Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = monolayer-protected cluster

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 19092 KB  
Article
Attachment and Detachment of Oil Droplets on Solid Surfaces: Insights from Molecular Simulations
by Małgorzata Borówko and Tomasz Staszewski
Int. J. Mol. Sci. 2024, 25(21), 11627; https://doi.org/10.3390/ijms252111627 - 29 Oct 2024
Cited by 2 | Viewed by 1152
Abstract
The behavior of oil droplets at solid surfaces is a key aspect of oil production and environmental protection. In this paper, the mechanisms of attachment and detachment of oil aggregates are studied via molecular dynamics simulations. The influence of oil–surface interactions on the [...] Read more.
The behavior of oil droplets at solid surfaces is a key aspect of oil production and environmental protection. In this paper, the mechanisms of attachment and detachment of oil aggregates are studied via molecular dynamics simulations. The influence of oil–surface interactions on the shape and structure of adsorbed clusters is discussed. Using selected shape metrics, we prove quantitatively that the shape of oil aggregates changes from almost spherical droplets, through multilayer structures, to monolayer films. The oil detachment from solid surfaces plays a major role in enhanced oil recovery. Here, we investigated oil droplet detachment from the solid surface immersed in Janus nanoparticle suspensions. The nanoparticle is modeled as a dimer built of segments that exhibit different affinities to oil and solvent molecules. Our results indicated that the adsorption of Janus dimers on the surface of oil droplets played an essential role in the oil removal processes. Stronger adsorption causes faster detachment of the oil droplet. Based on our findings, suspensions of Janus dimers can be considered to be high-performance agents in removing oil droplets from solid surfaces. Full article
(This article belongs to the Section Physical Chemistry and Chemical Physics)
Show Figures

Figure 1

28 pages, 1538 KB  
Article
A Novel Bifidobacterium longum Subsp. longum T1 Strain from Cow’s Milk: Homeostatic and Antibacterial Activity against ESBL-Producing Escherichia coli
by Andrey V. Machulin, Vyacheslav M. Abramov, Igor V. Kosarev, Evgenia I. Deryusheva, Tatiana V. Priputnevich, Alexander N. Panin, Ashot M. Manoyan, Irina O. Chikileva, Tatiana N. Abashina, Dmitriy A. Blumenkrants, Olga E. Ivanova, Tigran T. Papazyan, Ilia N. Nikonov, Nataliya E. Suzina, Vyacheslav G. Melnikov, Valentin S. Khlebnikov, Vadim K. Sakulin, Vladimir A. Samoilenko, Alexey B. Gordeev, Gennady T. Sukhikh, Vladimir N. Uversky and Andrey V. Karlyshevadd Show full author list remove Hide full author list
Antibiotics 2024, 13(10), 924; https://doi.org/10.3390/antibiotics13100924 - 27 Sep 2024
Viewed by 2749
Abstract
Background/Objectives: The global emergence of antibiotic-resistant zooanthroponotic Escherichia coli strains, producing extended-spectrum beta-lactamases (ESBL-E) and persisting in the intestines of farm animals, has now led to the development of a pandemic of extra-intestinal infectious diseases in humans. The search for innovative probiotic microorganisms [...] Read more.
Background/Objectives: The global emergence of antibiotic-resistant zooanthroponotic Escherichia coli strains, producing extended-spectrum beta-lactamases (ESBL-E) and persisting in the intestines of farm animals, has now led to the development of a pandemic of extra-intestinal infectious diseases in humans. The search for innovative probiotic microorganisms that eliminate ESBL-E from the intestines of humans and animals is relevant. Previously, we received three isolates of bifidobacteria: from milk of a calved cow (BLLT1), feces of a newborn calf (BLLT2) and feces of a three-year-old child who received fresh milk from this calved cow (BLLT3). Our goal was to evaluate the genetic identity of BLLT1, BLLT2, BLLT3 isolates using genomic DNA fingerprinting (GDF), to study the tolerance, adhesion, homeostatic and antibacterial activity of BLLT1 against ESBL-E. Methods: We used a complex of microbiological, molecular biological, and immunological methods, including next generation sequencing (NGS). Results: GDF showed that DNA fragments of BLLT2 and BLLT3 isolates were identical in number and size to DNA fragments of BLLT1. These data show for the first time the possibility of natural horizontal transmission of BLLT1 through with the milk of a calved cow into the intestines of a calf and the intestines of a child. BLLT1 was resistant to gastric and intestinal stresses and exhibited high adhesive activity to calf, pig, chicken, and human enterocytes. This indicates the unique ability of BLLT1 to inhabit the intestines of animals and humans. We are the first to show that BLLT1 has antibacterial activity against ESBL-E strains that persist in humans and animals. BLLT1 produced 145 ± 8 mM of acetic acid, which reduced the pH of the nutrient medium from 6.8 to 5.2. This had an antibacterial effect on ESBL-E. The genome of BLLT1 contains ABC-type carbohydrate transporter gene clusters responsible for the synthesis of acetic acid with its antibacterial activity against ESBL-E. BLLT1 inhibited TLR4 mRNA expression induced by ESBL-E in HT-29 enterocytes, and protected the enterocyte monolayers used in this study as a bio-model of the intestinal barrier. BLLT1 increased intestinal alkaline phosphatase (IAP) as one of the main molecular factors providing intestinal homeostasis. Conclusions: BLLT1 shows promise for the creation of innovative functional nutritional products for humans and feed additives for farm animals that will reduce the spread of ESBL-E strains in the food chain. Full article
Show Figures

Figure 1

22 pages, 5266 KB  
Article
Functionalized Gold Nanoparticles and Halogen Bonding Interactions Involving Fentanyl and Fentanyl Derivatives
by Molly M. Sherard, Jamie S. Kaplan, Jeffrey H. Simpson, Kevin W. Kittredge and Michael C. Leopold
Nanomaterials 2024, 14(11), 917; https://doi.org/10.3390/nano14110917 - 23 May 2024
Cited by 5 | Viewed by 2565
Abstract
Fentanyl (FTN) and synthetic analogs of FTN continue to ravage populations across the globe, including in the United States where opioids are increasingly being used and abused and are causing a staggering and growing number of overdose deaths each year. This growing pandemic [...] Read more.
Fentanyl (FTN) and synthetic analogs of FTN continue to ravage populations across the globe, including in the United States where opioids are increasingly being used and abused and are causing a staggering and growing number of overdose deaths each year. This growing pandemic is worsened by the ease with which FTN can be derivatized into numerous derivatives. Understanding the chemical properties/behaviors of the FTN class of compounds is critical for developing effective chemical detection schemes using nanoparticles (NPs) to optimize important chemical interactions. Halogen bonding (XB) is an intermolecular interaction between a polarized halogen atom on a molecule and e-rich sites on another molecule, the latter of which is present at two or more sites on most fentanyl-type structures. Density functional theory (DFT) is used to identify these XB acceptor sites on different FTN derivatives. The high toxicity of these compounds necessitated a “fragmentation” strategy where smaller, non-toxic molecules resembling parts of the opioids acted as mimics of XB acceptor sites present on intact FTN and its derivatives. DFT of the fragments’ interactions informed solution measurements of XB using 19F NMR titrations as well as electrochemical measurements of XB at self-assembled monolayer (SAM)-modified electrodes featuring XB donor ligands. Gold NPs, known as monolayer-protected clusters (MPCs), were also functionalized with strong XB donor ligands and assembled into films, and their interactions with FTN “fragments” were studied using voltammetry. Ultimately, spectroscopy and TEM analysis were combined to study whole-molecule FTN interactions with the functionalized MPCs in solution. The results suggested that the strongest XB interaction site on FTN, while common to most of the drug’s derivatives, is not strong enough to induce NP-aggregation detection but may be better exploited in sensing schemes involving films. Full article
(This article belongs to the Special Issue Synthesis and Applications of Gold Nanoparticles: 2nd Edition)
Show Figures

Figure 1

17 pages, 2803 KB  
Article
Mechanistic Elucidation of Nanomaterial-Enhanced First-Generation Biosensors Using Probe Voltammetry of an Enzymatic Reaction
by Ann H. Wemple, Jamie S. Kaplan and Michael C. Leopold
Biosensors 2023, 13(8), 798; https://doi.org/10.3390/bios13080798 - 9 Aug 2023
Cited by 4 | Viewed by 1837
Abstract
The incorporation of nanomaterials (NMs) into biosensing schemes is a well-established strategy for gaining signal enhancement. With electrochemical biosensors, the enhanced performance achieved from using NMs is often attributed to the specific physical properties of the chosen nanocomponents, such as their high electronic [...] Read more.
The incorporation of nanomaterials (NMs) into biosensing schemes is a well-established strategy for gaining signal enhancement. With electrochemical biosensors, the enhanced performance achieved from using NMs is often attributed to the specific physical properties of the chosen nanocomponents, such as their high electronic conductivity, size-dependent functionality, and/or higher effective surface-to-volume ratios. First generation amperometric biosensing schemes, typically utilizing NMs in conjunction with immobilized enzyme and semi-permeable membranes, can possess complex sensing mechanisms that are difficult to study and challenging to understand beyond the observable signal enhancement. This study shows the use of an enzymatic reaction between xanthine (XAN) and xanthine oxidase (XOx), involving multiple electroactive species, as an electrochemical redox probe tool for ascertaining mechanistic information at and within the modified electrodes used as biosensors. Redox probing using components of this enzymatic reaction are demonstrated on two oft-employed biosensing approaches and commonly used NMs for modified electrodes: gold nanoparticle doped films and carbon nanotube interfaces. In both situations, the XAN metabolism voltammetry allows for a greater understanding of the functionality of the semipermeable membranes, the role of the NMs, and how the interplay between the two components creates signal enhancement. Full article
(This article belongs to the Special Issue Functional Nanomaterials for Biosensing)
Show Figures

Figure 1

24 pages, 4293 KB  
Article
Nanomaterial-Doped Xerogels for Biosensing Measurements of Xanthine in Clinical and Industrial Applications
by Quang Minh Dang, Ann H. Wemple and Michael C. Leopold
Gels 2023, 9(6), 437; https://doi.org/10.3390/gels9060437 - 25 May 2023
Cited by 6 | Viewed by 2418
Abstract
First-generation amperometric xanthine (XAN) biosensors, assembled via layer-by-layer methodology and featuring xerogels doped with gold nanoparticles (Au-NPs), were the focus of this study and involved both fundamental exploration of the materials as well as demonstrated usage of the biosensor in both clinical (disease [...] Read more.
First-generation amperometric xanthine (XAN) biosensors, assembled via layer-by-layer methodology and featuring xerogels doped with gold nanoparticles (Au-NPs), were the focus of this study and involved both fundamental exploration of the materials as well as demonstrated usage of the biosensor in both clinical (disease diagnosis) and industrial (meat freshness) applications. Voltammetry and amperometry were used to characterize and optimize the functional layers of the biosensor design including a xerogel with and without embedded xanthine oxidase enzyme (XOx) and an outer, semi-permeable blended polyurethane (PU) layer. Specifically, the porosity/hydrophobicity of xerogels formed from silane precursors and different compositions of PU were examined for their impact on the XAN biosensing mechanism. Doping the xerogel layer with different alkanethiol protected Au-NPs was demonstrated as an effective means for enhancing biosensor performance including improved sensitivity, linear range, and response time, as well as stabilizing XAN sensitivity and discrimination against common interferent species (selectivity) over time—all attributes matching or exceeding most other reported XAN sensors. Part of the study focuses on deconvoluting the amperometric signal generated by the biosensor and determining the contribution from all of the possible electroactive species involved in natural purine metabolism (e.g., uric acid, hypoxanthine) as an important part of designing XAN sensors (schemes amenable to miniaturization, portability, or low production cost). Effective XAN sensors remain relevant as potential tools for both early diagnosis of diseases as well as for industrial food monitoring. Full article
(This article belongs to the Special Issue Synthetic, Natural and Hybrid Gels Intended for Various Applications)
Show Figures

Graphical abstract

33 pages, 22093 KB  
Article
Hypoxia-Driven Changes in a Human Intestinal Organoid Model and the Protective Effects of Hydrolyzed Whey
by Ilse H. de Lange, Charlotte van Gorp, Kimberly R. I. Massy, Lilian Kessels, Nico Kloosterboer, Ann Bjørnshave, Marie Stampe Ostenfeld, Jan G. M. C. Damoiseaux, Joep P. M. Derikx, Wim G. van Gemert and Tim G. A. M. Wolfs
Nutrients 2023, 15(2), 393; https://doi.org/10.3390/nu15020393 - 12 Jan 2023
Cited by 3 | Viewed by 4064
Abstract
Many whey proteins, peptides and protein-derived amino acids have been suggested to improve gut health through their anti-oxidant, anti-microbial, barrier-protective and immune-modulating effects. Interestingly, although the degree of hydrolysis influences peptide composition and, thereby, biological function, this important aspect is often overlooked. In [...] Read more.
Many whey proteins, peptides and protein-derived amino acids have been suggested to improve gut health through their anti-oxidant, anti-microbial, barrier-protective and immune-modulating effects. Interestingly, although the degree of hydrolysis influences peptide composition and, thereby, biological function, this important aspect is often overlooked. In the current study, we aimed to investigate the effects of whey protein fractions with different degrees of enzymatic hydrolysis on the intestinal epithelium in health and disease with a novel 2D human intestinal organoid (HIO) monolayer model. In addition, we aimed to assess the anti-microbial activity and immune effects of the whey protein fractions. Human intestinal organoids were cultured from adult small intestines, and a model enabling apical administration of nutritional components during hypoxia-induced intestinal inflammation and normoxia (control) in crypt-like and villus-like HIO was established. Subsequently, the potential beneficial effects of whey protein isolate (WPI) and two whey protein hydrolysates with a 27.7% degree of hydrolysis (DH28) and a 50.9% degree of hydrolysis (DH51) were assessed. In addition, possible immune modulatory effects on human peripheral immune cells and anti-microbial activity on four microbial strains of the whey protein fractions were investigated. Exposure to DH28 prevented paracellular barrier loss of crypt-like HIO following hypoxia-induced intestinal inflammation with a concomitant decrease in hypoxia inducible factor 1 alpha (HIF1α) mRNA expression. WPI increased Treg numbers and Treg expression of cluster of differentiation 25 (CD25) and CD69 and reduced CD4+ T cell proliferation, whereas no anti-microbial effects were observed. The observed biological effects were differentially mediated by diverse whey protein fractions, indicating that (degree of) hydrolysis influences their biological effects. Moreover, these new insights may provide opportunities to improve immune tolerance and promote intestinal health. Full article
Show Figures

Figure 1

12 pages, 1605 KB  
Article
Facile Attachment of TAT Peptide on Gold Monolayer Protected Clusters: Synthesis and Characterization
by Ndabenhle M. Sosibo, Frankline K. Keter, Amanda Skepu, Robert T. Tshikhudo and Neerish Revaprasadu
Nanomaterials 2015, 5(3), 1211-1222; https://doi.org/10.3390/nano5031211 - 21 Jul 2015
Cited by 15 | Viewed by 6616
Abstract
High affinity thiolate-based polymeric capping ligands are known to impart stability onto nanosized gold nanoparticles. Due to the stable gold-sulfur bond, the ligand forms a protective layer around the gold core and subsequently controls the physicochemical properties of the resultant nanogold mononuclear protected [...] Read more.
High affinity thiolate-based polymeric capping ligands are known to impart stability onto nanosized gold nanoparticles. Due to the stable gold-sulfur bond, the ligand forms a protective layer around the gold core and subsequently controls the physicochemical properties of the resultant nanogold mononuclear protected clusters (AuMPCs). The choice of ligands to use as surfactants for AuMPCs largely depends on the desired degree of hydrophilicity and biocompatibility of the MPCs, normally dictated by the intended application. Subsequent surface modification of AuMPCs allows further conjugation of additional biomolecules yielding bilayer or multilayered clusters suitable for bioanalytical applications ranging from targeted drug delivery to diagnostics. In this study, we discuss our recent laboratory findings on a simple route for the introduction of Trans-Activator of Transcription (TAT) peptide onto the surface of biotin-derivatised gold MPCs via the biotin-strepavidin interaction. By changing the surface loading of biotin, controlled amounts of TAT could be attached. This bioconjugate system is very attractive as a carrier in intercellular delivery of various delivery cargoes such as antibodies, proteins and oligonucleotides. Full article
Show Figures

Figure 1

Back to TopTop