Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,031)

Search Parameters:
Keywords = monsoon

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 8889 KB  
Article
Results of Ground-Based and Space-Borne Observation of Cloud Occurrence Frequency and Cloud Vertical Structure at LHAASO over the Eastern Tibetan Plateau
by Nan Bai, Fengrong Zhu, Xingbing Zhao, Dui Wang and Ciren Suolang
Atmosphere 2026, 17(2), 174; https://doi.org/10.3390/atmos17020174 (registering DOI) - 8 Feb 2026
Abstract
Clouds are essential for regulating the hydrological cycle and Earth’s radiation budget, and their fluctuations over the Tibetan Plateau (TP) have a significant effect on both regional climate dynamics and global atmospheric circulation. Using ground-based Vaisala CL51 ceilometer data and Fengyun-4A (FY-4A) satellite [...] Read more.
Clouds are essential for regulating the hydrological cycle and Earth’s radiation budget, and their fluctuations over the Tibetan Plateau (TP) have a significant effect on both regional climate dynamics and global atmospheric circulation. Using ground-based Vaisala CL51 ceilometer data and Fengyun-4A (FY-4A) satellite observations from October 2020 to June 2022, this study examines cloud occurrence frequency (COF), cloud vertical structure (including cloud base height (CBH), cloud top height (CTH), and cloud layer stratification), and related macroscopic properties over the Large High Altitude Air Shower Observatory (LHAASO). CL51 and FY-4A had cloud occurrence rates of 43.7% and 37.7%, respectively, over the observation period, with a strong correlation coefficient of 0.82. Given the impact of clouds on Cherenkov light observations by the LHAASO Wide Field of view Cherenkov Telescope Array (WFCTA), we specifically evaluated the cloud occurrence during the operational periods of the LHAASO-WFCTA, finding rates of 34.2% (CL51) and 28.0% (FY-4A), with the lowest rates occurring in the early morning. Due to monsoonal moisture inflow and dry northeasterly winds, seasonal COF changes showed clear peaks in summer (78.8%) and minima in winter (24.8%). Seasonal differences existed in the diurnal COF patterns, with nocturnal prominence in summer/autumn and daytime dominance in spring/winter. The CBH showed daily oscillations, peaking at 18:00 (local solar time) and troughing at 08:00 (local solar time), with seasonal CBH minima in summer/autumn and maxima in spring/winter. Low- and mid-level clouds predominated, with clear diurnal cycles: low- and mid-level clouds rose from morning until midday, while high-level clouds appeared after dusk. Vertical cloud structures were predominantly single-layered (81%), with multi-layered complexity peaking in the summer due to convective activity. The CTH distributions showed unimodal patterns in the fall and winter (1.5–3 km), while in the summer, they showed multimodal extents (up to 12 km). These results improve LHAASO-WFCTA observational scheduling, enhance climate model parameterizations, and deepen our understanding of the dynamics of the TP cloud. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
23 pages, 15573 KB  
Article
Exploring Lower Cretaceous Karst Bauxite from South-Central Pyrenean Unit (NE Spain): Genesis and Ceramic Potential
by Alfonso Yuste, Blanca Bauluz and Elisa Laita
Minerals 2026, 16(2), 178; https://doi.org/10.3390/min16020178 - 6 Feb 2026
Abstract
This study investigates a karst bauxite deposit from NE Spain with a dual objective incorporating the novel aspect of directly linking genetic processes to industrial ceramic performance. First, the bauxite is mineralogically and texturally characterized using X-ray diffraction and field emission scanning electron [...] Read more.
This study investigates a karst bauxite deposit from NE Spain with a dual objective incorporating the novel aspect of directly linking genetic processes to industrial ceramic performance. First, the bauxite is mineralogically and texturally characterized using X-ray diffraction and field emission scanning electron microscopy. Second, the mineralogical and textural transformations of the bauxite during firing at 1000, 1200 and 1300 °C are analyzed, together with their effects on the physical properties of the fired products. The Lower Cretaceous bauxite is autochthonous, shows a pisolithic structure, and formed in situ under tropical monsoon conditions through intense chemical weathering involving dissolution–crystallization processes. For ceramic testing, the bauxite was mixed with illitic–kaolinitic clays in a 90/10 proportion. During firing, kaolinite and illite destabilize and transform into mullite, initially by solid-state reactions at 1000 °C and subsequently by crystallization from a vitreous phase at higher temperatures, producing larger crystals and composition closer to the empirical mullite formula. The formation of vitreous phase and mullite leads to reduced porosity and increased density and linear shrinkage, particularly between 1000 and 1200 °C. Specimens fired at 1300 °C show higher mechanical strength, related to higher mullite content and a larger size of its crystals. The results demonstrate the potential interest of these bauxites for ceramic manufacturing. Full article
21 pages, 7643 KB  
Article
Hydrological and Pollutant Export Responses to Rainfall Intensity in Paddy Fields
by Zhenbo Chen, Zhihong Liu, Jiale Guo, Jiaqi Li and Yufeng Wu
Sustainability 2026, 18(3), 1589; https://doi.org/10.3390/su18031589 - 4 Feb 2026
Viewed by 97
Abstract
Agricultural non-point-source pollution poses a significant threat to water quality and sustainable water resource management, a challenge intensified by climate change-induced increases in rainfall intensity. In this study, we quantified how rainfall intensity controls runoff and the export of key pollutants (COD, TN, [...] Read more.
Agricultural non-point-source pollution poses a significant threat to water quality and sustainable water resource management, a challenge intensified by climate change-induced increases in rainfall intensity. In this study, we quantified how rainfall intensity controls runoff and the export of key pollutants (COD, TN, and TP) from paddy fields. Controlled simulation experiments with two rainfall intensities (40 mm/h, S40; 120 mm/h, S120) were conducted in the Yangtze River Basin. The results showed that high-intensity rainfall (S120) nearly doubled the surface runoff volume and coefficient compared to S40. A notable finding was the observed asymmetric response between pollutant concentration and export load. Despite a marked dilution effect under high-intensity rainfall that sometimes led to lower concentrations of COD and TP, the total export loads of all pollutants increased sharply due to the overwhelming increase in runoff volume. Specifically, COD export rose from 2.21 kg/ha (S40) to 4.90 kg/ha (S120), and TN export increased from 211.71 to 585.16 g/ha. In May, TP export under S120 was 2.5 times greater than that under S40. These results provide critical evidence and a mechanistic basis for developing climate-adaptive, sustainable nutrient management strategies aimed at mitigating water pollution and enhancing the environmental sustainability of rice production systems in the Yangtze River Basin and similar monsoon-affected regions. Full article
24 pages, 4044 KB  
Article
Climate-Driven Load Variations and Fault Risks in Humid-Subtropical Mountainous Grids: A Hybrid Forecasting and Resilience Framework
by Ruiyue Xie, Jiajun Lin, Yuesheng Zheng, Chuangli Xie, Haobin Lin, Xingyuan Guo, Zhuangyi Chen, Boye Qiu, Yudong Mao, Xiwen Feng and Zhaosong Fang
Energies 2026, 19(3), 778; https://doi.org/10.3390/en19030778 - 2 Feb 2026
Viewed by 93
Abstract
Against the backdrop of global climate change, remote subtropical mountainous power grids face severe operational challenges due to their fragile infrastructure and complex climatic conditions. However, existing research has insufficiently addressed load forecasting in data-sparse regions, particularly lacking systematic analysis of the “meteorology–load–failure” [...] Read more.
Against the backdrop of global climate change, remote subtropical mountainous power grids face severe operational challenges due to their fragile infrastructure and complex climatic conditions. However, existing research has insufficiently addressed load forecasting in data-sparse regions, particularly lacking systematic analysis of the “meteorology–load–failure” coupling mechanism. To address this gap, this study focused on 10 kV distribution lines in a typical subtropical monsoon region of southern China. Based on hourly load and meteorological data from 2016 to 2025, we propose a two-stage hybrid model combining “Random Forest (RF) feature selection + Long Short-Term Memory (LSTM) time series forecasting”. Through deep feature engineering, composite, lagged, and interactive features were constructed. Using the RF algorithm, we quantitatively identified the core drivers of load variation across different time scales: at the hourly scale, variations are dominated by historical inertia (with weights of 0.5915 and 0.3757 for 1-h and 24-h lagged loads, respectively); at the daily scale, the logic shifts to meteorological triggering and cumulative effects, where the composite feature load_lag1_hi_product emerged as the most critical driver (weight of 0.8044). Experimental results demonstrate that the hybrid model significantly improved forecasting accuracy compared to the full-feature LSTM benchmark: on a daily scale, RMSE decreased by 13.29% and MAE by 16.67%, with R2 reaching 0.8654; on an hourly scale, R2 reached 0.9687. Furthermore, correlation analysis with failure data revealed that most grid faults occurred during intervals of extremely low load variation (0–5%), suggesting that “chronic stress” from environmental exposure in hot and humid conditions is the primary cause, with lightning identified as the leading external threat (26.90%). The interpretable forecasting framework proposed in this study transcends regional limitations. It provides a strategic “low-cost, high-resilience” prototype applicable to power systems in humid-subtropical zones worldwide, particularly for developing regions facing the dual challenges of data sparsity and climate vulnerability. Full article
Show Figures

Figure 1

36 pages, 11192 KB  
Article
Orbital Forcing of Paleohydrology in a Marginal Sea Lacustrine Basin: Mechanisms and Sweet-Spot Implications for Eocene Shale Oil, Bohai Bay Basin
by Qinyu Cui, Yangbo Lu, Yiquan Ma, Mianmo Meng, Xinbei Liu, Kong Deng, Yongchao Lu and Wenqi Sun
J. Mar. Sci. Eng. 2026, 14(3), 273; https://doi.org/10.3390/jmse14030273 - 28 Jan 2026
Viewed by 215
Abstract
Investigating how climatic and hydrological conditions in ecological resource-enriched zones of marginal seas respond to external forcing, particularly during past greenhouse climates, holds considerable significance for understanding current environmental and resource challenges driven by global warming. In marginal seas, climatic hydrological states, including [...] Read more.
Investigating how climatic and hydrological conditions in ecological resource-enriched zones of marginal seas respond to external forcing, particularly during past greenhouse climates, holds considerable significance for understanding current environmental and resource challenges driven by global warming. In marginal seas, climatic hydrological states, including salinity, redox conditions, and productivity, are key environmental parameters controlling organic matter production, preservation, and ultimately the formation of high-quality shale. Herein, high-resolution cyclostratigraphic and multi-proxy geochemical analyses were conducted on a continuous core from the upper part of Member 4 of the Eocene Shahejie Formation (Es4cu) in Well NY1, Dongying Sag, Bohai Bay Basin. Based on these data, a refined astronomical timescale was accordingly established for the studied interval. By integrating sedimentological observations with multiple proxy indicators, including elemental geochemistry (e.g., Sr/Ba and Ca/Al ratios), organic geochemistry, and mineralogical data, the evolution of climate and paleo-water mass conditions during the study period was reconstructed. Spectral analyses revealed prominent astronomical periodicities in paleosalinity, productivity, and redox proxies, indicating that sedimentation was modulated by cyclic changes in eccentricity, obliquity, and precession. It was hereby proposed that orbital forcing governed periodic shifts in basin hydrology by regulating the intensity and seasonality of the East Asian monsoon. Intervals of enhanced summer monsoon associated with high eccentricity and obliquity were typically accompanied by increased sediment supply and intensified chemical weathering. Increased precipitation and runoff raised the lake level while promoting stronger connectivity with the ocean. In contrast, during weak seasonal monsoon intervals linked to eccentricity minima, basin conditions shifted from humid to arid, characterized by reduced precipitation, lower lake level, decreased sediment supply, and a concomitant decline in proxies for water salinity. The present results demonstrated orbital forcing as a primary external driver of cyclical changes in conditions favorable for resource formation in the Eocene lacustrine strata of the Bohai Bay Basin. Overall, this study yields critical paleoclimate evidence and a mechanistic framework for predicting the spatial-temporal distribution of high-quality shale under comparable astronomical-climate boundary conditions. Full article
(This article belongs to the Special Issue Advances in Offshore Oil and Gas Exploration and Development)
Show Figures

Figure 1

19 pages, 8432 KB  
Article
Analysis of Wave Height and Period in the Yangtze River Delta and Adjacent Waters Based on a 31-Year High-Resolution Wave Hindcast
by Wenyun Guo, Jiepeng Gu, Tao Qin, Yu Zhang, Yi Zhou, Xinyi Shen and Cheng Li
J. Mar. Sci. Eng. 2026, 14(3), 268; https://doi.org/10.3390/jmse14030268 - 28 Jan 2026
Viewed by 109
Abstract
This study presents a 31-year (1993–2023) wave hindcast using a high-resolution two-domain nested numerical wave model implemented with Simulating Waves Nearshore (SWAN). The spatiotemporal variability and long-term trends of two wave parameters (significant wave height Hs and spectral peak period Tpeak [...] Read more.
This study presents a 31-year (1993–2023) wave hindcast using a high-resolution two-domain nested numerical wave model implemented with Simulating Waves Nearshore (SWAN). The spatiotemporal variability and long-term trends of two wave parameters (significant wave height Hs and spectral peak period Tpeak) are systematically analyzed for the Yangtze River Delta (YRD) and its adjacent waters. Validation against in situ buoy measurements confirms that the SWAN model effectively reproduces the regional wave conditions. Results indicate that mean wave conditions are primarily modulated by the Asian monsoon, whereas extreme wave events are predominantly influenced by typhoons. This leads to pronounced differences in spatial patterns and seasonal variability between mean and maximum Hs values. In addition, the regional interannual variations of Hs and Tpeak exhibit different degrees of correlation with the Niño 3.4 index, the Pacific Decadal Oscillation (PDO) index and the Western Pacific Subtropical High Ridge Position (WPSH) Index. Overall, both Hs and Tpeak exhibit positive trends over the study period, and both positive trends shift remarkably between seasons. The positive trends in mean wave conditions are mild during spring and summer but more pronounced in autumn and winter. Statistically significant increases in seasonal mean Hs are identified in parts of the East China Sea (0.35 cm a−1 in autumn) and the southern Yellow Sea (0.27 cm a−1 in winter). Notably, not all trends are positive: the 90th percentiles of both Hs and Tpeak during summer exhibit widespread declining trends, although they are not statistically significant. Full article
(This article belongs to the Section Physical Oceanography)
Show Figures

Figure 1

19 pages, 6012 KB  
Article
Climate Oscillations, Aerosol Variability, and Land Use Change: Assessment of Drivers of Flood Risk in Monsoon-Dependent Kerala
by Sowmiya Velmurugan, Brema Jayanarayanan, Srinithisathian Sathian and Komali Kantamaneni
Earth 2026, 7(1), 15; https://doi.org/10.3390/earth7010015 - 25 Jan 2026
Viewed by 291
Abstract
Aerosol microphysical and optical properties play a crucial role in cloud microphysics, precipitation physics, and flood formation over areas characterized by complex monsoon regimes. This research presents a multi-source data integration approach to analyzing the spatio-temporal interaction between precipitation, aerosols, and flooding in [...] Read more.
Aerosol microphysical and optical properties play a crucial role in cloud microphysics, precipitation physics, and flood formation over areas characterized by complex monsoon regimes. This research presents a multi-source data integration approach to analyzing the spatio-temporal interaction between precipitation, aerosols, and flooding in the state of Kerala, incorporating an air mass trajectory analysis to examine its potential contribution to flooding. The results show that the Aerosol Optical Depth (AOD) values were high in the coastal districts (>0.8) in the La Niña year (2021) but low in the El Niño year (2015). On the precipitation side, 2018 and 2021 were both years with a high degree of anomalies, resulting in heavy rainfall that led to widespread flooding in the Thrissur district, among others. The trajectory analysis revealed that the Indian Ocean controls the precipitation during the southwest monsoon and the pre-monsoon. The post-monsoon precipitation is mainly sourced from the Arabian Peninsula and Arabian Sea, transferring marine aerosols along with desert aerosols. The overall study shows that the variability in aerosols and precipitation is more subject to change by the meteorological dynamics, as well as influenced by the regional changes in land use and land cover, causing fluxes in the land–atmosphere interactions. In conclusion, the present study highlights the possible interactive functions of atmospheric dynamics and anthropogenic land use modifications in generating a flood hazard. It provides essential information for land management policies and disaster risk reduction. Full article
Show Figures

Figure 1

23 pages, 10123 KB  
Article
High-Resolution Satellite-Driven Estimation of Photosynthetic Carbon Sequestration in the Sundarbans Mangrove Forest, Bangladesh
by Nur Hussain, Md Adnan Rahman, Md Rezaul Karim, Parvez Rana, Md Nazrul Islam and Anselme Muzirafuti
Remote Sens. 2026, 18(3), 401; https://doi.org/10.3390/rs18030401 - 25 Jan 2026
Viewed by 760
Abstract
Mangrove forests provide essential climate regulation and coastal protection, yet fine-scale quantification of carbon dynamics remains limited in the Sundarbans due to spatial heterogeneity and tidal influences. This study estimated canopy structural and photosynthetic dynamics from 2019 to 2023 by integrating 10 m [...] Read more.
Mangrove forests provide essential climate regulation and coastal protection, yet fine-scale quantification of carbon dynamics remains limited in the Sundarbans due to spatial heterogeneity and tidal influences. This study estimated canopy structural and photosynthetic dynamics from 2019 to 2023 by integrating 10 m spatial high-resolution remote sensing with a light use efficiency (LUE) modeling framework. Leaf Area Index (LAI) was retrieved at 10 m resolution using the PROSAIL radiative transfer model applied to Sentinel-2 data to characterize the canopy structure of the mangrove forest. LUE-based Gross Primary Productivity (GPP) was estimated using Sentinel-2 vegetation and water indices and MODIS fPAR with station observatory temperature data. Annual carbon uptake showed clear interannual variation, ranging from 1881 to 2862 g C m−2 yr−1 between 2019 and 2023. GPP estimates were strongly correlated with MODIS-GPP (R2 = 0.86, p < 0.001), demonstrating the method’s reliability for monitoring mangrove carbon sequestration. LUE-based Solar-induced Chlorophyll Fluorescence (SIF) was derived at 10 m resolution and compared with TROPOMI-SIF observations to assess correspondence (R2 = 0.88, p < 0.001) with photosynthetic activity. LAI, GPP and SIF exhibited pronounced seasonal and interannual variability on photosynthetic activity, with higher values during the monsoon growing season and lower values during dry periods. Mean NDVI declined from 2019 to 2023 and modeled annual carbon uptake ranged from approximately 43 to 65 Mt CO2 eq, with lower sequestration in 2022–2023 associated with climatic stress. Strong correlations among LAI, NDVI, GPP, and SIF indicated consistent coupling between photosynthetic activity and carbon uptake in the mangrove ecosystem. These results provide a fine-scale assessment of mangrove carbon dynamics relevant to conservation and climate-mitigation planning in tropical regions. Full article
(This article belongs to the Special Issue Emerging Remote Sensing Technologies in Coastal Observation)
Show Figures

Figure 1

22 pages, 8460 KB  
Article
A Numerical Modeling Framework for Assessing Hydrodynamic Risks to Support Sustainable Port Development: Application to Extreme Storm and Tide Scenarios Within Takoradi Port Master Plan
by Dianguang Ma and Yu Duan
Sustainability 2026, 18(3), 1177; https://doi.org/10.3390/su18031177 - 23 Jan 2026
Viewed by 197
Abstract
Sustainable port development in coastal regions necessitates robust frameworks for quantifying hydrodynamic risks under climate change. To bridge the gap between generic guidelines and site-specific resilience planning, this study proposes and applies a numerical modeling-based risk assessment framework. Within the context of the [...] Read more.
Sustainable port development in coastal regions necessitates robust frameworks for quantifying hydrodynamic risks under climate change. To bridge the gap between generic guidelines and site-specific resilience planning, this study proposes and applies a numerical modeling-based risk assessment framework. Within the context of the Port Master Plan, the framework is applied to the critical case of Takoradi Port in West Africa, employing a two-dimensional hydrodynamic model to simulate current fields under three current regimes, “Normal”, “Stronger”, and “Estimated Extreme” scenarios, for the first time. The model quantifies key hydrologic parameters such as current velocity and direction in critical zones (the approach channel, port basin, and berths), providing actionable data for the Port Master Plan. Key new findings include the following: (1) Northeastward surface currents, driven by the southwest monsoon, dominate the study area; breakwater sheltering creates a prominent circulation zone north of the port entrance. (2) Under extreme conditions, the approach channel exhibits amplified currents (0.3–0.7 m/s), while inner port areas maintain stable conditions (<0.1 m/s). (3) A stark spatial differentiation in designed current velocities for 2–100 years return periods, where the 100-year extreme current velocity in the external approach channel (0.87 m/s at P1) exceeds the range in the internal zones (0.01–0.15 m/s) by approximately 5 to 86 times. The study validates the framework’s utility in assessing hydrodynamic risks. By integrating numerical simulation with risk assessment, this work provides a scalable methodological contribution that can be adapted to other port environments, directly supporting the global pursuit of sustainable and resilient ports. Full article
(This article belongs to the Section Sustainable Oceans)
Show Figures

Figure 1

19 pages, 5547 KB  
Article
Multiscale Analysis of Drought Characteristics in China Based on Precipitable Water Vapor and Climatic Response Mechanisms
by Ruohan Liu, Qiulin Dong, Lv Zhou, Fei Yang, Yue Sun, Yanru Yang and Sicheng Zhang
Atmosphere 2026, 17(2), 119; https://doi.org/10.3390/atmos17020119 - 23 Jan 2026
Viewed by 176
Abstract
Droughts are recognized as one of the most devastating extreme climate events, leading to severe socioeconomic losses and ecological degradation globally under climate change. With global warming, the frequency and intensity of extreme droughts are increasing, posing critical challenges to water resource management. [...] Read more.
Droughts are recognized as one of the most devastating extreme climate events, leading to severe socioeconomic losses and ecological degradation globally under climate change. With global warming, the frequency and intensity of extreme droughts are increasing, posing critical challenges to water resource management. The Standardized Precipitation Conversion Index (SPCI) has demonstrated potential in drought monitoring; however, its applicability across diverse climatic zones and multiple temporal scales remains inadequately validated. This study addresses this gap by establishing a novel multi-scale inversion analysis using ERA5-based precipitable water vapor (PWV) and precipitation data. SPCI is selected for its advantage in eliminating climatic background biases through probability normalization, overcoming limitations of traditional indices such as the Standardized Precipitation Index (SPI) and Standardized Precipitation-Evapotranspiration Index (SPEI). We systematically evaluated the spatiotemporal evolution of Precipitation Efficiency (PE) and SPCI across four climatic zones in China. Results show that the first two principal components explain over 85% of the spatiotemporal variability of PE, with PC1 independently contributing from 82.05% to 83.80%. This high variance contribution underscores that the spatiotemporal patterns of PE are dominated by a few key climatic drivers, validating the robustness of the principal component analysis. SPCI exhibits strong correlation with SPI, exceeding 0.95 in the Tropical Monsoon Zone (TMZ) at scales of 1–6 months, indicating its utility for short-to-medium-term drought monitoring. Distinct zonal differentiation in PE patterns is revealed, such as the bimodal annual cycle in the Tropical-Subtropical Monsoon Composite Zone (TSMCZ). This study evaluates the performance of the SPCI against the widely used SPI and SPEI across four major climatic zones in China. It validates the SPCI’s applicability across China’s complex climates, providing a scientific basis for region-specific drought early warning and water resource optimization. Full article
Show Figures

Figure 1

27 pages, 5777 KB  
Review
A Review of Remote Sensing Monitoring of Plant Diversity in Tropical Forests
by Xi-Qing Sun, Hao-Biao Wu, Dao-Sheng Chen, Xiao-Dong Yang, Xing-Rong Ma, Huan-Cai Feng, Xiao-Yan Cheng, Shuang Yang, Hai-Tao Zhou and Run-Ze Wu
Forests 2026, 17(1), 142; https://doi.org/10.3390/f17010142 - 22 Jan 2026
Viewed by 169
Abstract
Tropical forests are the most plant-diverse ecosystems on Earth, characterized by extremely high species richness and playing essential roles in ecosystem stability, carbon sequestration, and hydrological regulation. Although remote sensing has been widely applied to monitoring tropical forest plant diversity in recent decades, [...] Read more.
Tropical forests are the most plant-diverse ecosystems on Earth, characterized by extremely high species richness and playing essential roles in ecosystem stability, carbon sequestration, and hydrological regulation. Although remote sensing has been widely applied to monitoring tropical forest plant diversity in recent decades, a systematic understanding of its actual monitoring capacity remains limited. Based on a bibliometric analysis of 15,878 publications from 1960 to 2025, this study draws several key conclusions: (1) Global research is highly unevenly distributed, with most studies concentrated in China’s tropical monsoon forests, Brazil’s Amazon rainforest, Costa Rica’s tropical rainforests, and Mexico’s tropical dry forests, while many other regions remain understudied; (2) The Sentinel-2 and Landsat series are the most widely used satellite sensors, and indirect indicators are applied more frequently than direct spectral metrics in monitoring models. Hyperspectral data, Light Detection and Ranging (LiDAR), and nonlinear models generally achieve higher accuracy than multispectral data, Synthetic Aperture Radar (SAR), and linear models; (3) Sampling scales range from 64 m2 to 1600 ha, with the highest accuracy achieved when plot size is within 400 m2 < Area ≤ 2500 m2, and spatial resolutions below 10 m perform best. Based on these findings, we propose four priority directions for future research: (1) Quantifying spectral indicators and models; (2) Assessing the influence of canopy structure on biodiversity remote sensing accuracy; (3) Strengthening the application of high-resolution data and reducing intraspecific spectral variability; and (4) Enhancing functional diversity monitoring and advancing research on the relationship between biodiversity and ecosystem functioning. Full article
(This article belongs to the Section Forest Biodiversity)
Show Figures

Figure 1

22 pages, 4500 KB  
Article
Climatic and Host-Related Drivers of Gastrointestinal Parasite Dynamics in Domestic Ruminants of North Bengal, India
by Subrata Saha, Manjil Gupta, Rachita Saha, Muhammad Saqib, Elena I. Korotkova and Pradip Kumar Kar
Animals 2026, 16(2), 338; https://doi.org/10.3390/ani16020338 - 22 Jan 2026
Viewed by 126
Abstract
Gastrointestinal (GI) parasitic infections pose a formidable global challenge to livestock production and continue to affect livestock health and productivity, particularly in tropical and subtropical regions. This study investigated the prevalence, diversity, and epidemiological determinants of GI parasites in 1406 cattle, goats, and [...] Read more.
Gastrointestinal (GI) parasitic infections pose a formidable global challenge to livestock production and continue to affect livestock health and productivity, particularly in tropical and subtropical regions. This study investigated the prevalence, diversity, and epidemiological determinants of GI parasites in 1406 cattle, goats, and sheep from three districts of North Bengal, India (Cooch Behar, Alipurduar, and Jalpaiguri). Parasitological data were analysed using descriptive statistics and inferential methods. Overall prevalence was 69.4%, with cattle showing the highest infection rate (71.62%), followed by sheep (69.30%) and goats (67.19%). Spatial variation was evident among districts, with Cooch Behar recording the highest prevalence (71.20%). Seasonal effects were assessed using Generalized Linear Mixed Models (GLMs), which indicated significantly higher infection probabilities during the monsoon (75.70%) and summer (72.95%) compared with winter (57.78%). The predominant parasite genera identified were Eimeria spp., Strongyloides spp., and Fasciola spp. Host-parasite associations were further explored using Multiple Correspondence Analysis (MCA), revealing distinct clustering patterns, with cattle associated mainly with Eimeria spp. and Strongyloides spp., goats with Trichuris spp. and Nematodirus spp., and sheep with Fasciola spp. and Paramphistomum spp. A species-specific heatmap was used to visualize parasite distribution across host species and seasons, highlighting higher infection intensities during the summer and monsoon periods. Overall, the results demonstrate that GI parasitic infections in North Bengal are influenced by host species and seasonal climatic factors, supporting the implementation of targeted, species- and season-adapted parasite management strategies. Full article
(This article belongs to the Topic Advances in Infectious and Parasitic Diseases of Animals)
Show Figures

Figure 1

35 pages, 21047 KB  
Article
Morphological and Phylogenetic Evidence Reveal Nine New Species of Russula (Russulaceae, Russulales) from Shanxi Province, North China
by Hao-Yu Fu, Jia-He Li, Hui-Min Ji, Ning Mao, Ting Li and Li Fan
J. Fungi 2026, 12(1), 78; https://doi.org/10.3390/jof12010078 - 22 Jan 2026
Viewed by 387
Abstract
Shanxi Province, located in northern China, characterized by a warm-temperate monsoon climate, complex mountainous topography, and vegetation dominated by trees of Fagaceae and Pinaceae, provides diverse habitats for Russula diversity. Recent investigations on macrofungi in this region revealed nine new Russula species based [...] Read more.
Shanxi Province, located in northern China, characterized by a warm-temperate monsoon climate, complex mountainous topography, and vegetation dominated by trees of Fagaceae and Pinaceae, provides diverse habitats for Russula diversity. Recent investigations on macrofungi in this region revealed nine new Russula species based on integrated morphological and multi-locus phylogenetic analyses (ITS, nrLSU, rpb2, tef1), which are described and illustrated in this paper. These new taxa are classified into three subgenera of Russula: one species of subgen. Brevipes, four of subgen. Heterophyllidia, four of subgen. Russula. This work enhances the understanding of Russula resources in China’s temperate zone. Full article
(This article belongs to the Special Issue Diversity, Phylogeny and Ecology of Forest Fungi, 2nd Edition)
Show Figures

Figure 1

19 pages, 12627 KB  
Article
Radar-Based Insights into Seasonal Warm Cloud Dynamics in Northern Thailand: Properties, Kinematics and Occurrence
by Pakdee Chantraket and Parinya Intaracharoen
Atmosphere 2026, 17(1), 113; https://doi.org/10.3390/atmos17010113 - 21 Jan 2026
Viewed by 295
Abstract
This study presents a four-year (2021–2024) radar-based analysis of warm cloud (non-glaciated) dynamics across northern Thailand, specifically characterizing their properties, kinematics, and occurrence. Utilizing high-resolution S-band dual-polarization weather radar data, a total of 20,493 warm cloud events were tracked and analyzed, with identification [...] Read more.
This study presents a four-year (2021–2024) radar-based analysis of warm cloud (non-glaciated) dynamics across northern Thailand, specifically characterizing their properties, kinematics, and occurrence. Utilizing high-resolution S-band dual-polarization weather radar data, a total of 20,493 warm cloud events were tracked and analyzed, with identification based on a maximum reflectivity (≥35 dBZ) and a cloud top height below the seasonal 0 °C isotherm. Occurrence exhibited a profound seasonal disparity, with the rainy season (82.68% of events) dominating due to the influence of the moist Southwest Monsoon (SWM), while the spatial distribution confirmed that convective initiation is exclusively concentrated over mountainous terrain, underscoring orographic lifting as the essential mechanical trigger. Regarding properties, while vertical development and mass are greater in the warm seasons, microphysical intensity and Duration (mean ~26 min) remain highly uniform, suggesting a constrained, efficient warm rain process. In kinematics, clouds move fastest in winter (mean WSPD ~18.38 km/h), yet pervasive directional chaos (SD > 112°) highlights the strong influence of terrain-induced local circulations. In conclusion, while topography dictates where warm clouds form, the monsoon dictates when and how robustly they develop, creating intense, short-lived events that pose significant operational constraints for localized precipitation enhancement strategies. Full article
Show Figures

Figure 1

24 pages, 7160 KB  
Article
Climatic Drivers of Teak (Tectona grandis) Radial Growth with Emphasis on Soil Moisture Variability in Northern Chhattisgarh, Central India
by Deeksha, Santosh K. Shah, Nivedita Mehrotra and Munendra Singh
Quaternary 2026, 9(1), 8; https://doi.org/10.3390/quat9010008 - 20 Jan 2026
Viewed by 198
Abstract
A Dendrochronological study of teak (Tectona grandis) was conducted at two sites in northern Chhattisgarh, central India, and resulted in the development of two tree-ring width chronologies. We examined the relationships between tree-ring chronologies and gridded monthly and daily climate variables [...] Read more.
A Dendrochronological study of teak (Tectona grandis) was conducted at two sites in northern Chhattisgarh, central India, and resulted in the development of two tree-ring width chronologies. We examined the relationships between tree-ring chronologies and gridded monthly and daily climate variables (mean temperature, total precipitation and drought indices) as well as monthly soil moisture. We performed spatial correlations using monthly climate data and used the nearest climate grid point for daily climate correlations. Both chronologies showed negative correlations with temperature and positive correlations with soil moisture, rainfall, and drought indices. These relationships highlight the dominant role of soil moisture availability in influencing teak growth in the monsoon-dominated climate of Chhattisgarh. Based on this relationship, we reconstructed average soil moisture from February to October, extending the gridded soil moisture record by 62 years (1920–1981 CE). This reconstruction represents the first tree-ring-based long-term soil moisture record from central India. Our findings provide a comprehensive hydroclimatic perspective for a region lacking historical tree-ring data and demonstrate the potential of teak as a proxy for investigating long-term soil moisture variability. Further research using older samples from this species will enhance understanding of past climate variability and hydroclimatic changes in central India. Full article
Show Figures

Figure 1

Back to TopTop