Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,303)

Search Parameters:
Keywords = molecular regulatory network

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 1398 KB  
Article
MicroRNA Regulation in the Freeze-Tolerant Heart of Dryophytes versicolor
by Saif Rehman, Sarah A. Breedon, Imane Rhzali and Kenneth B. Storey
Genes 2025, 16(9), 997; https://doi.org/10.3390/genes16090997 (registering DOI) - 25 Aug 2025
Abstract
Background: Freeze tolerance is an uncommon but highly effective strategy that allows certain vertebrates to survive prolonged exposure to subzero temperatures in a frozen, ischemic state. While past studies have characterized the metabolic and biochemical adaptations involved, including cryoprotectant accumulation and metabolic rate [...] Read more.
Background: Freeze tolerance is an uncommon but highly effective strategy that allows certain vertebrates to survive prolonged exposure to subzero temperatures in a frozen, ischemic state. While past studies have characterized the metabolic and biochemical adaptations involved, including cryoprotectant accumulation and metabolic rate suppression, the contribution of post-transcriptional gene regulation by microRNAs (miRNAs) remains largely unexplored. This study investigated freeze-responsive miRNAs in cardiac tissue of the gray tree frog, Dryophytes versicolor, to better understand the molecular mechanisms that support ischemic survival and tissue preservation. Methods: Adult frogs were subjected to controlled freezing at −2.5 °C, and cardiac tissue was collected from frozen and control animals. Total RNA was extracted and analyzed via small RNA sequencing to identify differentially expressed miRNAs, followed by target gene prediction and KEGG pathway enrichment analysis. Results: A total of 3 miRNAs were differentially expressed during freezing, with significant upregulation of miR-93-5p and let-7b-5p and downregulation of miR-4485-3p. Predicted targets of upregulated miRNAs included genes involved in immune signaling pathways (e.g., cytokine–cytokine receptor interaction), steroid hormone biosynthesis, and neuroactive ligand–receptor interaction, suggesting suppression of energetically costly signaling processes. Downregulation of miRNAs targeting cell cycle, insulin signaling, and WNT pathways indicates possible selective preservation of cytoprotective and repair functions. Conclusion: Overall, these results suggest that D. versicolor employs miRNA-mediated regulatory networks to support metabolic suppression, maintain essential signaling, and prevent damage during prolonged cardiac arrest. This work expands our understanding of freeze tolerance at the molecular level and may offer insights into biomedical strategies for cryopreservation and ischemia–reperfusion injury. Full article
(This article belongs to the Section RNA)
Show Figures

Figure 1

20 pages, 2970 KB  
Review
Research Progress on the Regulatory Mechanism of the Waxy Gene in Rice Starch Synthesis
by Fei Chen, Yunsheng Song, Yi Jiang, Penghui Cao, Yajie Yu, Minghui Dong, Yulin Xie, Caiyong Yuan, Yongliang Zhu and Zhongying Qiao
Curr. Issues Mol. Biol. 2025, 47(9), 678; https://doi.org/10.3390/cimb47090678 - 23 Aug 2025
Abstract
Starch serves as a crucial storage substance in both cereal crops and root/tuber crops, with its composition and properties determining the quality of storage organs. The Waxy (Wx) gene, encoding a key enzyme in starch biosynthesis, plays a pivotal role in [...] Read more.
Starch serves as a crucial storage substance in both cereal crops and root/tuber crops, with its composition and properties determining the quality of storage organs. The Waxy (Wx) gene, encoding a key enzyme in starch biosynthesis, plays a pivotal role in this metabolic pathway. However, existing reviews seldom systematically elaborate on Wx gene regulatory mechanisms from the perspective of intrinsic molecular networks. Focusing on the model crop rice, this article synthesizes research advances in Wx-mediated starch biosynthesis regulation over the past decade. We analyze the structural features of the Wx gene and factors influencing its regulatory function during starch synthesis. In conclusion, future research directions are proposed to provide references for Wx gene studies in other crops, as well as theoretical foundations for rice varietal improvement and molecular design breeding. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

15 pages, 3707 KB  
Article
Conserved miR156 Mediates Phase-Specific Coordination Between Cotyledon Morphogenesis and Embryo Dormancy During Somatic Embryogenesis in Larix kaempferi
by Xin Li, Yuqin Huang, Wenhua Yang, Liwang Qi, Lifeng Zhang and Chenghao Li
Int. J. Mol. Sci. 2025, 26(17), 8206; https://doi.org/10.3390/ijms26178206 - 23 Aug 2025
Viewed by 52
Abstract
The miR156 family, crucial for phase transition and stress responses in plants, remains functionally uncharacterized in the ecologically and commercially important gymnosperm Larix kaempferi. This study systematically investigated L. kaempferi miR156 through phylogenetic analysis, structural prediction, expression profiling during somatic embryogenesis, and [...] Read more.
The miR156 family, crucial for phase transition and stress responses in plants, remains functionally uncharacterized in the ecologically and commercially important gymnosperm Larix kaempferi. This study systematically investigated L. kaempferi miR156 through phylogenetic analysis, structural prediction, expression profiling during somatic embryogenesis, and heterologous functional validation in Arabidopsis. Four MIR156 family members (LkMIR156s) were identified in Larix kaempferi, each with a characteristic stem-loop structure and highly conserved mature sequences. Computational predictions indicated that these LkMIR156s target four LkSPL family genes (LkSPL1, LkSPL2, LkSPL3, and LkSPL9). qRT-PCR analysis showed that mature LkmiR156s expression remained relatively low during early embryonic development but was significantly upregulated at the cotyledonary stage (21–42 days). Precursor transcript levels peaked earlier (around 28 days) than those of the mature LkmiR156, which remained highly expressed throughout cotyledonary embryo development. This sustained high expression coincided with cotyledon morphogenesis and embryonic dormancy. Functional validation via heterologous overexpression of LkMIR156b1 in Arabidopsis resulted in increased rosette leaf numbers (42.86% ± 6.19%) and individual leaf area (54.90% ± 6.86%), phenotypically consistent with the established role of miR156 in growth regulation. This study reveals the temporal expression dynamics of LkmiR156s during L. kaempferi somatic embryogenesis and its coordinated expression patterns with cotyledon development and embryonic dormancy. The functional conservation of the miR156-SPL module was confirmed in a model plant, providing key molecular insights into the developmental regulatory network of conifers. These findings offer potential strategies for optimizing somatic embryogenesis techniques in conifer species. Full article
(This article belongs to the Special Issue Plant Breeding and Genetics: New Findings and Perspectives)
Show Figures

Figure 1

16 pages, 3078 KB  
Article
Novel Insights into the Molecular Mechanisms of Chicken Breast Muscle Development by Integrating Non-Coding RNA and mRNA Profiles
by Yuting Jin, Jie Dong, Jiahua Li, Minjie Huang, Deqian Wang and Xiaodong Tan
Int. J. Mol. Sci. 2025, 26(17), 8181; https://doi.org/10.3390/ijms26178181 - 23 Aug 2025
Viewed by 143
Abstract
Chicken meat represents the most widely consumed source of animal protein globally. The identification of non-coding RNAs (ncRNAs) that affect muscle development provides new selection targets for poultry breeding. In this study, muscle samples from high- and low-breast-weight chickens were collected and sequenced [...] Read more.
Chicken meat represents the most widely consumed source of animal protein globally. The identification of non-coding RNAs (ncRNAs) that affect muscle development provides new selection targets for poultry breeding. In this study, muscle samples from high- and low-breast-weight chickens were collected and sequenced for long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), and mRNAs. Using weighted gene co-expression network analysis, we found 95 lncRNAs and 46 circRNAs that were significantly associated with breast muscle traits. Subsequently, 51 candidate lncRNAs and 22 candidate circRNAs were screened through differential expression analysis. Finally, by constructing an ncRNA–mRNA regulatory network and performing pathway enrichment analysis, we identified four lncRNAs (e.g., MSTRG.9172.1) and seven circRNAs (e.g., novel_circ_009419) as key regulatory molecules. Functional analysis revealed that these molecules modulate genes such as CD28, CCND2, TIAM1, and RRM2 through pathways including the actin cytoskeleton, p53 signaling pathway, and other pathways. In conclusion, this study provides clearer insight into the epigenetic regulatory network involved in chicken breast muscle development and offers important molecular markers for chicken genetic selection. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

23 pages, 7187 KB  
Article
Genome-Wide Identification of the TIFY Family in Cannabis sativa L. and Its Potential Functional Analysis in Response to Alkaline Stress and in Cannabinoid Metabolism
by Yuanye Zhang, Ming Zhang, Yuyan Fang, Nan Zheng, Bowei Yan, Yue Sui and Liguo Zhang
Int. J. Mol. Sci. 2025, 26(17), 8171; https://doi.org/10.3390/ijms26178171 - 22 Aug 2025
Viewed by 188
Abstract
TIFY transcription factors play crucial regulatory roles in secondary metabolism and stress response. However, the expression patterns of the Cannabis sativa L. TIFY gene family under alkali stress, their involvement in cannabinoid metabolism, and their underlying genetic evolutionary mechanisms remain largely unexplored. In [...] Read more.
TIFY transcription factors play crucial regulatory roles in secondary metabolism and stress response. However, the expression patterns of the Cannabis sativa L. TIFY gene family under alkali stress, their involvement in cannabinoid metabolism, and their underlying genetic evolutionary mechanisms remain largely unexplored. In this study, we used bioinformatics approaches to conduct genome-wide identification and functional characterization of the C. sativa TIFY gene family. Fourteen TIFY genes were identified and mapped onto seven chromosomes. These genes were classified into four subfamilies: TIFY, JAZ, ZML, and PPD, with the JAZ subfamily further subdivided into five distinct branches. Collinearity analysis suggested that gene duplication events contributed to the expansion of the TIFY gene family in C. sativa. Weighted gene coexpression network analysis (WGCNA) revealed that CsJAZ2, CsJAZ3, and CsJAZ6 participated in the cannabinoid regulatory network. Cis-element analysis indicated that the promoter regions of TIFY genes were enriched in hormone- and stress-responsive elements. Furthermore, transcriptome and RT-qPCR analyses were conducted to examine gene expression patterns under alkaline stress (the RNA employed in RT-qPCR was extracted from the apical leaves of samples subjected to short-duration alkaline stress treatment). The results showed that CsJAZ5 and CsJAZ6 were downregulated, whereas CsPPD1, CsTIFY1, and CsZML1 were upregulated in response to alkali stress. In summary, CsJAZ5, CsPPD1, and CsTIFY1 may serve as candidate genes for the development of alkali-tolerant cultivars, while CsJAZ2 and CsJAZ3 may be valuable targets for enhancing cannabinoid production. This study provides important molecular insights and a theoretical basis for future research on the evolutionary dynamics and functional roles of TIFY transcription factors, particularly in stress adaptation and cannabinoid metabolism. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

18 pages, 359 KB  
Review
Nitrogen-Driven Orchestration of Lateral Root Development: Molecular Mechanisms and Systemic Integration
by Xichao Sun, Yingchen Gu, Yingqi Liu, Zheng Liu and Peng Wang
Biology 2025, 14(8), 1099; https://doi.org/10.3390/biology14081099 - 21 Aug 2025
Viewed by 246
Abstract
N, as plants’ most essential nutrient, profoundly shapes root system architecture (RSA), with LRs being preferentially regulated. This review synthesizes the intricate molecular mechanisms underpinning N sensing, signaling, and its integration into developmental pathways governing LR initiation, primordium formation, emergence, and elongation. We [...] Read more.
N, as plants’ most essential nutrient, profoundly shapes root system architecture (RSA), with LRs being preferentially regulated. This review synthesizes the intricate molecular mechanisms underpinning N sensing, signaling, and its integration into developmental pathways governing LR initiation, primordium formation, emergence, and elongation. We delve deeply into the roles of specific transporters (NRT1.1, nitrate transporter 2.1 (NRT2.1)), transcription factors (Arabidopsis nitrate regulated 1 (ANR1), NLP7, TGACG motif-binding factor (TGA), squamosa promoter-binding protein-like 9 (SPL9)) and intricate hormone signaling networks (auxin, abscisic acid, cytokinins, ethylene) modulated by varying N availability (deficiency, sufficiency, excess) and chemical forms (NO3, NH4+, organic N). Emphasis is placed on the systemic signaling pathways, including peptide-mediated long-distance communication (CEP—C-terminally encoded peptide receptor 1 (CEPR1)) and the critical role of the shoot in modulating root responses. Furthermore, we explore the emerging significance of carbon–nitrogen (C/N) balance, post-translational modifications (ubiquitination, phosphorylation), epigenetic regulation, and the complex interplay with other nutrients (phosphorus (P), sulfur (S)) and environmental factors in shaping N-dependent LR plasticity. Recent advances utilizing single-cell transcriptomics and advanced imaging reveal unprecedented cellular heterogeneity in LR responses to N. Understanding this sophisticated regulatory network is paramount for developing strategies to enhance nitrogen use efficiency (NUE) in crops. This synthesis underscores how N acts as a master regulator, dynamically rewiring developmental programs through molecular hubs that synchronize nutrient sensing with root morphogenesis—a key adaptive strategy for resource acquisition in heterogeneous soils. Full article
(This article belongs to the Section Plant Science)
19 pages, 4023 KB  
Article
Ferroptosis as a Therapeutic Avenue in Triple-Negative Breast Cancer: Mechanistic Insights and Prognostic Potential
by Taimoor Riaz, Muhammad Ali Saleem, Muhammad Umar Muzafar Khan, Muhammad Abdul Rehman Rashid and Muhammad Zubair
Biomedicines 2025, 13(8), 2037; https://doi.org/10.3390/biomedicines13082037 - 21 Aug 2025
Viewed by 262
Abstract
Background and Aims: Triple-negative breast cancer (TNBC) is a clinically aggressive malignancy marked by rapid disease progression, limited therapeutic avenues, and high recurrence risk. Ferroptosis an iron-dependent, lipid peroxidation-driven form of regulated cell death that has emerged as a promising therapeutic vulnerability in [...] Read more.
Background and Aims: Triple-negative breast cancer (TNBC) is a clinically aggressive malignancy marked by rapid disease progression, limited therapeutic avenues, and high recurrence risk. Ferroptosis an iron-dependent, lipid peroxidation-driven form of regulated cell death that has emerged as a promising therapeutic vulnerability in oncology. This study delineates the ferroptosis-associated molecular architecture of TNBC to identify key regulatory genes with prognostic and translational significance. Methods: Transcriptomic profiles from the GSE103091 dataset (130 TNBC and 30 normal breast tissue samples) were analyzed to identify ferroptosis-related differentially expressed genes (DEGs) using GEO2R. Protein–protein interaction (PPI) networks were constructed via STRING and GeneMANIA, with functional enrichment performed through Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Reactome analyses. Prognostic relevance was evaluated using GEPIA, BC-GenExMiner, and Kaplan–Meier Plotter survival analyses. Results: Six ferroptosis drivers (MAPK1, TLR4, IFNG, ATM, ULK2, and ATF3) and five suppressors (NFS1, GCLC, TP63, CD44, and SRC) were identified alongside HMOX1, a bifunctional regulator with context-dependent pro- and anti-ferroptotic activity. Enrichment analyses revealed significant associations with oxidative stress regulation, autophagy, immune modulation, and tumor progression pathways. Elevated IFNG expression was consistently linked to improve overall, disease-free, and distant metastasis-free survival, underscoring its dual function in antitumor immunity and ferroptosis sensitization. Conclusions: Ferroptosis represents a critical axis in TNBC pathophysiology, with IFNG emerging as both a prognostic biomarker and a viable therapeutic target. These insights provide a mechanistic foundation for integrating ferroptosis-inducing agents with immunotherapeutic modalities to enhance clinical outcomes and overcome therapeutic resistance in TNBC. Full article
Show Figures

Figure 1

20 pages, 6933 KB  
Article
Physiological and Transcriptomic Mechanisms of Exogenous Salicylic Acid-Induced Resistance to Ear Rot in Maize
by Fangju Jiao, Ning Lan, Weijie Lu and Fang Wang
Agronomy 2025, 15(8), 2002; https://doi.org/10.3390/agronomy15082002 - 20 Aug 2025
Viewed by 206
Abstract
Maize ear rot is an important fungal disease in maize production, mainly caused by pathogens such as Fusarium graminearum, which seriously affects the yield and quality of maize. This study investigated the changes in the activity of defense-related enzymes in maize grains [...] Read more.
Maize ear rot is an important fungal disease in maize production, mainly caused by pathogens such as Fusarium graminearum, which seriously affects the yield and quality of maize. This study investigated the changes in the activity of defense-related enzymes in maize grains and their transcriptome response characteristics after exogenous SA treatment under Fusarium graminearum stress. The results showed that treatment with 0.01 mmol/L salicylic acid (SA) significantly inhibited the growth of Fusarium graminearum hyphae, while enhancing the activities of phenylalanine ammonia-lyase (PAL), superoxide dismutase (SOD), β-1,3-glucanase (β-1,3-GA), and polyphenol oxidase (PPO) in maize grains, and reducing the content of malondialdehyde (MDA), effectively alleviating the damage of Fusarium graminearum to the maize grain membrane system. Transcriptome analysis identified multiple key genes involved in SA-mediated disease resistance pathways, including disease-related proteins (PR10), acidic terpenoids, aspartic proteases, proteins containing BTB/POZ and MATH domains (BPM4), and PPT3 transporters. This study reveals the physiological and molecular mechanisms by which exogenous SA enhances maize resistance to ear rot, providing an important theoretical basis for further understanding the regulatory network of SA in plant disease resistance. Full article
(This article belongs to the Section Pest and Disease Management)
Show Figures

Figure 1

16 pages, 14697 KB  
Article
Comparative Study of Reprogramming Efficiency and Regulatory Mechanisms of Placental- and Fibroblast-Derived Induced Pluripotent Stem Cells (iPSCs) in Mules
by Fangyuan Liu, Jia Zhang, Lingyu Kong, Rihan Wu, Qiqi Jiang, Ying Lu and Xihe Li
Curr. Issues Mol. Biol. 2025, 47(8), 671; https://doi.org/10.3390/cimb47080671 - 19 Aug 2025
Viewed by 244
Abstract
As an interspecies hybrid inheriting genetic material from horse and donkey lineages, mules provide a unique model for studying allele-specific regulatory dynamics. Here, we isolated adult fibroblasts (AFs) and placental fibroblasts (PFs) from mule tissues and reprogrammed them into induced pluripotent stem cells [...] Read more.
As an interspecies hybrid inheriting genetic material from horse and donkey lineages, mules provide a unique model for studying allele-specific regulatory dynamics. Here, we isolated adult fibroblasts (AFs) and placental fibroblasts (PFs) from mule tissues and reprogrammed them into induced pluripotent stem cells (iPSCs). Intriguingly, placental fibroblast-derived iPSCs (mpiPSCs) exhibited reduced reprogramming efficiency compared to adult fibroblast-derived iPSCs (maiPSCs). Through allele-specific expression (ASE) analysis, we systematically dissected transcriptional biases in parental cell types and their reprogrammed counterparts, revealing conserved preferential expression of asinine alleles in core pluripotency regulators (e.g., POU5F1/OCT4, SOX2, NANOG) across both cell lineages. Strikingly, mpiPSCs displayed stronger asinine allele dominance than maiPSCs, suggesting tissue-specific parental genomic imprinting. Mechanistic exploration implicated PI3K-AKT signaling as a potential pathway mediating the reprogramming inefficiency in placental fibroblasts. By integrating transcriptomic profiling with ASE technology, this study uncovers allele selection hierarchies during somatic cell reprogramming in hybrids and establishes a framework for understanding how parental genomic conflicts shape pluripotency establishment. These findings advance interspecies iPSC research by delineating allele-specific regulatory networks and providing insights into the molecular constraints of hybrid cellular reprogramming. Full article
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
Show Figures

Figure 1

19 pages, 2126 KB  
Review
Out of the Niche: A Bird’s-Eye View of the Molecular Networks Controlling Root Stem Cells
by Giovanna Sessa, Giorgio Morelli and Massimiliano Sassi
Plants 2025, 14(16), 2574; https://doi.org/10.3390/plants14162574 - 19 Aug 2025
Viewed by 286
Abstract
The capacity of plants to generate new organs and tissues throughout their life cycle depends on the activity of the stem cells contained in meristematic tissues. Plant stem cells are organized in small, clustered populations referred to as stem cell niches. In addition [...] Read more.
The capacity of plants to generate new organs and tissues throughout their life cycle depends on the activity of the stem cells contained in meristematic tissues. Plant stem cells are organized in small, clustered populations referred to as stem cell niches. In addition to generating new undifferentiated cells, stem cell niches also provide the positional information that maintains stem cell self-renewal properties and controls the non-cell-autonomous differentiation of surrounding tissues. In this review, we aim to analyze and discuss the most recent literature describing the molecular mechanism controlling the activity and the organization of the stem cell niche in the root of the model plant Arabidopsis thaliana (L.) Heynh. In particular, we will focus on the complex molecular regulatory networks that control the balance between stemness and differentiation in distal stem cells, as well as the maintenance of the mitotically inactive state of the quiescent center. Full article
Show Figures

Figure 1

26 pages, 1637 KB  
Review
Rice Heat Stress Response: Physiological Changes and Molecular Regulatory Network Research Progress
by Weiwei Ma, Xiaole Wang, Chuanwei Gu, Zhengfei Lu, Rongrong Ma, Xiaoyan Wang, Yongfa Lu, Kefeng Cai, Zhiming Tang, Zhuoqi Zhou, Zhixin Chen, Huacheng Zhou and Xiuhao Bao
Plants 2025, 14(16), 2573; https://doi.org/10.3390/plants14162573 - 19 Aug 2025
Viewed by 381
Abstract
Global climate change has markedly increased the frequency of heat stress events in rice, severely threatening both yield and grain quality and posing a substantial challenge to global food security. Understanding the molecular mechanisms underlying heat tolerance in rice is therefore essential to [...] Read more.
Global climate change has markedly increased the frequency of heat stress events in rice, severely threatening both yield and grain quality and posing a substantial challenge to global food security. Understanding the molecular mechanisms underlying heat tolerance in rice is therefore essential to facilitate the breeding of thermotolerant cultivars. This review provides a comprehensive overview of the effects of heat stress on rice agronomic traits across various developmental stages. We summarize key physiological and metabolic alterations induced by high temperatures and discuss recent advances in unraveling the molecular regulatory networks involved in heat stress responses. By integrating findings from gene cloning, functional genomics, and advanced breeding strategies, this review outlines practical approaches for improving rice heat tolerance and identifies critical knowledge gaps that warrant further investigation. Full article
(This article belongs to the Special Issue Plant Organ Development and Stress Response)
Show Figures

Figure 1

17 pages, 8645 KB  
Article
Genome-Wide Identification of BPC Gene Family in Ten Cotton Species and Function Analysis of GhBPC4 Involved in Cold Stress Response
by Faren Zhu, Qing Xu, Jiliang Fan, Lu Meng, Rong Wang, Jiahuan Niu, Jingru Wang, Ganggang Zhang, Shandang Shi, Fei Wang and Hongbin Li
Int. J. Mol. Sci. 2025, 26(16), 7978; https://doi.org/10.3390/ijms26167978 - 18 Aug 2025
Viewed by 317
Abstract
Basic Pentacysteine (BPC) represents a class of plant-exclusive transcription factors, serving pivotal roles in orchestrating developmental processes and mediating responses to both biotic and abiotic stressors. However, the genome-wide characteristics and low-temperature response mechanism of the BPC gene family in cotton remain unclear. [...] Read more.
Basic Pentacysteine (BPC) represents a class of plant-exclusive transcription factors, serving pivotal roles in orchestrating developmental processes and mediating responses to both biotic and abiotic stressors. However, the genome-wide characteristics and low-temperature response mechanism of the BPC gene family in cotton remain unclear. Employing a genome-wide screening approach, this study characterized 60 distinct BPC transcription factor genes across ten Gossypium species. Conserved structural analysis showed that all BPC members carried a highly conserved GAGA-binding domain. Concurrently, the exploration of cis-acting elements within promoter regions demonstrated the potential involvement of these BPC transcription factors in modulating developmental processes, hormone signaling cascades, and abiotic stress adaptation mechanisms. Genomic collinearity analysis shows that segmental duplication is the core mechanism for the expansion of this gene family. Expression analysis indicated that the transcription level of GhBPC4 was significantly increased under low-temperature stress. Genetic function studies displayed that VIGS-mediated GhBPC4 silencing reduced cotton cold tolerance. This study systematically analyzed the genomic characteristics of the cotton BPC transcription factor family and functionally validated the molecular mechanism of GhBPC4-mediated cryogenic response. These findings establish an important foundation for subsequent analysis of multidimensional regulatory networks and the breeding of cold-resistant cotton germplasms. Full article
(This article belongs to the Special Issue Plant Responses to Biotic and Abiotic Stresses)
Show Figures

Figure 1

27 pages, 7464 KB  
Article
Keel Petal Fusion in Soybean: Anatomical Insights and Transcriptomic Identification of Candidate Regulators
by Shun-Geng Jia, Li-Na Guo, Xiao-Fei Wang, De-Li Wang, Dan Chen, Wei-Cai Yang and Hong-Ju Li
Agronomy 2025, 15(8), 1971; https://doi.org/10.3390/agronomy15081971 - 15 Aug 2025
Viewed by 378
Abstract
The fusion of keel petals is a defining trait of Papilionoideae flowers, contributing to floral architecture and promoting self-pollination but hindering hybridization in crops like soybean. Here, we investigated the cellular and molecular basis of keel petal fusion in Glycine max (L.) Merr. [...] Read more.
The fusion of keel petals is a defining trait of Papilionoideae flowers, contributing to floral architecture and promoting self-pollination but hindering hybridization in crops like soybean. Here, we investigated the cellular and molecular basis of keel petal fusion in Glycine max (L.) Merr. cv. Jack using anatomical and transcriptomic approaches. Microscopy revealed that keel petal fusion involves marginal cell reshaping and postgenital adhesion with defective cuticle continuity, consistent with fusion modes in other Papilionoideae species. Comparative transcriptome analysis between fused and unfused petal stages identified 23,328 differentially expressed genes, with lipid and cuticle metabolism genes showing coordinated downregulation during fusion. A set of 384 keel-enriched genes was identified, among which a previously uncharacterized gene, KPEG1 (Keel Preferential Expression Gene 1), was preferentially expressed in fused keel petals. Protein interaction network analysis revealed that KPEG1 co-expresses with epigenetics-related genes, suggesting a regulatory role in fusion through chromatin-mediated mechanisms. These findings uncover the cellular dynamics and transcriptional reprogramming underlying keel petal fusion in soybean and provide a candidate regulator for further functional studies. Full article
(This article belongs to the Section Crop Breeding and Genetics)
Show Figures

Figure 1

27 pages, 1610 KB  
Review
Responding to Stress: Diversity and Resilience of Grapevine in a Changing Climate Under the Perspective of Omics Research
by Tomas Konecny, Armine Asatryan and Hans Binder
Int. J. Mol. Sci. 2025, 26(16), 7877; https://doi.org/10.3390/ijms26167877 - 15 Aug 2025
Viewed by 343
Abstract
Climate change, with its altered precipitation and extreme temperatures, significantly threatens global viticulture by affecting grapevine growth, yield, and fruit quality. Understanding the molecular underpinnings of grapevine resilience is crucial for developing adaptive strategies. Our aim is to explore the application of multi-omics [...] Read more.
Climate change, with its altered precipitation and extreme temperatures, significantly threatens global viticulture by affecting grapevine growth, yield, and fruit quality. Understanding the molecular underpinnings of grapevine resilience is crucial for developing adaptive strategies. Our aim is to explore the application of multi-omics approaches (integrating genomics, transcriptomics, proteomics, metabolomics, and epigenetics) to investigate grapevine stress responses. Advances in these omics technologies have been pivotal in identifying key stress-response genes, metabolic pathways, and regulatory networks, particularly those contributing to grapevine tolerance to water deficiency, (such as drought and decreased precipitation), extreme temperatures, UV radiation, and salinity. Furthermore, the rich genetic reservoir within grapevines serves as a vital resource for enhancing stress tolerance. While adaptive strategies such as rootstock selection and precision irrigation are important, future research must prioritize integrated multi-omics studies, including those on regional climate adaptation and long-term breeding programs. Such efforts are essential to exploit genetic diversity and ensure the sustainability of viticulture in the evolving climate. In summary, this review demonstrates how utilizing the inherent genetic variability of grapevines and employing multi-omics approaches are critical for understanding and enhancing their resilience to the challenges posed by climate change. Full article
Show Figures

Figure 1

27 pages, 1463 KB  
Review
Antioxidant Defense Systems in Plants: Mechanisms, Regulation, and Biotechnological Strategies for Enhanced Oxidative Stress Tolerance
by Faustina Barbara Cannea and Alessandra Padiglia
Life 2025, 15(8), 1293; https://doi.org/10.3390/life15081293 - 14 Aug 2025
Viewed by 415
Abstract
Plants must contend with oxidative stress, a paradoxical phenomenon in which reactive oxygen species (ROS) can cause cellular damage while also serving as key signaling molecules. Environmental stressors, such as drought, salinity, and temperature extremes, promote ROS accumulation, affecting plant growth and productivity. [...] Read more.
Plants must contend with oxidative stress, a paradoxical phenomenon in which reactive oxygen species (ROS) can cause cellular damage while also serving as key signaling molecules. Environmental stressors, such as drought, salinity, and temperature extremes, promote ROS accumulation, affecting plant growth and productivity. To maintain redox homeostasis, plants rely on antioxidant systems comprising enzymatic defenses, such as superoxide dismutase, catalase, and ascorbate peroxidase, and non-enzymatic molecules, including ascorbate, glutathione, flavonoids, and emerging compounds such as proline and nano-silicon. This review provides an integrated overview of antioxidant responses and their modulation through recent biotechnological advances, emphasizing the role of emerging technologies in advancing our understanding of redox regulation and translating molecular insights into stress-resilient phenotypes. Omics approaches have enabled the identification of redox-related genes, while genome editing tools, particularly those based on clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) proteins, offer opportunities for precise functional manipulation. Artificial intelligence and systems biology are accelerating the discovery of regulatory modules and enabling predictive modeling of antioxidant networks. We also highlight the contribution of synthetic biology to the development of stress-responsive gene circuits and address current regulatory and ethical considerations. Overall, this review aims to provide a comprehensive perspective on molecular, biochemical, and technological strategies to enhance oxidative stress tolerance in plants, thereby contributing to sustainable agriculture and food security in a changing climate. Full article
(This article belongs to the Special Issue Physiological Responses of Plants Under Abiotic Stresses)
Show Figures

Figure 1

Back to TopTop