Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (932)

Search Parameters:
Keywords = motion control strategies

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 7960 KB  
Article
High-Precision Dynamic Tracking Control Method Based on Parallel GRU–Transformer Prediction and Nonlinear PD Feedforward Compensation Fusion
by Yimin Wang, Junjie Wang, Kaina Gao, Jianping Xing and Bin Liu
Mathematics 2025, 13(17), 2759; https://doi.org/10.3390/math13172759 - 27 Aug 2025
Abstract
In high-precision fields such as advanced manufacturing, semiconductor processing, aerospace assembly, and precision machining, motion control systems often face challenges such as large tracking errors and low control efficiency due to complex dynamic environments. To address this, this paper innovatively proposes a data-driven [...] Read more.
In high-precision fields such as advanced manufacturing, semiconductor processing, aerospace assembly, and precision machining, motion control systems often face challenges such as large tracking errors and low control efficiency due to complex dynamic environments. To address this, this paper innovatively proposes a data-driven feedforward compensation control strategy based on a Parallel Gated Recurrent Unit (GRU)–Transformer. This method does not require an accurate model of the controlled object but instead uses motion error data and controller output data collected from actual operating conditions to complete network training and real-time prediction, thereby reducing data requirements. The proposed feedforward control strategy consists of three main parts: first, a Parallel GRU–Transformer prediction model is constructed using real-world data collected from high-precision sensors, enabling precise prediction of system motion errors after a single training session; second, a nonlinear PD controller is introduced, using the prediction errors output by the Parallel GRU–Transformer network as input to generate the primary correction force, thereby significantly reducing reliance on the main controller; and finally, the output of the nonlinear PD controller is combined with the output of the main controller to jointly drive the precision motion platform. Verification on a permanent magnet synchronous linear motor motion platform demonstrates that the control strategy integrating Parallel GRU–Transformer feedforward compensation significantly reduces the tracking error and fluctuations under different trajectories while minimizing moving average (MA) and moving standard deviation (MSD), enhancing the system’s robustness against environmental disturbances and effectively alleviating the load on the main controller. The proposed method provides innovative insights and reliable guarantees for the widespread application of precision motion control in industrial and research fields. Full article
Show Figures

Figure 1

37 pages, 6312 KB  
Article
An Empirical Study on the Impact of Different Interaction Methods on User Emotional Experience in Cultural Digital Design
by Jing Zhao, Yiming Ma, Xinran Zhang, Hui Lin, Yi Lu, Ruiyan Wu, Ziying Zhang and Feng Zou
Sensors 2025, 25(17), 5273; https://doi.org/10.3390/s25175273 - 25 Aug 2025
Viewed by 177
Abstract
Traditional culture plays a vital role in shaping national identity and emotional belonging, making it imperative to explore innovative strategies for its digital preservation and engagement. This study investigates how interaction design in cultural digital games influences users’ emotional experiences and cultural understanding. [...] Read more.
Traditional culture plays a vital role in shaping national identity and emotional belonging, making it imperative to explore innovative strategies for its digital preservation and engagement. This study investigates how interaction design in cultural digital games influences users’ emotional experiences and cultural understanding. Centering on the Chinese intangible cultural heritage puppet manipulation, we developed an interactive cultural game with three modes: gesture-based interaction via Leap Motion, keyboard control, and passive video viewing. A multimodal evaluation framework was employed, integrating subjective questionnaires with physiological indicators, including Functional Near-Infrared Spectroscopy (fNIRS), infrared thermography (IRT), and electrodermal activity (EDA), to assess users’ emotional responses, immersion, and perception of cultural content. Results demonstrated that gesture-based interaction, which aligns closely with the embodied cultural behavior of puppet manipulation, significantly enhanced users’ emotional engagement and cultural comprehension compared to the other two modes. Moreover, fNIRS data revealed broader activation in brain regions associated with emotion regulation and cognitive control during gesture interaction. These findings underscore the importance of culturally congruent interaction design in enhancing user experience and emotional resonance in digital cultural applications. This study provides empirical evidence supporting the integration of cultural context into interaction strategies, offering valuable insights for the development of emotionally immersive systems for intangible cultural heritage preservation. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

32 pages, 2264 KB  
Systematic Review
Intention Prediction for Active Upper-Limb Exoskeletons in Industrial Applications: A Systematic Literature Review
by Dominik Hochreiter, Katharina Schmermbeck, Miguel Vazquez-Pufleau and Alois Ferscha
Sensors 2025, 25(17), 5225; https://doi.org/10.3390/s25175225 - 22 Aug 2025
Viewed by 140
Abstract
Intention prediction is essential for enabling intuitive and adaptive control in upper-limb exoskeletons, especially in dynamic industrial environments. However, the suitability of different cues, sensors, and computational models for real-world industrial applications remains unclear. This systematic review, conducted according to PRISMA guidelines, analyzes [...] Read more.
Intention prediction is essential for enabling intuitive and adaptive control in upper-limb exoskeletons, especially in dynamic industrial environments. However, the suitability of different cues, sensors, and computational models for real-world industrial applications remains unclear. This systematic review, conducted according to PRISMA guidelines, analyzes 29 studies published between 2007 and 2024 that investigate intention prediction in active exoskeletons. Most studies rely on motion capture (14) and electromyography (14) to estimate joint torque or trajectories, predicting from 450 ms before to 660 ms after motion onset. Approaches include model-based and model-free regression, as well as classification methods, but vary significantly in complexity, sensor setups, and evaluation procedures. Only a subset evaluates usability or support effectiveness, often under laboratory conditions with small, non-representative participant groups. Based on these insights, we outline recommendations for robust and adaptable intention prediction tailored to industrial task requirements. We propose four generalized support modes to guide sensor selection and control strategies in practical applications. Future research should leverage wearable sensors, integrate cognitive and contextual cues, and adopt transfer learning, federated learning, or LLM-based feedback mechanisms. Additionally, studies should prioritize real-world validation, diverse participant samples, and comprehensive evaluation metrics to support scalable, acceptable deployment of exoskeletons in industrial settings. Full article
(This article belongs to the Section Sensors and Robotics)
Show Figures

Figure 1

27 pages, 3487 KB  
Article
Multi-Objective Energy-Efficient Driving for Four-Wheel Hub Motor Unmanned Ground Vehicles
by Yongjuan Zhao, Jiangyong Mi, Chaozhe Guo, Haidi Wang, Lijin Wang and Hailong Zhang
Energies 2025, 18(17), 4468; https://doi.org/10.3390/en18174468 - 22 Aug 2025
Viewed by 226
Abstract
Given the growing need for high-performance operation of 4WID-UGVs, coordinated optimization of trajectory tracking, vehicle stability, and energy efficiency poses a challenge. Existing control strategies often fail to effectively balance these multiple objectives, particularly in integrating energy-saving goals while ensuring precise trajectory following [...] Read more.
Given the growing need for high-performance operation of 4WID-UGVs, coordinated optimization of trajectory tracking, vehicle stability, and energy efficiency poses a challenge. Existing control strategies often fail to effectively balance these multiple objectives, particularly in integrating energy-saving goals while ensuring precise trajectory following and stable vehicle motion. Thus, a hierarchical control architecture based on Model Predictive Control (MPC) is proposed. The upper-level controller focuses on trajectory tracking accuracy and computes the optimal longitudinal acceleration and additional yaw moment using a receding horizon optimization scheme. The lower-level controller formulates a multi-objective allocation model that integrates vehicle stability, energy consumption, and wheel utilization, translating the upper-level outputs into precise steering angles and torque commands for each wheel. This work innovatively integrates multi-objective optimization more comprehensively within the intelligent vehicle context. To validate the proposed approach, simulation experiments were conducted on S-shaped and circular paths. The results show that the proposed method can keep the average lateral and longitudinal tracking errors at about 0.2 m, while keeping the average efficiency of the wheel hub motor above 85%. This study provides a feasible and effective control strategy for achieving high-performance, energy-saving autonomous driving of distributed drive vehicles. Full article
Show Figures

Figure 1

21 pages, 3373 KB  
Article
RBF Neural Network-Based Anti-Disturbance Trajectory Tracking Control for Wafer Transfer Robot Under Variable Payload Conditions
by Bo Xu, Luyao Yuan and Hao Yu
Appl. Sci. 2025, 15(16), 9193; https://doi.org/10.3390/app15169193 - 21 Aug 2025
Viewed by 279
Abstract
Variations in the drive motor’s load inertia during wafer transfer robot arm motion critically degrade end-effector trajectory accuracy. To address this challenge, this study proposes an anti-disturbance control strategy integrating Radial Basis Function Neural Network (RBFNN) and event-triggered mechanisms. Firstly, dynamic simulations reveal [...] Read more.
Variations in the drive motor’s load inertia during wafer transfer robot arm motion critically degrade end-effector trajectory accuracy. To address this challenge, this study proposes an anti-disturbance control strategy integrating Radial Basis Function Neural Network (RBFNN) and event-triggered mechanisms. Firstly, dynamic simulations reveal that nonlinear load inertia growth increases joint reaction forces and diminishes trajectory precision. The RBFNN dynamically approximates system nonlinearities, while an adaptive law updates its weights online to compensate for load variations and external disturbances. Secondly, an event-triggered mechanism is introduced, updating the controller only when specific conditions are met, thereby reducing communication burden and actuator wear. Subsequently, Lyapunov stability analysis proves the closed-loop system is Uniformly Ultimately Bounded (UUB) and prevents Zeno behavior. Finally, simulations on a planar 2-DOF manipulator demonstrate significantly enhanced trajectory tracking accuracy under variable loads. Critically, the adaptive neural network control method reduces trajectory tracking error by 50% and decreases controller update frequency by 84.7%. This work thus provides both theoretical foundations and engineering references for high-precision wafer transfer robot control. Full article
Show Figures

Figure 1

35 pages, 4494 KB  
Review
Research Progress on Control Algorithms for Grain Combine Harvesters
by Zhihan Chen, Zhenjie Qian, Chengqian Jin and Tengxiang Yang
Appl. Sci. 2025, 15(16), 9176; https://doi.org/10.3390/app15169176 - 20 Aug 2025
Viewed by 151
Abstract
Intelligent control algorithms are essential for enhancing combine harvester efficiency and minimizing losses, especially as global food demand rises and labor shortages become more severe. This paper provides a comprehensive overview of the evolutionary progression from single-subsystem control to the current core challenge [...] Read more.
Intelligent control algorithms are essential for enhancing combine harvester efficiency and minimizing losses, especially as global food demand rises and labor shortages become more severe. This paper provides a comprehensive overview of the evolutionary progression from single-subsystem control to the current core challenge of multi-system co-optimization. We examine the technological development of the cutter, threshing, scavenging, and motion control systems, highlighting persistent bottlenecks that impede global performance improvements due to parameter coupling and conflicting objectives. This review serves as a reference for future advancements in the field. Future research should focus on lightweight reinforcement learning, hybrid control strategies, multimodal perception, and dynamic optimization frameworks for digital twins to drive technological breakthroughs and practical applications. Full article
(This article belongs to the Section Agricultural Science and Technology)
Show Figures

Figure 1

20 pages, 2803 KB  
Article
Fuzzy Fault-Tolerant Following Control of Bionic Robotic Fish Based on Model Correction
by Yu Wang, Jian Wang, Huijie Dong, Di Chen, Shihan Kong and Junzhi Yu
Biomimetics 2025, 10(8), 548; https://doi.org/10.3390/biomimetics10080548 - 20 Aug 2025
Viewed by 167
Abstract
Fault-tolerant control for bionic robotic fish presents significant challenges due to the complex dynamics and asymmetric propulsion introduced by joint failures. To address this issue, this paper proposes a fault-tolerant following control framework for multi-joint bionic robotic fish by combining fuzzy control methodologies [...] Read more.
Fault-tolerant control for bionic robotic fish presents significant challenges due to the complex dynamics and asymmetric propulsion introduced by joint failures. To address this issue, this paper proposes a fault-tolerant following control framework for multi-joint bionic robotic fish by combining fuzzy control methodologies and dynamic model correction. Firstly, offline fault analysis is conducted based on the dynamic model under multi-variable parameter conditions, quantitatively deriving influence factor functions that characterize the effects of different joint faults on velocity and yaw performance of the robotic fish. Secondly, an adaptive-period yaw filtering algorithm combined with an improved line-of-sight navigation method is employed to accommodate the motion characteristics of bionic robotic fish. Thirdly, a dual-loop following control strategy based on fuzzy algorithms is designed, comprising coordinated velocity and yaw control loops, where velocity and yaw influence factors serve as fuzzy controller inputs with expert experience-based rule construction. Finally, extensive numerical simulations are conducted to verify the effectiveness of the proposed method. The obtained results indicate that the bionic robotic fish can achieve fault-tolerant following control under multiple fault types, offering a valuable solution for underwater operations in complex marine environments. Full article
(This article belongs to the Special Issue Biorobotics: Challenges and Opportunities)
Show Figures

Figure 1

17 pages, 1266 KB  
Article
Stretching Before Resistance Training as a Strategy to Improve Stair Descent Performance in Older Women
by Vittoria Ferrando, Marco Panascì, Ambra Bisio, Valentina Chiarotti, Federica Marmondi, Matteo Bonato, Piero Ruggeri and Emanuela Faelli
Sports 2025, 13(8), 276; https://doi.org/10.3390/sports13080276 - 20 Aug 2025
Viewed by 176
Abstract
Background: Aging is associated with reduced joint flexibility and balance, which increases the risk of falls, especially during stair descent where motor control is critical. Stretching has been shown to improve ankle range of motion and gait speed. This study investigated the [...] Read more.
Background: Aging is associated with reduced joint flexibility and balance, which increases the risk of falls, especially during stair descent where motor control is critical. Stretching has been shown to improve ankle range of motion and gait speed. This study investigated the effects of a 4-week training program combining stretching plus resistance training (RT) with elastic bands on functional capacity and ankle stability during stair descent in older women. Methods: Twenty-four active older women (mean age: 73.1 ± 0.97 years) were randomly assigned to static stretching (SS), dynamic stretching (DS) and control (CG) groups. All participants completed two weekly 60 min sessions consisting of progressive RT preceded by three different warm-ups. The SS and DS groups completed static or dynamic stretching, while the CG walked. Assessments included 30s-Chair Stand (30s-CS), Handgrip Strength (HGS), Time Up and Go (TUG), Chair Sit and Reach (CSR), Rating of Perceived Exertion (RPE), and ankle kinematics during stair descent. Results: All groups improved 30s-CS and TUG (p < 0.05). Only the SS group improved CSR in both legs and the ankle dorsiflexion angle during stair descent at final foot contact (p = 0.002). RPE increased over time across all groups (p < 0.0001); however, the SS and DS groups reported lower exertion than the CG group in first–second weeks (p = 0.0001–0.003). Conclusions: SS prior to progressive RT improved flexibility and ankle kinematics during stair descent, thus reducing the perception of effort particularly during the initial training phase. These findings indicate the effectiveness of SS as a warm-up strategy for increasing ROM and potentially reducing the risk of falls in this population. Full article
(This article belongs to the Special Issue Effects of Stretching on Performance)
Show Figures

Figure 1

26 pages, 66652 KB  
Article
Modeling and Analysis of Surface Motion Characteristics for a Dual-Propulsion Amphibious Spherical Robot
by Hongqun Zou, Fengqi Zhang, Meng Wang, You Wang and Guang Li
Appl. Sci. 2025, 15(16), 8998; https://doi.org/10.3390/app15168998 - 14 Aug 2025
Viewed by 364
Abstract
This study introduces an amphibious spherical robot equipped with a dual-propulsion system (ASR-DPS) and investigates its water-surface motion characteristics. Due to its distinctive spherical geometry, the robot exhibits markedly different hydrodynamic behavior compared to conventional vessels. A comparative analysis of the frontal wetted [...] Read more.
This study introduces an amphibious spherical robot equipped with a dual-propulsion system (ASR-DPS) and investigates its water-surface motion characteristics. Due to its distinctive spherical geometry, the robot exhibits markedly different hydrodynamic behavior compared to conventional vessels. A comparative analysis of the frontal wetted area is performed, followed by computational fluid dynamics (CFD) simulations to assess water-surface performance. The results indicate that the hemispherical bow increases hydrodynamic resistance and generates large-scale vortex structures as a consequence of intensified flow separation. Although the resistance is higher than that of traditional hulls, the robot’s greater draft and dual-propulsion configuration enhance stability and maneuverability during surface operations. To validate real-world performance, standard maneuvering tests, including circle and zig-zag maneuvers, are conducted to evaluate the effectiveness of the propeller-based propulsion system. The robot achieves a maximum surface speed of 1.2 m/s and a zero turning radius, with a peak yaw rate of 0.54 rad/s under differential thrust. Additionally, experiments on the pendulum-based propulsion system demonstrate a maximum speed of 0.239 m/s with significantly lower energy consumption (220.6 Wh at 60% throttle). A four-degree-of-freedom kinematic and dynamic model is formulated to describe the water-surface motion. To address model uncertainties and external disturbances, two control strategies are proposed: one employing model simplification and the other adaptive control. Simulation results confirm that the adaptive sliding mode controller provides precise surge speed tracking and smooth yaw regulation with near-zero steady-state error, exhibiting superior robustness and reduced chattering compared to the baseline controller. Full article
(This article belongs to the Special Issue Control Systems in Mechatronics and Robotics)
Show Figures

Figure 1

31 pages, 6032 KB  
Article
Event-Based Closed-Loop Control for Path Following of a Purcell’s Three-Link Swimmer
by Cristina Nuevo-Gallardo, Luis Mérida-Calvo, Inés Tejado, Blas M. Vinagre and Vicente Feliu-Batlle
Robotics 2025, 14(8), 110; https://doi.org/10.3390/robotics14080110 - 14 Aug 2025
Viewed by 165
Abstract
Purcell’s three-link swimmers, characterised by segments connected through one-degree-of-freedom joints, exhibit a difficulty in following precise paths. This is attributed to their motion primitives, which do not inherently generate displacement in a singular, predictable direction. To overcome this limitation, this paper proposes a [...] Read more.
Purcell’s three-link swimmers, characterised by segments connected through one-degree-of-freedom joints, exhibit a difficulty in following precise paths. This is attributed to their motion primitives, which do not inherently generate displacement in a singular, predictable direction. To overcome this limitation, this paper proposes a closed-loop control strategy on the basis of event-based control. This control approach enables the robot to perform a specific motion primitive when the deviation from the desired trajectory exceeds a predefined threshold. In other words, an asynchronous strategy is used to adjust the motion of the swimmer, thereby ensuring tracking of the desired path with a limited error. The effectiveness of this closed-loop control strategy is demonstrated through experiments with a motor-driven 30 cm-length prototype. These tests show that this event-based control strategy allows the swimmer to follow specific paths with a tracking error of less than 30% of its length. Full article
(This article belongs to the Special Issue Adaptive and Nonlinear Control of Robotics)
Show Figures

Figure 1

26 pages, 3065 KB  
Article
A Kangaroo Escape Optimizer-Enabled Fractional-Order PID Controller for Enhancing Dynamic Stability in Multi-Area Power Systems
by Sulaiman Z. Almutairi and Abdullah M. Shaheen
Fractal Fract. 2025, 9(8), 530; https://doi.org/10.3390/fractalfract9080530 - 14 Aug 2025
Viewed by 411
Abstract
In this study, we propose a novel metaheuristic algorithm named Kangaroo Escape optimization Technique (KET), inspired by the survival-driven escape strategies of kangaroos in unpredictable environments. The algorithm integrates a chaotic logistic energy adaptation strategy to balance a two-phase exploration process—zigzag motion and [...] Read more.
In this study, we propose a novel metaheuristic algorithm named Kangaroo Escape optimization Technique (KET), inspired by the survival-driven escape strategies of kangaroos in unpredictable environments. The algorithm integrates a chaotic logistic energy adaptation strategy to balance a two-phase exploration process—zigzag motion and long-jump escape—and an adaptive exploitation phase with local search guided by either nearby elite solutions or random peers. A unique decoy drop mechanism is introduced to prevent premature convergence and ensure dynamic diversity. KET is applied to optimize the parameters of a fractional-order Proportional Integral Derivative (PID) controller for Load Frequency Control (LFC) in interconnected power systems. The designed fractional-order PID controller-based KET optimization extends the conventional PID by introducing fractional calculus into the integral and derivative terms, allowing for more flexible and precise control dynamics. This added flexibility enables enhanced robustness and tuning capability, particularly useful in complex and uncertain systems such as modern power systems. Comparative results with existing state-of-the-art algorithms demonstrate the superior robustness, convergence speed, and control accuracy of the proposed approach under dynamic scenarios. The proposed KET-fractional order PID controller offers 29.6% greater robustness under worst-case conditions and 36% higher consistency across multiple runs compared to existing techniques. It achieves optimal performance faster than the Neural Network Algorithm (NNA), achieving its best Integral of Time Absolute Error (ITAE) value within the first 20 iterations, demonstrating its superior learning rate and early-stage search efficiency. In addition to LFC, the robustness and generality of the proposed KET were validated on a standard speed reducer design problem, demonstrating superior optimization performance and consistent convergence when compared to several recent metaheuristics. Full article
Show Figures

Figure 1

34 pages, 2325 KB  
Review
Enhancing Structural Resilience for Sustainable Infrastructure: A Global Review of Seismic Isolation and Energy Dissipation Practices
by Musab A. Q. Al-Janabi, Duaa Al-Jeznawi, T. Y. Yang, Luís Filipe Almeida Bernardo and Jorge Miguel de Almeida Andrade
Sustainability 2025, 17(16), 7314; https://doi.org/10.3390/su17167314 - 13 Aug 2025
Viewed by 724
Abstract
Seismic isolation and energy dissipation systems are essential technologies for enhancing the resilience and sustainability of buildings and infrastructure exposed to earthquake-induced ground motions. By reducing structural damage, protecting non-structural components, and ensuring post-earthquake functionality, these systems contribute to minimizing economic loss, preserving [...] Read more.
Seismic isolation and energy dissipation systems are essential technologies for enhancing the resilience and sustainability of buildings and infrastructure exposed to earthquake-induced ground motions. By reducing structural damage, protecting non-structural components, and ensuring post-earthquake functionality, these systems contribute to minimizing economic loss, preserving human life, and supporting long-term community resilience. This review focuses exclusively on passive control systems, such as base isolators and damping devices, commonly codified and implemented in current engineering practice. A comprehensive analysis of international design codes and performance-based practices is presented, highlighting the role of these systems in promoting sustainable infrastructure through risk mitigation and extended service life. The study identifies critical gaps in global standards and testing protocols, advocating for harmonized and forward-looking approaches. The findings aim to inform seismic design strategies that align with the principles of environmental, economic, and social sustainability. Full article
(This article belongs to the Special Issue Earthquake Engineering and Sustainable Structures)
Show Figures

Figure 1

25 pages, 3078 KB  
Article
Research on Hierarchical Composite Adaptive Sliding Mode Control for Position and Attitude of Hexarotor UAVs
by Xiaowei Han, Hai Wang, Nanmu Hui and Gaofeng Yue
Actuators 2025, 14(8), 401; https://doi.org/10.3390/act14080401 - 12 Aug 2025
Viewed by 223
Abstract
This study proposes a hierarchical composite adaptive sliding-mode control strategy to address the strong nonlinear dynamics of a hexarotor Unmanned Aerial Vehicle (UAV) and the external disturbances encountered during flight. First, within the position-control loop, a Terminal Sliding Mode Control (TSMC) is designed [...] Read more.
This study proposes a hierarchical composite adaptive sliding-mode control strategy to address the strong nonlinear dynamics of a hexarotor Unmanned Aerial Vehicle (UAV) and the external disturbances encountered during flight. First, within the position-control loop, a Terminal Sliding Mode Control (TSMC) is designed to guarantee finite-time convergence of the system states, thereby significantly improving the UAV’s rapid response to complex trajectories. Concurrently, an online Adaptive rates mechanism is introduced to estimate and compensate unknown disturbances and modeling uncertainties in real time, further enhancing disturbance rejection. In the attitude-control loop, a Super-twisting Sliding Mode Control (STSMC) method is employed, where an Adaptive rate law dynamically adjusts the sliding gain to prevent overestimation and high-frequency chattering, while ensuring fast convergence and smooth response. To comprehensively validate the feasibility and superiority of the proposed scheme, a representative helical trajectory-tracking experiment was conducted and systematically compared, via simulation, against conventional control methods. Experimental results demonstrate that the proposed approach achieves stable control within 0.15 s, with maximum position and attitude tracking errors of 0.05 m and 0.15°, respectively. Moreover, it exhibits enhanced robustness and adaptability to external disturbances and parameter uncertainties, effectively improving the motion-control performance of hexacopter UAVs in complex missions. Full article
(This article belongs to the Section Aerospace Actuators)
Show Figures

Figure 1

26 pages, 2752 KB  
Article
Intelligent Impedance Strategy for Force–Motion Control of Robotic Manipulators in Unknown Environments via Expert-Guided Deep Reinforcement Learning
by Hui Shao, Weishi Hu, Li Yang, Wei Wang, Satoshi Suzuki and Zhiwei Gao
Processes 2025, 13(8), 2526; https://doi.org/10.3390/pr13082526 - 11 Aug 2025
Viewed by 569
Abstract
In robotic force–motion interaction tasks, ensuring stable and accurate force tracking in environments with unknown impedance and time-varying contact dynamics remains a key challenge. Addressing this, the study presents an intelligent impedance control (IIC) strategy that integrates model-based insights with deep reinforcement learning [...] Read more.
In robotic force–motion interaction tasks, ensuring stable and accurate force tracking in environments with unknown impedance and time-varying contact dynamics remains a key challenge. Addressing this, the study presents an intelligent impedance control (IIC) strategy that integrates model-based insights with deep reinforcement learning (DRL) to improve adaptability and robustness in complex manipulation scenarios. The control problem is formulated as a Markov Decision Process (MDP), and the Deep Deterministic Policy Gradient (DDPG) algorithm is employed to learn continuous impedance policies. To accelerate training and improve convergence stability, an expert-guided initialization strategy is introduced based on iterative error feedback, providing a weak-model-based demonstration to guide early exploration. To rigorously assess the impact of contact uncertainties on system behavior, a comprehensive performance analysis is conducted by utilizing a time- and frequency-domain approach, offering deep insights into how impedance modulation shapes both transient dynamics and steady-state accuracy across varying environmental conditions. A high-fidelity simulation platform based on MATLAB (version 2021b) multi-toolbox co-simulation is developed to emulate realistic robotic contact conditions. Quantitative results show that the IIC framework significantly reduces settling time, overshoot, and undershoot under dynamic contact conditions, while maintaining stability and generalization across a broad range of environments. Full article
Show Figures

Figure 1

40 pages, 7578 KB  
Article
Guidance and Control Architecture for Rendezvous and Approach to a Non-Cooperative Tumbling Target
by Agostino Madonna, Giuseppe Napolano, Alessia Nocerino, Roberto Opromolla, Giancarmine Fasano and Michele Grassi
Aerospace 2025, 12(8), 708; https://doi.org/10.3390/aerospace12080708 - 10 Aug 2025
Viewed by 328
Abstract
This paper proposes a novel Guidance and Control architecture for close-range rendezvous and final approach of a chaser spacecraft towards a non-cooperative and tumbling space target. In both phases, reference trajectory generation relies on a Sequential Convex Programming algorithm which iteratively solves a [...] Read more.
This paper proposes a novel Guidance and Control architecture for close-range rendezvous and final approach of a chaser spacecraft towards a non-cooperative and tumbling space target. In both phases, reference trajectory generation relies on a Sequential Convex Programming algorithm which iteratively solves a non-linear optimization problem accounting for propellant consumption, relative dynamics, collision avoidance and navigation sensor pointing constraints. At close range, trajectory tracking is entrusted to a translational H-infinity controller, coupled with a quaternion-feed-back regulator for target pointing. In the final approach phase, an attitude-pointing strategy is adopted, requiring a six degree-of-freedom H-infinity controller to follow a reference roto-translational trajectory generated to ensure target-chaser motion synchronization. Performance is evaluated in a high-fidelity simulation environment that includes environmental perturbations, navigation errors, and actuator (i.e., cold gas thrusters and reaction wheels) modelling. In particular, the latter aspects are also addressed by integrating the proposed solution within a complete Guidance, Navigation and Control pipeline including a state-of-the-art LIDAR-based relative navigation filter and a dispatching function for the distribution of commanded control actions to the actuation system. A statistical analysis on 1000 simulations shows the robustness of the proposed approach, achieving centimeter-level position accuracy and sub-degree attitude accuracy near the docking/berthing point. Full article
Show Figures

Figure 1

Back to TopTop