Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,209)

Search Parameters:
Keywords = morphological attributes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 11607 KiB  
Article
Comparison of Transcriptome Differences in Scales of Two Closely Related Snake Species (Lycodon rufozonatus and Lycodon rosozonatus)
by Ke Sun, Anqiong Lu, Yu Xu and Fei Zhu
Animals 2025, 15(7), 1061; https://doi.org/10.3390/ani15071061 (registering DOI) - 6 Apr 2025
Viewed by 29
Abstract
The diversity of skin colors observed in reptiles is indicative of their adaptation to different ecological niches, with these color variations playing essential roles in survival and reproduction. The present study focused on two closely related species (Lycodon rufozonatus and Lycodon rosozonatus [...] Read more.
The diversity of skin colors observed in reptiles is indicative of their adaptation to different ecological niches, with these color variations playing essential roles in survival and reproduction. The present study focused on two closely related species (Lycodon rufozonatus and Lycodon rosozonatus) within the Lycodon genus that exhibit the closest color and morphological similarities. We performed RNA sequencing on the scales of both species and obtained 350,346,591 and 331,537,523 clean reads, respectively. A comparative analysis of the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) databases revealed that the scales of the two species exhibited similar patterns of gene enrichment. Nevertheless, the results of the PCA and the t-SNE analysis demonstrated notable differences between the scales in the diverse color variations observed in the two species. Concurrently, we conducted a comparative analysis of the skin color-related genes and the differentially expressed genes, which revealed three genes exhibiting notable disparities: RU_DN1145_c3_g2 (mreg), RU_DN10511_c0_g1 (notch1), and Unigene11172 (notch1). In light of the aforementioned results, we hypothesize that the discrepancy in the scale color between the two species is attributable to alterations in specific gene loci and variations in expression levels. The data presented herein provide a molecular basis for future studies on the genetic and habitat adaptation functions of scale color differences in reptiles. Full article
(This article belongs to the Section Herpetology)
Show Figures

Figure 1

23 pages, 25475 KiB  
Article
Impact of Mechanical Arc Oscillation on the Microstructure and Durability of Welded Joints in Molten Salt Thermal Storage System
by Raúl Pastén, Mauro Henríquez, Mehran Nabahat, Victor Vergara, Juan C. Reinoso-Burrows, Carlos Soto, Carlos Durán, Edward Fuentealba and Luis Guerreiro
Materials 2025, 18(7), 1619; https://doi.org/10.3390/ma18071619 - 2 Apr 2025
Viewed by 70
Abstract
The two-tank molten salt thermal storage system is the most common storage solution in concentrated solar power (CSP) plants. Solar salt (60% NaNO3 + 40% KNO3) is the most widely used energy storage material in solar thermal plants. In solar [...] Read more.
The two-tank molten salt thermal storage system is the most common storage solution in concentrated solar power (CSP) plants. Solar salt (60% NaNO3 + 40% KNO3) is the most widely used energy storage material in solar thermal plants. In solar tower technology, where the molten salts must operate at temperatures ranging from 290 °C to 565 °C, several issues related to tank failures have emerged in recent years, with some of these failures attributed to the welding process. The welding process of joints in 316L stainless steel (ASS) probes exposed to a moving flow of a binary mixture containing 60% NaNO3 and 40% KNO3 (solar salt) is analysed. The results were evaluated using scanning electron microscopy (SEM) at 120, 500, 1000, 1500, and 2300 h of exposure. It was identified that arc mechanical oscillations significantly improve the microstructural properties and geometrical characteristics of welded joints, reducing structural defects and improving corrosion resistance. The technique promotes uniform thermal distribution, refined dendrite morphology, and homogeneous alloying element distribution, resulting in lower mass loss in high-temperature molten salt environments. Additionally, oscillation welding optimises the bead geometry, with reduced wetting angles and controlled penetration, making it ideal for high-precision industrial applications and extreme environments, such as molten salt thermal storage systems. Full article
Show Figures

Figure 1

26 pages, 21993 KiB  
Article
Improvement of Micro-Hole Processing in SiCf/SiC Ceramic Matrix Composite Using Efficient Two-Step Laser Drilling
by Yue Cao, Bin Wang, Zhehang Li, Jiajia Wang, Yinan Xiao, Qingyang Zeng, Xinfeng Wang, Wenwu Zhang, Qunli Zhang and Liyuan Sheng
Micromachines 2025, 16(4), 430; https://doi.org/10.3390/mi16040430 - 2 Apr 2025
Viewed by 81
Abstract
SiCf/SiC ceramic matrix composite (CMC), a hard and brittle material, faces significant challenges in efficient and high-quality processing of small-sized shapes. To address these challenges, the nanosecond laser was used to process micro-holes in the SiCf/SiC CMC using a [...] Read more.
SiCf/SiC ceramic matrix composite (CMC), a hard and brittle material, faces significant challenges in efficient and high-quality processing of small-sized shapes. To address these challenges, the nanosecond laser was used to process micro-holes in the SiCf/SiC CMC using a two-step drilling method, including laser pre-drilling in air and laser final-drilling with a water jet. The results of the single-parameter variation and optimized orthogonal experiments reveal that the optimal parameters for laser pre-drilling in air to process micro-holes are as follows: 1000 processing cycles, 0.7 mJ single-pulse energy, −4 mm defocus, 15 kHz pulse-repetition frequency, and 85% overlap rate. With these settings, a micro-hole with an entrance diameter of 343 μm and a taper angle of 1.19° can be processed in 100 s, demonstrating high processing efficiency. However, the entrance region exhibits spattering slags with oxidation, while the sidewall is covered by the recast layer with a wrinkled morphology and attached oxides. These effects are primarily attributed to the presence of oxygen, which enhances processing efficiency but promotes oxidation. For the laser final-drilling with a water jet, the balanced parameters for micro-hole processing are as follows: 2000 processing cycles, 0.6 mJ single-pulse energy, −4 mm defocus, 10 kHz pulse-repetition frequency, 85% overlap rate, and a 4.03 m/s water jet velocity. Using these parameters, the pre-drilled micro-hole can be finally processed in 96 s, yielding an entrance diameter of 423 μm and a taper angle of 0.36°. Due to the effective elimination of spattering slags and oxides by the water jet, the final micro-hole exhibits a clean sidewall with microgrooves, indicating high-quality micro-hole processing. The sidewall morphology could be ascribed to the different physical properties of SiC fiber and matrix, with steam explosion and cavitation erosion. This two-step laser drilling may provide new insights into the high-quality and efficient processing of SiCf/SiC CMC with small-sized holes. Full article
(This article belongs to the Special Issue Optical and Laser Material Processing, 2nd Edition)
Show Figures

Figure 1

53 pages, 32098 KiB  
Article
The Distribution Pattern and Spatial Morphological Characteristics of Military Settlements Along the Ming Great Wall in the Hexi Corridor Region
by Baolong Jiang, Yuhao Huang, Yile Chen, Jie Lu and Tianfu Yang
Buildings 2025, 15(7), 1136; https://doi.org/10.3390/buildings15071136 - 31 Mar 2025
Viewed by 115
Abstract
Military settlements along the Ming Great Wall are typical representatives of the construction of the ancient Chinese military defense system. The location of the military fortification is complex, and the settlements are scattered and affected by multiple factors. The academic community lacks systematic [...] Read more.
Military settlements along the Ming Great Wall are typical representatives of the construction of the ancient Chinese military defense system. The location of the military fortification is complex, and the settlements are scattered and affected by multiple factors. The academic community lacks systematic research on the military settlements along the Ming Great Wall. Existing studies focus on local protection, especially the regional connectivity and overall defense mechanism of the military settlements in the Hexi Corridor. This study incorporates the distribution, morphology, and function of the military settlements in the Hexi Corridor into a unified analytical framework to explore the coordinated defense mechanism under the spatial attributes of the military settlements. Additionally, this study looks at the distribution pattern of 173 local military settlements using tools such as the kernel density index, the Moran index, and the buffer zone. It also conducts statistical analyses of 85 existing settlements to determine their scale and morphological index and uses 18 typical settlements as examples to investigate their spatial morphology using space syntax. This study’s findings indicate that (1) military settlements are spread out in a straight line, which is affected by many things such as terrain, water systems, oasis, and the Great Wall; (2) military facilities and environmental factors are strongly connected and linked in space; (3) military settlements have obvious cluster characteristics, and most are relatively regular quadrilaterals; and (4) the organizational logic of the internal space form is consistent. The main blocks are highly accessible, and the overall space is recognizable and has certain defensive characteristics. This study systematically constructed an analytical framework for multi-scale collaborative defense mechanisms, revealing a collaborative defense model of “linear distribution–hierarchical defense–functional coordination”. This demonstrates the top–down strategic thinking of the ancient Chinese military system and provides a new perspective for the study and protection of linear military heritage corridors. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

20 pages, 110471 KiB  
Article
Research on the Evolution Characteristics of Building Space in the Central Urban Area of Tianjin Based on Multi-Source Data Collaboration: 2021–2024
by Yicheng Zhang, Guorui Chen and Xue Yang
Buildings 2025, 15(7), 1142; https://doi.org/10.3390/buildings15071142 - 31 Mar 2025
Viewed by 49
Abstract
Urban renewal faces critical challenges in balancing heritage protection and functional upgrades, particularly in dual-attribute cities like Tianjin that preserve industrial legacy while cultivating emerging functions. Existing studies exhibit three gaps: geographical bias toward megacities, fragmented analysis of functional–morphological interactions, and inadequate quantification [...] Read more.
Urban renewal faces critical challenges in balancing heritage protection and functional upgrades, particularly in dual-attribute cities like Tianjin that preserve industrial legacy while cultivating emerging functions. Existing studies exhibit three gaps: geographical bias toward megacities, fragmented analysis of functional–morphological interactions, and inadequate quantification of “protection-development” tensions. This study addresses these gaps through an integrated framework combining point-of-interest kernel density analysis and satellite imagery segmentation (2021–2024 data). The methodological innovations include: (1) Analysis of urban function changes based on Point of Interest density; (2) Analysis of urban spatial morphology changes based on the texture of buildings within plots; (3) Spatiotemporal coupling analysis of data. Key findings reveal: (a) The overall Point of Interest density in Tianjin increased by 127.2%, achieving further prosperity and development of the city; (b) The renewal of the central urban area exhibits characteristics of “edge aggregation and gradient diffusion”; (c) The historic urban area has reshaped its functional layout through micro-renewal and the relocation of industrial spaces, effectively balancing the conflict between preservation and development. This study systematically summarizes the experiences in resolving the conflict between preservation and development in the urban renewal of Tianjin, providing a reference case for cities undergoing similar dual-attribute renewal. Full article
(This article belongs to the Special Issue Research towards the Green and Sustainable Buildings and Cities)
Show Figures

Figure 1

44 pages, 28729 KiB  
Article
Morphological Variability amid Genetic Homogeneity and Vice Versa: A Complicated Case with Humidophila (Bacillariophyceae) from Tropical Forest Soils of Vietnam with the Description of Four New Species
by Elena Kezlya, Anton Glushchenko, Yevhen Maltsev, Sergei Genkal, Natalia Tseplik and Maxim Kulikovskiy
Plants 2025, 14(7), 1069; https://doi.org/10.3390/plants14071069 - 31 Mar 2025
Viewed by 65
Abstract
A total of 18 Humidophila strains isolated from soil samples from Cát Tiên National Park have been studied. Based on morphometric analysis and molecular data for the V4 18S rDNA and rbcL regions, we proposed the presence of four new species: H. [...] Read more.
A total of 18 Humidophila strains isolated from soil samples from Cát Tiên National Park have been studied. Based on morphometric analysis and molecular data for the V4 18S rDNA and rbcL regions, we proposed the presence of four new species: H. vietnamica, H. paravietnamica, H. cattiensis, and H. concava. This is the first study that provides molecular data for such a large number of Humidophila strains. Furthermore, we encountered some Humidophila strains with clear morphological differences (which we assigned to several morphotypes) that cannot be separated using the selected genetic markers and cannot be attributed to phenotypic variations in one species; these require further study of their genetic structure. We also observed the opposite case, where in the absence of morphological differences, clear genetic differentiation is shown, which demonstrates the presence of cryptic taxa in our sample. The maximum differences for these strains were observed in the V4 18S rDNA region. Our results show that the effectiveness of commonly used genetic markers V4 18S rDNA and rbcL for separating species can vary greatly. Our study highlights the need to research different genetic markers and their use for proper species separation, as well as the genetic diversity of diatoms, and the need for further studies of intra- and interspecific genetic distances. Full article
(This article belongs to the Section Plant Systematics, Taxonomy, Nomenclature and Classification)
Show Figures

Graphical abstract

10 pages, 4205 KiB  
Case Report
Endocrown Restoration for an Endodontically Treated Molar: A Step-by-Step Clinical Guide with a 5-Year Follow-Up
by Dimokritos Papalexopoulos, Ashot Torchyan, Eleftheria Pani and Theodora-Kalliopi Samartzi
Adhesives 2025, 1(2), 6; https://doi.org/10.3390/adhesives1020006 - 31 Mar 2025
Viewed by 86
Abstract
The classical approach for the preparation of an endodontically treated molar with a post and core involves widening the anatomically complex system of canals, which may be narrow or curved with variable angulation. The aforementioned along with the fact that restorative dentistry stands [...] Read more.
The classical approach for the preparation of an endodontically treated molar with a post and core involves widening the anatomically complex system of canals, which may be narrow or curved with variable angulation. The aforementioned along with the fact that restorative dentistry stands against the wastage of tooth tissue make endocrowns an appealing alternative. Bindl and Mörmann first described an all-ceramic crown anchored to the internal portion of the pulp chamber and on the cavity margins, thus obtaining macromechanical retention provided by the axial opposing pulpal walls and microretention attained with the use of adhesive cementation. The purpose of this report is to describe the protocol for the treatment plan selection, preparation, impression, and adhesive cementation of an endocrown with a follow-up of 5 years. A 56-year-old male patient presented to the Postgraduate Clinic of Prosthodontics seeking rehabilitation for tooth No. #36. A clinical examination revealed multiple immediate composite resin restorations with unacceptable morphology and adaptation to the remaining tooth as well as a lack of a contact point but, rather, a large, concave contact area facilitating food entrapment. Since the tooth was endodontically treated, the proposed treatment plan included the fabrication of an all-ceramic endocrown. The steps of preparation, attribution of the correct shape, impression, and adhesive luting under rubber dam isolation are thoroughly described. The final functional and aesthetic result, patient’s satisfaction, and the 5-year follow-up render restorations such as endocrowns, which draw their retention from adhesive luting, a viable alternative to conventional approaches. Full article
Show Figures

Figure 1

23 pages, 9304 KiB  
Article
Predicting Urban Vitality at Regional Scales: A Deep Learning Approach to Modelling Population Density and Pedestrian Flows
by Feifeng Jiang and Jun Ma
Smart Cities 2025, 8(2), 58; https://doi.org/10.3390/smartcities8020058 - 30 Mar 2025
Viewed by 84
Abstract
Understanding and predicting urban vitality—the intensity and diversity of human activities in urban spaces—is crucial for sustainable urban development. However, existing studies often rely on discrete sampling points and single metrics, limiting their ability to capture the continuous spatial distribution of urban vibrancy. [...] Read more.
Understanding and predicting urban vitality—the intensity and diversity of human activities in urban spaces—is crucial for sustainable urban development. However, existing studies often rely on discrete sampling points and single metrics, limiting their ability to capture the continuous spatial distribution of urban vibrancy. This study introduces the UVPN (urban vitality prediction network), a novel deep-learning architecture designed to generate high-resolution predictions of static and dynamic vitality at regional scales. The architecture integrates two key innovations: a SE (squeeze-and-excitation) block for adaptive feature recalibration and an RCA (residual connection with coordinate attention) bottleneck for position-aware feature learning. Applied to New York City, UVPN leverages diverse urban morphological features such as streetscape attributes and land use patterns to predict continuous vitality distributions. The model outperforms existing architectures, achieving reductions of 34.03% and 38.66% in mean squared error for population density and pedestrian flow predictions, respectively. Feature importance analysis reveals that road networks predominantly influence population density, while streetscape features strongly affect pedestrian flows, with built density and points of interest contributing to both dimensions. By advancing urban vitality prediction, UVPN provides a robust framework for evidence-based urban planning, supporting the creation of more sustainable, functional, and livable cities. Full article
Show Figures

Figure 1

17 pages, 10284 KiB  
Article
Phytosterol–γ-Oryzanol–Glycerol Monostearate Composite Gelators for Palm Stearin/Linseed Oil Oleogel-Based Margarine: Nutrient Enrichment, Textural Modulation, and Commercial Product Mimicry
by Jingwen Li, Yujuan Hu, Qing Ma, Dongkun Zhao, Xinjing Dou, Baocheng Xu and Lili Liu
Foods 2025, 14(7), 1206; https://doi.org/10.3390/foods14071206 - 29 Mar 2025
Viewed by 208
Abstract
This study prepared palm stearin/linseed oil-based margarines (PST/LO-BMs) and palm stearin/linseed oil oleogel-based margarines (PST/LO-OBM) by incorporating varying proportions (20–60% oil phase) of linseed oil (LO) and LO-based oleogel, respectively. By comparing PST/LO-OBMs and PST/LO-BMs, it was found that the introduction of phytosterol–γ-oryzanol [...] Read more.
This study prepared palm stearin/linseed oil-based margarines (PST/LO-BMs) and palm stearin/linseed oil oleogel-based margarines (PST/LO-OBM) by incorporating varying proportions (20–60% oil phase) of linseed oil (LO) and LO-based oleogel, respectively. By comparing PST/LO-OBMs and PST/LO-BMs, it was found that the introduction of phytosterol–γ-oryzanol (PO) complexes and glycerol monostearate (GMS) to PST/LO-OBM induced three distinct crystalline morphologies: needle-like crystals, spherical crystals, and cluster-type crystals. These crystal assemblies synergistically constructed a robust three-dimensional network, effectively entrapping both aqueous droplets and liquid oil fractions while substantially reinforcing the structural integrity of PST/LO-OBM. Notably, the incorporated gelators modified the crystallization behavior, where GMS likely served as a nucleating site promoting triglyceride crystallization. This structural modulation yielded favorable β’-form crystal polymorphism, which is critically associated with enhanced textural properties. Comparative analysis with commercial margarine revealed that the PST45/LO40-OBM formulation exhibited comparable rheological performance, crystalline type, and thermal properties, while demonstrating superior nutritional characteristics, containing elevated levels of α-linolenic acid (23.54%), phytosterol (1410 mg/100 g), and γ-oryzanol (2110 mg/100 g). These findings provide fundamental insights for margarine alternatives with nutritional attributes. Full article
(This article belongs to the Special Issue Healthy Lipids for Food Processing)
Show Figures

Figure 1

20 pages, 2543 KiB  
Article
Effects of Different Drying Methods on Physicochemical Properties and Nutritional Quality of Abalone Bioactive Peptides
by Qiting Li, Longxiang Li, Pufu Lai, Yingying Wei, Chunmei Lai, Yusha Liu, Mengjie Yang, Shaoxiong Zhou, Junchen Chen and Junzheng Sun
Molecules 2025, 30(7), 1516; https://doi.org/10.3390/molecules30071516 - 28 Mar 2025
Viewed by 96
Abstract
This study conducted a systematic comparison of four drying methods (vacuum freeze-drying, spray drying, spray freeze-drying, and hot air drying) on abalone bioactive peptides, investigating their effects on physicochemical properties and nutritional composition. Scanning electron microscopy revealed distinct morphological characteristics: hot-air-dried samples showed [...] Read more.
This study conducted a systematic comparison of four drying methods (vacuum freeze-drying, spray drying, spray freeze-drying, and hot air drying) on abalone bioactive peptides, investigating their effects on physicochemical properties and nutritional composition. Scanning electron microscopy revealed distinct morphological characteristics: hot-air-dried samples showed compact structures with large particles, and vacuum-freeze-dried samples exhibited flaky morphology, while spray-freeze-dried and spray-dried samples demonstrated advantageous smaller particle sizes. Spray freeze-drying achieved superior emulsification capacity and fat absorption, significantly higher than hot air drying. The enhanced performance was attributed to increased exposure of hydrophobic amino acid residues and improved surface activity. Regarding nutritional composition, vacuum freeze-drying demonstrated optimal protein and total amino acid preservation, while spray freeze-drying showed the highest retention of Ca and Fe. Interestingly, hot air drying exhibited superior vitamin A retention, attributed to its fat-soluble nature and stability below 100 °C. The particle size reduction in spray-freeze-dried samples enhanced solvent–solute contact area, contributing to improved solubility and consequently superior foaming properties. These findings provide valuable insights into the relationship between drying methods and product characteristics, offering guidance for optimizing processing conditions in marine protein production. Full article
(This article belongs to the Section Food Chemistry)
Show Figures

Figure 1

35 pages, 29220 KiB  
Article
Towards High-Resolution Population Mapping: Leveraging Open Data, Remote Sensing, and AI for Geospatial Analysis in Developing Country Cities—A Case Study of Bangkok
by Kittisak Maneepong, Ryota Yamanotera, Yuki Akiyama, Hiroyuki Miyazaki, Satoshi Miyazawa and Chiaki Mizutani Akiyama
Remote Sens. 2025, 17(7), 1204; https://doi.org/10.3390/rs17071204 - 28 Mar 2025
Viewed by 484
Abstract
This study develops a globally adaptable and scalable methodology for high-resolution, building-level population mapping, integrating Earth observation techniques, geospatial data acquisition, and machine learning to enhance population estimation in rapidly urbanizing cities, particularly in developing countries. Using Bangkok, Thailand, as a case study, [...] Read more.
This study develops a globally adaptable and scalable methodology for high-resolution, building-level population mapping, integrating Earth observation techniques, geospatial data acquisition, and machine learning to enhance population estimation in rapidly urbanizing cities, particularly in developing countries. Using Bangkok, Thailand, as a case study, this research presents a problem-driven approach that leverages open geospatial data, including Overture Maps and OpenStreetMap (OSM), alongside Digital Elevation Models, to overcome limitations in data availability, granularity, and quality. This study integrates morphological terrain analysis and machine learning-based classification models to estimate building ancillary attributes such as footprint, height, and usage, applying micro-dasymetric mapping techniques to refine population distribution estimates. The findings reveal a notable degree of accuracy within residential zones, whereas performance in commercial and cultural areas indicates room for improvement. Challenges identified in mixed-use and townhouse building types are attributed to issues of misclassification and constraints in input data. The research underscores the importance of geospatial AI and remote sensing in resolving urban data scarcity challenges. By addressing critical gaps in geospatial data acquisition and processing, this study provides scalable, cost-effective solutions in the integration of multi-source remote sensing data and machine learning that contribute to sustainable urban development, disaster resilience, and resource planning. The findings reinforce the transformative role of open-access geospatial data in Earth observation applications, supporting real-time decision-making and enhanced urban resilience strategies in rapidly evolving environments. Full article
Show Figures

Graphical abstract

17 pages, 6481 KiB  
Article
Enhanced Antimicrobial and Biomedical Properties of Fe-Based Bulk Metallic Glasses Through Ag Addition
by Long Jiang, Xueru Fan, Qiang Li, Xin Li, Tao Jiang and Qin Wei
Inorganics 2025, 13(4), 105; https://doi.org/10.3390/inorganics13040105 - 28 Mar 2025
Viewed by 145
Abstract
This study explores the enhancement of antimicrobial and biomedical properties in Fe-based bulk metallic glasses (BMGs) through the addition of Ag. Fe55-xCr20Mo5P13C7Agx (x = 0, 1, 2, 3 at.%) master alloy ingots [...] Read more.
This study explores the enhancement of antimicrobial and biomedical properties in Fe-based bulk metallic glasses (BMGs) through the addition of Ag. Fe55-xCr20Mo5P13C7Agx (x = 0, 1, 2, 3 at.%) master alloy ingots were synthesized by the induction melting technique and industrial-grade raw materials, the master alloy ingots were prepared as bulk metallic glasses (referred to as Ag0, Ag1, Ag2, and Ag3) by the water-cooled copper-mold suction casting technique, and their glass-forming ability, corrosion resistance, biocompatibility, and antimicrobial properties were systematically investigated. The results indicate that the glass forming ability (GFA) decreased with increasing Ag content, reducing the critical diameter for fully amorphous formation from 2.0 mm for Ag0 to 1.0 mm for Ag3. Electrochemical tests in Hank’s solution revealed the superior corrosion resistance of the Fe-based BMGs as compared with conventional 316 L stainless steel (316L SS) and Ti6Al4V alloy (TC4), with Ag3 demonstrating the lowest corrosion current density and the most stable passivation. Biocompatibility assessments, including fibroblast cell viability and adhesion tests, showed enhanced cellular activity and morphology on Fe-based BMG surfaces as compared with 316L SS and TC4, with minimal harmful ion release. Antimicrobial tests against E. coli and S. aureus revealed significantly improved performance with the Ag addition, achieving bacterial inhibition rates of up to 87.5% and 86.7%, respectively, attributed to Ag+-induced reactive oxygen species (ROS) production. With their excellent corrosion resistance, biocompatibility, and antimicrobial activity, the present Ag-containing Fe-based BMGs, particularly Ag3, are promising candidates for next-generation biomedical implants. Full article
(This article belongs to the Special Issue Recent Research and Application of Amorphous Materials)
Show Figures

Figure 1

25 pages, 7831 KiB  
Article
The Selective Localization of Organic Montmorillonite at the Interface and Its Effects on the Micro-Morphology and Properties of Bio-Based Polylactic Acid/Eucommia Ulmoides Gum (PLA/EUG) Blends
by Yipeng Zhang, Kai Wang, Jianing Shen, Luyao Li, Nai Xu, Lisha Pan, Sujuan Pang and Jianhe Liao
Polymers 2025, 17(7), 911; https://doi.org/10.3390/polym17070911 - 28 Mar 2025
Viewed by 199
Abstract
Highly toughened bio-based polylactic acid (PLA)/Eucommia ulmoides gum (EUG) blends were prepared using organic montmorillonite (OMMT) as a compatibilizer through melt-blending. Both the theoretically predicted values and the experimental results confirm that the majority of the OMMT’s nanolayers are selectively localized at [...] Read more.
Highly toughened bio-based polylactic acid (PLA)/Eucommia ulmoides gum (EUG) blends were prepared using organic montmorillonite (OMMT) as a compatibilizer through melt-blending. Both the theoretically predicted values and the experimental results confirm that the majority of the OMMT’s nanolayers are selectively localized at the PLA/EUG interface. This localization leads to improved interfacial properties and a more refined morphology of the dispersed EUG phase. By increasing the OMMT content from 0 phr to 2 phr, the notched Izod impact strength of the PLA/EUG/OMMT (85/15/2) blend increases to a maximum value of 44.6 kJ/m2. This is significantly higher than the values observed for neat PLA at 3.8 kJ/m2 and the PLA/EUG (85/15) blend at 4.7 kJ/m2. Moreover, compared to neat PLA and the PLA/EUG (85/15) blend, which exhibit poor tensile ductility, as indicated by their low elongation at break, the PLA/EUG/OMMT blend demonstrates a substantial improvement in its tensile ductility when an appropriate amount of OMMT is added. It is believed that the enhanced toughness of the PLA/EUG/OMMT blends can primarily be attributed to the refinement and more uniform dispersion of the EUG domains, which is caused by the incorporation of OMMT. In addition, the crystalline properties, thermal degradation behavior, and extrudate swell behavior of the PLA/EUG blends with and without OMMT were also evaluated in detail. Finally, the experimental results prove that the PLA/EUG (85/15) blend containing 2 phr of OMMT exhibits the highest impact toughness and tensile ductility, accompanied by improved thermal stability and extrusion stability. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

28 pages, 16669 KiB  
Article
Spin Period Evolution of Decommissioned GLONASS Satellites
by Abdul Rachman, Alessandro Vananti and Thomas Schildknecht
Aerospace 2025, 12(4), 283; https://doi.org/10.3390/aerospace12040283 - 27 Mar 2025
Viewed by 137
Abstract
Light curve analysis of defunct satellites is critical for characterizing their rotational motion. An accurate understanding of this aspect will benefit active debris removal and on-orbit servicing missions as part of the solution to the space debris issue. In this study, we explored [...] Read more.
Light curve analysis of defunct satellites is critical for characterizing their rotational motion. An accurate understanding of this aspect will benefit active debris removal and on-orbit servicing missions as part of the solution to the space debris issue. In this study, we explored the attitude behavior of inactive GLONASS satellites, specifically a repeating pattern observed in their spin period evolution. We utilized a large amount of data available in the light curve database maintained by the Astronomical Institute of the University of Bern (AIUB). The morphology of the inactive GLONASS light curves typically features four peaks in two pairs and is presumably attributed to the presence of four evenly distributed thermal control flaps or radiators on the satellite bus. The analysis of the periods extracted from the light curves shows that nearly all of the inactive GLONASS satellites are rotating and exhibit a periodic oscillating pattern in their spin period evolution with an increasing or decreasing secular trend. Through modeling and simulation, we found that the periodic pattern is likely a result of canted solar panels that provide an asymmetry in the satellite model and enable a wind wheel or fan-like mechanism to operate. The secular trend is a consequence of differing values of the specular reflection coefficients of the front and back sides of the solar panels. Assuming an empirical model describing the spin period evolution of 18 selected objects, we found significant variations in the average spin period and amplitude of the oscillations, which range from 8.11 s to 469.58 s and 1.10 s to 513.24 s, respectively. However, the average oscillation period remains relatively constant at around 1 year. Notably, the average spin period correlates well with the average amplitude. The empirical model can be used to extrapolate the spin period in the future, assuming that the oscillating pattern is preserved and roughly shows a linear trend. Full article
Show Figures

Figure 1

24 pages, 14100 KiB  
Article
SDA-Net: A Spatially Optimized Dual-Stream Network with Adaptive Global Attention for Building Extraction in Multi-Modal Remote Sensing Images
by Xuran Pan, Kexing Xu, Shuhao Yang, Yukun Liu, Rui Zhang and Ping He
Sensors 2025, 25(7), 2112; https://doi.org/10.3390/s25072112 - 27 Mar 2025
Viewed by 85
Abstract
Building extraction plays a pivotal role in enabling rapid and accurate construction of urban maps, thereby supporting urban planning, smart city development, and urban management. Buildings in remote sensing imagery exhibit diverse morphological attributes and spectral signatures, yet their reliable interpretation through single-modal [...] Read more.
Building extraction plays a pivotal role in enabling rapid and accurate construction of urban maps, thereby supporting urban planning, smart city development, and urban management. Buildings in remote sensing imagery exhibit diverse morphological attributes and spectral signatures, yet their reliable interpretation through single-modal data remains constrained by heterogeneous terrain conditions, occlusions, and spatially variable illumination effects inherent to complex geographical landscapes. The integration of multi-modal data for building extraction offers significant advantages by leveraging complementary features from diverse data sources. However, the heterogeneity of multi-modal data complicates effective feature extraction, while the multi-scale cross-modal feature fusion encounters a semantic gap issue. To address these challenges, a novel building extraction network based on multi-modal remote sensing data called SDA-les (AGAFMs) was designed in the decoding stage to fuse multi-modal features at various scales, which dynamically adjust the importance of features from a global perspective to better balance the semantic information. The superior performance of the proposed method is demonstrated through comprehensive evaluations on the ISPRS Potsdam dataset with 97.66% F1 score and 95.42% IoU, the ISPRS Vaihingen dataset with 96.56% F1 score and 93.35% IoU, and the DFC23 Track2 dataset with 91.35% F1 score and 84.08% IoU. Full article
Show Figures

Figure 1

Back to TopTop