [...] Read more.
We numerically construct compact stars in the scalar–tensor theory of gravity with non-minimal derivative coupling of a scalar field to the curvature and nonzero cosmological constant. There are two free parameters in this model of gravity: the non-minimal derivative coupling parameter and the cosmological constant parameter ξ. We study the relationship between the model parameters and characteristic of the neutron star, which allowed us to limit the permissible range of ξ and . In particular, in the case ξ=1, the external geometry of the neutron star coincides with the Schwarzschild–anti-de Sitter geometry, while the internal geometry of the star differs from the case of the standard gravity theory. Many realistic equations of the state of neutron star matter were considered. In general, the neutron star model in the theory of gravity with a non-minimal derivative coupling does not contradict astronomical data and is viable. Full article
(This article belongs to the Special Issue Feature Papers in 'Physics' Section 2025)
Show Figures

Figure 1

8 pages, 207 KB  
Editorial
Editorial: Modified Theories of Gravity and Cosmological Applications—Topical Collection
by Panayiotis Stavrinos and Emmanuel N. Saridakis
Universe 2025, 11(6), 182; https://doi.org/10.3390/universe11060182 - 6 Jun 2025
Viewed by 1008
Abstract
General relativity (GR) has been remarkably successful in describing the gravitational interaction through the curvature of spacetime [...] Full article
(This article belongs to the Collection Modified Theories of Gravity and Cosmological Applications)
24 pages, 541 KB  
Article
New Black Hole Solution in f(R) Theory and Its Related Physics
by G. G. L. Nashed and Ali Eid
Universe 2025, 11(6), 175; https://doi.org/10.3390/universe11060175 - 30 May 2025
Cited by 1 | Viewed by 1431
Abstract
Recent observations suggest that General Relativity (GR) faces challenges in fully explaining phenomena in regimes of strong gravitational fields. A promising alternative is the f(R) theory of gravity, where R denotes the Ricci scalar. This modified theory aims to address [...] Read more.
Recent observations suggest that General Relativity (GR) faces challenges in fully explaining phenomena in regimes of strong gravitational fields. A promising alternative is the f(R) theory of gravity, where R denotes the Ricci scalar. This modified theory aims to address the limitations observed in standard GR. In this study, we derive a black hole (BH) solution without introducing nonlinear electromagnetic fields or imposing specific constraints on R or the functional form of f(R) gravity. The BH solution obtained here is different from the classical Schwarzschild solution in GR and, under certain conditions, reduces to the Schwarzschild (A)dS solution. This BH is characterized by the gravitational mass of the system and an additional parameter, which distinguishes it from GR BHs, particularly in the asymptotic regime. We show that the curvature invariants of this solution remain well defined at both small and large values of r. Furthermore, we analyze their thermodynamic properties, demonstrating consistency with established principles such as Hawking radiation, entropy, and quasi-local energy. This analysis supports their viability as alternative models to classical GR BHs. Full article
Show Figures

Figure 1

13 pages, 1159 KB  
Article
Ricci Semi-Symmetric Robertson–Walker Spacetime in f(R)-Gravity
by H. Aruna Kumara, Abdul Haseeb, V. Venkatesha and Mohd Bilal
Mathematics 2025, 13(6), 1012; https://doi.org/10.3390/math13061012 - 20 Mar 2025
Viewed by 618
Abstract
We investigated the properties of Ricci semi-symmetric Robertson–Walker spacetimes within the framework of f(R)-gravity theory. Initially, we established that Ricci semi-symmetric Robertson–Walker spacetimes are locally isometric to either Minkowski or de Sitter spacetimes. We then focused on the 4-dimensional [...] Read more.
We investigated the properties of Ricci semi-symmetric Robertson–Walker spacetimes within the framework of f(R)-gravity theory. Initially, we established that Ricci semi-symmetric Robertson–Walker spacetimes are locally isometric to either Minkowski or de Sitter spacetimes. We then focused on the 4-dimensional formulation of these spacetimes in f(R)-gravity, deriving expressions for the isotropic pressure p and energy density σ. To further develop our understanding, we explored various energy conditions to constrain the functional form of f(R). We analyzed several models, namely f(R)=Rα(1eRα), f(R)=RβtanhR, and f(R)=Rlog(mR), where α, β, and m are constants. Our findings suggest that the equations of state parameters for these models are compatible with the universe’s accelerating expansion, indicating an equation of state parameter ω=1. Moreover, while these models satisfy the null, weak, and dominant energy conditions reflective of the observed accelerated expansion, our analysis reveals that they violate the strong energy condition. Full article
Show Figures

Figure 1

Back to TopTop