Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = motion-tolerance of ITV-based planning

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1586 KB  
Article
Interplay Effect of Splenic Motion for Total Lymphoid Irradiation in Pediatric Proton Therapy
by Ozgur Ates, Jinsoo Uh, Fakhriddin Pirlepesov, Chia-ho Hua, Brandon Triplett, Amr Qudeimat, Akshay Sharma, Thomas E. Merchant and John T. Lucas
Cancers 2023, 15(21), 5161; https://doi.org/10.3390/cancers15215161 - 26 Oct 2023
Viewed by 1296
Abstract
(1) Background: The most significant cause of an unacceptable deviation from the planned dose during respiratory motion is the interplay effect. We examined the correlation between the magnitude of splenic motion and its impact on plan quality for total lymphoid irradiation (TLI); (2) [...] Read more.
(1) Background: The most significant cause of an unacceptable deviation from the planned dose during respiratory motion is the interplay effect. We examined the correlation between the magnitude of splenic motion and its impact on plan quality for total lymphoid irradiation (TLI); (2) Methods: Static and 4D CT images from ten patients were used for interplay effect simulations. Patients’ original plans were optimized based on the average CT extracted from the 4D CT and planned with two posterior beams using scenario-based optimization (±3 mm of setup and ±3% of range uncertainty) and gradient matching at the level of mid-spleen. Dynamically accumulated 4D doses (interplay effect dose) were calculated based on the time-dependent delivery sequence of radiation fluence across all phases of the 4D CT. Dose volume parameters for each simulated treatment delivery were evaluated for plan quality; (3) Results: Peak-to-peak splenic motion (≤12 mm) was measured from the 4D CT of ten patients. Interplay effect simulations revealed that the ITV coverage of the spleen remained within the protocol tolerance for splenic motion, ≤8 mm. The D100% coverage for ITV spleen decreased from 95.0% (nominal plan) to 89.3% with 10 mm and 87.2% with 12 mm of splenic motion; (4) Conclusions: 4D plan evaluation and robust optimization may overcome problems associated with respiratory motion in proton TLI treatments. Patient-specific respiratory motion evaluations are essential to confirming adequate dosimetric coverage when proton therapy is utilized. Full article
(This article belongs to the Collection Particle Therapy: State-of-the-Art and Future Prospects)
Show Figures

Figure 1

13 pages, 1841 KB  
Article
A Simulation Study of Tolerance of Breathing Amplitude Variations in Radiotherapy of Lung Cancer Using 4DCT and Time-Resolved 4DMRI
by Guang Li, Admir Sehovic, Lee Xu, Pawas Shukla, Lei Zhang, Ying Zhou, Ping Wang, Abraham Wu, Andreas Rimner and Pengpeng Zhang
J. Clin. Med. 2022, 11(24), 7390; https://doi.org/10.3390/jcm11247390 - 13 Dec 2022
Cited by 2 | Viewed by 2288
Abstract
As patient breathing irregularities can introduce a large uncertainty in targeting the internal tumor volume (ITV) of lung cancer patients, and thereby affect treatment quality, this study evaluates dose tolerance of tumor motion amplitude variations in ITV-based volumetric modulated arc therapy (VMAT). A [...] Read more.
As patient breathing irregularities can introduce a large uncertainty in targeting the internal tumor volume (ITV) of lung cancer patients, and thereby affect treatment quality, this study evaluates dose tolerance of tumor motion amplitude variations in ITV-based volumetric modulated arc therapy (VMAT). A motion-incorporated planning technique was employed to simulate treatment delivery of 10 lung cancer patients’ clinical VMAT plans using original and three scaling-up (by 0.5, 1.0, and 2.0 cm) motion waveforms from single-breath four-dimensional computed tomography (4DCT) and multi-breath time-resolved 4D magnetic resonance imaging (TR-4DMRI). The planning tumor volume (PTV = ITV + 5 mm margin) dose coverage (PTV D95%) was evaluated. The repeated waveforms were used to move the isocenter in sync with the clinical leaf motion and gantry rotation. The continuous VMAT arcs were broken down into many static beam fields at the control points (2°-interval) and the composite plan represented the motion-incorporated VMAT plan. Eight motion-incorporated plans per patient were simulated and the plan with the native 4DCT waveform was used as a control. The first (D95% ≤ 95%) and second (D95% ≤ 90%) plan breaching points due to motion amplitude increase were identified and analyzed. The PTV D95% in the motion-incorporated plans was 99.4 ± 1.0% using 4DCT, closely agreeing with the corresponding ITV-based VMAT plan (PTV D95% = 100%). Tumor motion irregularities were observed in TR-4DMRI and triggered D95% ≤ 95% in one case. For small tumors, 4 mm extra motion triggered D95% ≤ 95%, and 6–8 mm triggered D95% ≤ 90%. For large tumors, 14 mm and 21 mm extra motions triggered the first and second breaching points, respectively. This study has demonstrated that PTV D95% breaching points may occur for small tumors during treatment delivery. Clinically, it is important to monitor and avoid systematic motion increase, including baseline drift, and large random motion spikes through threshold-based beam gating. Full article
(This article belongs to the Collection Advances of MRI in Radiation Oncology)
Show Figures

Figure 1

Back to TopTop