Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = movement and diffusion of droplet particles

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 8425 KiB  
Article
A New Method Proposed for Analyzing Airflow Dynamics in Negative Pressure Isolation Chambers Using Particle Image Velocimetry
by Min Jae Oh, Jung Min Moon, Seung Cheol Ko, Min Ji Kim, Ki Sub Sung, Jung Woo Lee, Ju Young Hong, Joon Sang Lee and Yong Hyun Kim
Bioengineering 2025, 12(3), 302; https://doi.org/10.3390/bioengineering12030302 - 17 Mar 2025
Viewed by 376
Abstract
The COVID-19 pandemic has highlighted the significant infection risks posed by aerosol generating procedures (AGPs). We developed a hood that covers the patient’s respiratory area, incorporating a negative pressure system to contain aerosols. This study analyzed the movement and containment of aerosols within [...] Read more.
The COVID-19 pandemic has highlighted the significant infection risks posed by aerosol generating procedures (AGPs). We developed a hood that covers the patient’s respiratory area, incorporating a negative pressure system to contain aerosols. This study analyzed the movement and containment of aerosols within a developed negative pressure isolation chamber. Using particle image velocimetry (PIV) technology, in the optimized design, the characteristics of aerosols were analyzed under both negative and non-negative pressure conditions. The results demonstrated that in the absence of negative pressure, droplets dispersed widely, with diffusion angles ranging from 26.9° to 34.2°, significantly increasing the risk of external leakage. When negative pressure was applied, the diffusion angles narrowed to 20.0–35.1° and inward airflow effectively directed droplets away from the chamber boundary, preventing external dispersion. Additionally, sensor data measuring particle concentrations confirmed that droplets smaller than 10 µm were fully contained under negative pressure, strongly supporting the chamber’s effectiveness. The strong agreement between PIV flow patterns and sensor measurements underscores the reliability of the experimental methodology. These findings highlight the chamber’s ability to suppress external leakage while offering superior flexibility and portability compared to conventional isolation systems, making it ideal for emergency responses, mobile healthcare units, and large-scale infectious disease outbreaks. Full article
(This article belongs to the Section Biosignal Processing)
Show Figures

Graphical abstract

24 pages, 1830 KiB  
Review
Migration Movements of Accidentally Spilled Oil in Environmental Waters: A Review
by Anqi Jiang, Longxi Han, Chenfang Wang and Jinjing Zhao
Water 2023, 15(23), 4092; https://doi.org/10.3390/w15234092 - 25 Nov 2023
Cited by 4 | Viewed by 1823
Abstract
Accidentally spilled oil can cause great harm to the ecological balance of water once it enters the environmental waters. Clarifying its movement behavior and migration law in water has been the focus of environmental hydraulics research. This review starts from the mechanism of [...] Read more.
Accidentally spilled oil can cause great harm to the ecological balance of water once it enters the environmental waters. Clarifying its movement behavior and migration law in water has been the focus of environmental hydraulics research. This review starts from the mechanism of the oil spill migration process, and firstly reviews the kinematic characteristics of the smallest moving unit of the oil spill, the individual oil droplet, as well as focusing on several key aspects such as droplet shape, trajectory, terminal velocity and drag coefficient. Subsequently, considering the commonalities and differences between inland riverine and oceanic environments, different aspects of oil droplet collision, coalescence, breakage, particle size distribution, and vertical diffusion are discussed separately. Finally, the current status of research on the migration laws of accidental oil spills in environmental waters is summarized, and feasible future research directions are proposed to address the emerging research problems and research gaps. Full article
Show Figures

Graphical abstract

20 pages, 10017 KiB  
Article
Research on Airflow Optimization and Infection Risk Assessment of Medical Cabin of Negative-Pressure Ambulance
by Shuwen Zhou and Liwei Zhang
Sustainability 2022, 14(9), 4900; https://doi.org/10.3390/su14094900 - 19 Apr 2022
Cited by 4 | Viewed by 2428
Abstract
Medical cabins within negative-pressure ambulances currently only use the front air supply, which causes poor emission of infectious disease droplets. For this problem, based on the classification and design methods of airflow organization, the side and top supply airflow organization model has been [...] Read more.
Medical cabins within negative-pressure ambulances currently only use the front air supply, which causes poor emission of infectious disease droplets. For this problem, based on the classification and design methods of airflow organization, the side and top supply airflow organization model has been designed to study the influence of these airflow organization models on the spread of droplet particles. The distribution of droplet particles within airflow organization models, under conditions in which the patient is coughing and sneezing, is analyzed. According to the comparison and analysis of this distribution, the state of droplet particles, the emission efficiency, and the security coefficient are studied. The response surface method is used to optimize the emission efficiency and security coefficient of the airflow organization. According to the characteristics of the medical cabin within negative-pressure ambulances, a dose-response model is used to evaluate the infection risk of medical personnel and then the infection probability is obtained. These research results can be used to improve the ability of negative-pressure ambulances to prevent cross-infection. Full article
(This article belongs to the Topic Sustainable Built Environment)
Show Figures

Figure 1

15 pages, 4785 KiB  
Article
Exploring the Utility of Diffusing Wave Spectroscopy (DWS) as a Novel Tool for Early Detection of Stability Issues in Cosmetic Emulsions
by Mackenzie Kolman, Gregory Boland and Samiul Amin
Cosmetics 2021, 8(4), 99; https://doi.org/10.3390/cosmetics8040099 - 28 Oct 2021
Cited by 4 | Viewed by 5317
Abstract
In the current cosmetic and personal care industry, it is of great importance to have a technique that detects instabilities quickly and effectively, as consumers are demanding more innovative and sustainable ingredients. Diffusing wave spectroscopy (DWS) is a potential solution as it is [...] Read more.
In the current cosmetic and personal care industry, it is of great importance to have a technique that detects instabilities quickly and effectively, as consumers are demanding more innovative and sustainable ingredients. Diffusing wave spectroscopy (DWS) is a potential solution as it is a modern optical technique that can measure the spatial movement of particles or droplets in an emulsion—i.e., the mean square displacement (MSD), as a function of time. In the current investigation, systematic visual and diffusion behavior emulsion stability studies over a 3-h period on jojoba and avocado oil emulsions containing varying equal percentages of cocamidopropyl betaine (CAPB) and sodium lauryl ether sulfate (SLES) were conducted. The turbid emulsions studied had differing stabilities with unknown instability mechanisms to further explore if diffusing wave spectroscopy can offer a fast and early identification of problem cosmetic formulations. It was observed that, for emulsions displaying instability from 4 to 123 h, the greater the change in the MSD values over a 3-h period, the greater the instability of the emulsion. For all systems, the MSD values lowered and shifted to the right from hour 0 to hour 3. We conjecture that the emulsion droplets began to aggregate, potentially growing and giving rise to larger particles. The increasing particle size was the cause for the slowing down of the dynamics and thus diffusion, giving rise to the lowering of the MSD values. Our findings indicate that by testing an emulsion over a 3-h period, it is possible to determine whether it will be a problem formulation using DWS. Studies into this technology should be continued on a wider range of emulsions with known instability mechanisms to further our understanding of using DWS as a vital emulsion instability detector. Full article
(This article belongs to the Special Issue Feature Papers in Cosmetics in 2021)
Show Figures

Figure 1

Back to TopTop