Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (446)

Search Parameters:
Keywords = mtDNA analysis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 847 KB  
Article
Mitogenomic Alterations in Breast Cancer: Identification of Potential Biomarkers of Risk and Prognosis
by Carlos Jhovani Pérez-Amado, Amellalli Bazan-Cordoba, Laura Gómez-Romero, Julian Ramírez-Bello, Verónica Bautista-Piña, Alberto Tenorio-Torres, Eva Ruvalcaba-Limón, Felipe Villegas-Carlos, Diana Karen Mendiola-Soto, Alfredo Hidalgo-Miranda and Silvia Jiménez-Morales
Int. J. Mol. Sci. 2025, 26(17), 8456; https://doi.org/10.3390/ijms26178456 (registering DOI) - 30 Aug 2025
Viewed by 48
Abstract
Alterations in the mitochondrial genome (mtDNA) have been shown to be key in cancer development and could be useful as biomarkers for diagnosis, prognosis, and treatment. To identify mtDNA variants associated with breast cancer, we analyzed the whole mtDNA sequence from paired tissues [...] Read more.
Alterations in the mitochondrial genome (mtDNA) have been shown to be key in cancer development and could be useful as biomarkers for diagnosis, prognosis, and treatment. To identify mtDNA variants associated with breast cancer, we analyzed the whole mtDNA sequence from paired tissues (tumor–peripheral blood) of women with this malignancy and from peripheral blood samples of healthy women. The mtDNA mutational landscape, heteroplasmy levels of the variants, and mitochondrial ancestry were established. Comparative analysis between cases and controls revealed significant differences in the number and location of variants, as well as in the heteroplasmy levels. Cases showed higher mutation number in MT-ND5, tRNAs, and rRNAs genes; increased proportion of missense variants; and elevated mtDNA content, than controls. Notably, a high blood mtDNA mutational burden (OR = 3.83, CI: 1.89–7.95, p = 5.3 × 10−5) and five mtDNA variants showed association with the risk of breast cancer. Furthermore, a low tumor mutational burden (HR = 7.82, CI: 1.0–63.6, p = 0.05) and the haplogroup L (HR = 12.16, CI: 2.0–72.8, p = 0.0062) were associated with decreased overall and disease-free survival, respectively. Our study adds evidence of the potential usefulness of mtDNA variants as risk and prognosis biomarkers for breast cancer. Full article
(This article belongs to the Special Issue Molecular Genetics of Breast Cancer—Recent Progress)
17 pages, 2848 KB  
Article
Zileuton Attenuates Acute Kidney Injury in Glycerol-Induced Rhabdomyolysis by Regulating Myeloid-Derived Suppressor Cells in Mice
by Tae Won Lee, Eunjin Bae, Jin Hyun Kim, Myeong Hee Jung and Dong Jun Park
Int. J. Mol. Sci. 2025, 26(17), 8353; https://doi.org/10.3390/ijms26178353 - 28 Aug 2025
Viewed by 153
Abstract
Rhabdomyolysis is characterized by the breakdown of skeletal muscle tissue, frequently leading to acute kidney injury (AKI). Traditional conservative treatments have shown limited effectiveness in modifying the disease course, thereby necessitating targeted pharmacological approaches. Zileuton (Z), a selective inhibitor of 5-lipoxygenase (5-LOX), has [...] Read more.
Rhabdomyolysis is characterized by the breakdown of skeletal muscle tissue, frequently leading to acute kidney injury (AKI). Traditional conservative treatments have shown limited effectiveness in modifying the disease course, thereby necessitating targeted pharmacological approaches. Zileuton (Z), a selective inhibitor of 5-lipoxygenase (5-LOX), has demonstrated efficacy in enhancing renal function recovery in animal models of AKI induced by agents such as cisplatin, aminoglycosides, and polymyxins. The present study aimed to evaluate the therapeutic potential of a single dose of Z in mitigating rhabdomyolysis-induced AKI (RI-AKI) via modulation of myeloid-derived suppressor cells (MDSCs). Male C57BL/6 mice were assigned to four experimental groups: Sham (intraperitoneal administration of 0.9% saline), Z (single intraperitoneal injection of Z at 30 mg/kg body weight), glycerol (Gly; single intramuscular dose of 50% glycerol at 8 mL/kg), and glycerol plus Z (Z + Gly; concurrent administration of glycerol intramuscularly and Z intraperitoneally). Animals were sacrificed 24 h post-glycerol injection for analysis. Zileuton administration significantly improved renal function, as indicated by reductions in blood urea nitrogen (BUN) levels (129.7 ± 17.9 mg/dL in the Gly group versus 101.7 ± 6.8 mg/dL in the Z + Gly group, p < 0.05) and serum creatinine (Cr) levels (2.2 ± 0.3 mg/dL in the Gly group versus 0.9 ± 0.3 mg/dL in the Gly + Z group p < 0.05). Histopathological assessment revealed a marked decrease in tubular injury scores in the Z + Gly group compared to the Gly group. Molecular analyses demonstrated that Z treatment downregulated mRNA expression of macrophage-inducible C-type lectin (mincle) and associated macrophage infiltration-related factors, including Areg-1, Cx3cl1, and Cx3CR1, which were elevated 24 h following glycerol administration. Furthermore, the expression of NLRP-3, significantly upregulated post-glycerol injection, was attenuated by concurrent Z treatment. Markers of mitochondrial biogenesis, such as mitochondrial DNA (mtDNA), transcription factor A mitochondrial (TFAM), and carnitine palmitoyltransferase 1 alpha (CPT1α), were diminished 24 h after glycerol injection; however, their expression was restored upon simultaneous Z administration. Additionally, Z reduced protein levels of BNIP3, a marker of mitochondrial autophagy, while enhancing the expression of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), suggesting that Z ameliorates RI-AKI severity through the regulation of mitochondrial quality control mechanisms. Zileuton also decreased infiltration of CD11b(+) Gr-1(+) MDSCs and downregulated mRNA levels of MDSC-associated markers, including transforming growth factor-beta (TGF-β), arginase-1 (Arg-1), inducible nitric oxide synthase (iNOS), and iron regulatory protein 4 (Irp4), in glycerol-injured kidneys relative to controls. These markers were elevated 24 h post-glycerol injection but were normalized following concurrent Z treatment. Collectively, these findings suggest that Zileuton confers reno-protective effects in a murine model of RI-AKI, potentially through modulation of mitochondrial dynamics and suppression of MDSC-mediated inflammatory pathways. Further research is warranted to elucidate the precise mechanisms by which Z regulates MDSCs and to assess its therapeutic potential in clinical contexts. Full article
Show Figures

Figure 1

16 pages, 1215 KB  
Article
Cell-Free Mitochondrial DNA in Cell Culture Supernatant: Fragment Size Analysis and FBS Contamination Assessment
by Patrizia Cesare, Sabrina Colafarina, Antonella Bonfigli, Anna Rita Volpe, Massimo Aloisi, Osvaldo Zarivi and Anna Maria Giuseppina Poma
DNA 2025, 5(3), 41; https://doi.org/10.3390/dna5030041 - 27 Aug 2025
Viewed by 146
Abstract
Background/Objectives: Circulating cell-free DNA (cfDNA) consists of genomic DNA (cf-nDNA) and mitochondrial DNA (cf-mtDNA) fragments released from cells primarily through apoptosis and necrosis. In healthy individuals, the main source of cfDNA is apoptosis, whereas in cancer patients, necrosis predominates. Considering that in vitro [...] Read more.
Background/Objectives: Circulating cell-free DNA (cfDNA) consists of genomic DNA (cf-nDNA) and mitochondrial DNA (cf-mtDNA) fragments released from cells primarily through apoptosis and necrosis. In healthy individuals, the main source of cfDNA is apoptosis, whereas in cancer patients, necrosis predominates. Considering that in vitro cfDNA models are valuable research tools, this study presents an in vitro characterization of cf-mtDNA patterns released into the culture medium by four human cell lines: normal dermal fibroblasts (Hs27), induced pluripotent stem cells (iPSCs), melanoma cells (BMel), and prostate cancer cells (PC3). Furthermore, as fetal bovine serum (FBS)—a widely used supplement in cell culture media—has been shown to contain bovine cfDNA, species-specific primers were employed to eliminate potential artifacts arising from this contamination in in vitro experiments. Methods: Fragmentation analysis of cf-mtDNA was conducted by amplifying the human MT-CYB gene and the D-loop region in four cell lines using species-specific primers. Two indices, Q and λ, were employed to quantify fragmentation. Results: These indices reveal that cancer cells exhibit the highest degree of fragmentation compared to fibroblasts, whereas stem cells show the lowest degree of fragmentation. This study identified species-specific primers for the human and bovine MT-CYB gene, confirming the presence of bovine cf-mtDNA in cell culture media supplemented with FBS. Conclusions: in vitro cellular models are useful for studying the mechanisms of cfDNA release and fragmentation; designed primers provide a reliable tool for assessing contamination across different growth time points minimizing interference errors and non-specific amplifications. Full article
Show Figures

Graphical abstract

18 pages, 3536 KB  
Article
Preliminary Genetic and Physiological Characterization of Starmerella magnoliae from Spontaneous Mead Fermentation in Patagonia
by Victoria Kleinjan, Melisa González Flores, María Eugenia Rodriguez and Christian Ariel Lopes
Fermentation 2025, 11(9), 494; https://doi.org/10.3390/fermentation11090494 - 24 Aug 2025
Viewed by 333
Abstract
Honey possesses unique properties, characterized by its high sugar concentration and the synergistic interaction among nectar, pollen, bees, and yeasts. These features render it an exceptional substrate for exploring microbial diversity for bioprospecting purposes. In this study, we characterized fermentative yeast populations from [...] Read more.
Honey possesses unique properties, characterized by its high sugar concentration and the synergistic interaction among nectar, pollen, bees, and yeasts. These features render it an exceptional substrate for exploring microbial diversity for bioprospecting purposes. In this study, we characterized fermentative yeast populations from 19 honey samples collected in Northern Patagonia, Argentina. A total of 380 yeast isolates were obtained, identifying eight yeast species. Starmerella magnoliae emerged as the dominant species, found in 76% of samples and representing 63% of total isolates. Intraspecific diversity analysis, using mtDNA-RFLP and sequencing of nuclear genes (FSY1 and FFZ1), revealed the presence of two distinct phylogeographic populations. Phenotypic assays indicated that most S. magnoliae strains tolerate high sulfite and ethanol concentrations, alongside exhibiting broad temperature tolerance, with some strains thriving even at 37 °C. Despite the fact that none of the strains completed the fermentation, microfermentation trials confirmed the fructophilic nature of this species and highlighted intraspecific variability in glycerol and acetic acid production. These findings underscore S. magnoliae as a promising non-Saccharomyces yeast for the fermented beverage industry. Full article
(This article belongs to the Special Issue Yeast Fermentation, 2nd Edition)
Show Figures

Figure 1

11 pages, 2175 KB  
Case Report
First Case in Lithuania of an Autosomal Recessive Mutation in the DNAJC30 Gene as a Cause of Leber’s Hereditary Optic Neuropathy
by Liveta Sereikaite, Alvita Vilkeviciute, Brigita Glebauskiene, Rasa Traberg, Arvydas Gelzinis, Raimonda Piskiniene, Reda Zemaitiene, Rasa Ugenskiene and Rasa Liutkeviciene
Genes 2025, 16(9), 993; https://doi.org/10.3390/genes16090993 - 23 Aug 2025
Viewed by 313
Abstract
Background: Leber’s hereditary optic neuropathy (LHON) is the most common mitochondrial disorder and an inherited optic neuropathy. Recently, two different LHON inheritance types have been discovered: mitochondrially inherited LHON (mtLHON) and autosomal recessive LHON (arLHON). Our case report is the first diagnosed case [...] Read more.
Background: Leber’s hereditary optic neuropathy (LHON) is the most common mitochondrial disorder and an inherited optic neuropathy. Recently, two different LHON inheritance types have been discovered: mitochondrially inherited LHON (mtLHON) and autosomal recessive LHON (arLHON). Our case report is the first diagnosed case of arLHON in a patient of Lithuanian descent and confirms the DnaJ Heat Shock Protein Family (Hsp40) Member C30 (DNAJC30) c.152A>G p.(Tyr51Cys) founder variant. Case Presentation: A 34-year-old Lithuanian man complained of headache and sudden, painless loss of central vision in his right eye. On examination, the visual acuity of the right and left eyes was 0.1 and 1.0, respectively. Visual-field examination revealed a central scotoma in the right eye, and visual evoked potentials (VEPs) showed prolonged latency in both eyes. Optical coherence tomography showed thickening of the retinal nerve fiber layer in the upper quadrant of the optic disk in the left eye. Magnetic resonance imaging of the head showed evidence of optic nerve inflammation in the right eye. Blood tests were within normal range and showed no signs of inflammation. Retrobulbar neuritis of the right eye was suspected, and the patient was treated with steroids, which did not improve visual acuity. He later developed visual loss in the left eye as well. A genetic origin of the optic neuropathy was suspected, and a complete mitochondrial DNA analysis was performed, but it did not reveal any pathologic mutations. Over time, the visual acuity of both eyes slowly deteriorated, and the retinal nerve fiber layer (RNFL) thinning of the optic disks progressed. A multidisciplinary team of specialists concluded that vasculitis or infectious disease was unlikely to be the cause of the vision loss, and a genetic cause for the disease was still suspected, although a first-stage genetic test did not yield the diagnosis. Thirty-three months after disease onset, whole-exome sequencing revealed a pathogenic variant in the DNAJC30 gene, leading to the diagnosis of arLHON. Treatment with Idebenone was started 35 months after the onset of the disease, resulting in no significant worsening of the patient’s condition. Conclusion: This case highlights the importance of considering arLHON as a possible diagnosis for patients with optic neuropathy, because the phenotype of arLHON appears to be identical to that of mtLHON and cannot be distinguished by clinicians. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

36 pages, 8266 KB  
Article
Discobola Osten Sacken, 1865 (Diptera, Limoniidae) in China: Taxonomic Review, Updated Distribution, and DNA Barcoding
by Shuo Ma, Liying Dai, Hanhuiying Lv, Yuqing Wei and Xiao Zhang
Insects 2025, 16(8), 845; https://doi.org/10.3390/insects16080845 - 15 Aug 2025
Viewed by 428
Abstract
The genus Discobola Osten Sacken, 1865 from China is taxonomically reviewed using an integrative approach that combines detailed morphological examination and molecular analysis. Discobola parvispinula (Alexander, 1947), a species widely distributed across the Palaearctic region, is newly recorded from China. Updated distributional data [...] Read more.
The genus Discobola Osten Sacken, 1865 from China is taxonomically reviewed using an integrative approach that combines detailed morphological examination and molecular analysis. Discobola parvispinula (Alexander, 1947), a species widely distributed across the Palaearctic region, is newly recorded from China. Updated distributional data are presented for species known from China: D. annulata (Linnaeus, 1758), D. armorica (Alexander, 1942), D. margarita Alexander, 1924, and D. taivanella (Alexander, 1930). Detailed redescriptions and illustrations, including intraspecific morphological variation, are provided for these species. An identification key to Chinese Discobola species is also presented. Geographical analysis reveals a higher species richness in southern China and the Qinghai–Tibet region, with a progressive decline toward northern and northwestern China. The first DNA barcode reference library for Chinese Discobola is established, comprising 15 mt COI sequences from five species. These sequences, analyzed alongside an additional 101 mt COI sequences from Discobola species in other countries, show that intraspecific divergence within the genus remains below 7.4%, while interspecific divergence ranges from 7.6% to 17.7%. These findings provide important insights into the taxonomy, species delimitation, and biogeography of Discobola in China, contributing to a more comprehensive understanding of Discobola diversity across the region. Full article
(This article belongs to the Section Insect Systematics, Phylogeny and Evolution)
Show Figures

Figure 1

13 pages, 3002 KB  
Communication
Lack of Genetic Differentiation of Five Triatomine Species Belonging to the Triatoma rubrovaria Subcomplex (Hemiptera, Reduviidae)
by Amanda R. Caetano, Lucas B. Mosmann, Thaiane Verly, Stephanie Costa, Jader Oliveira, Constança Britto and Márcio G. Pavan
Insects 2025, 16(8), 822; https://doi.org/10.3390/insects16080822 - 8 Aug 2025
Viewed by 526
Abstract
The Triatoma rubrovaria subcomplex, comprising several triatomine species, plays a significant role in the transmission of Chagas disease in southern Brazil. Despite morphological distinctions among these species, their genetic differentiation remains poorly understood, particularly in sympatric regions. This study investigates the genetic diversity [...] Read more.
The Triatoma rubrovaria subcomplex, comprising several triatomine species, plays a significant role in the transmission of Chagas disease in southern Brazil. Despite morphological distinctions among these species, their genetic differentiation remains poorly understood, particularly in sympatric regions. This study investigates the genetic diversity and phylogenetic relationships through DNA sequencing analysis of five sympatric species within the T. rubrovaria subcomplex (T. rubrovaria, T. carcavalloi, T. klugi, T. circummaculata, and T. pintodiasi), using a 542-bp fragment of the mitochondrial cytochrome b (mtCytb) gene. A total of 84 specimens were collected from six municipalities in Rio Grande do Sul, Brazil, and analyzed alongside laboratory-reared specimens and sequences from the GenBank. Bayesian phylogenetic reconstructions, haplotype networks, and population structure analyses revealed a lack of clear genetic differentiation among the five species, with overlapping intra- and interspecific divergences and shared haplotypes. These findings suggest either a single species exhibiting phenotypic plasticity or a group of incipient species with ongoing gene flow. This study highlights the need for a taxonomic revision and suggests that this group could serve as a valuable model for further genomic research to elucidate potential aspects of phenotypic plasticity and/or sympatric speciation in triatomines. Full article
(This article belongs to the Section Insect Systematics, Phylogeny and Evolution)
Show Figures

Figure 1

17 pages, 3032 KB  
Article
The Loss of Complex I in Renal Oncocytoma Is Associated with Defective Mitophagy Due to Lysosomal Dysfunction
by Lin Lin, Neal Patel, Lucia Fernandez-del-Rio, Cristiane Benica, Blake Wilde, Eirini Christodoulou, Shinji Ohtake, Anhyo Jeong, Aboubacar Kaba, Nedas Matulionis, Randy Caliliw, Xiaowu Gai, Heather Christofk, David Shackelford and Brian Shuch
Int. J. Mol. Sci. 2025, 26(15), 7654; https://doi.org/10.3390/ijms26157654 - 7 Aug 2025
Viewed by 435
Abstract
Renal oncocytoma (RO) is a benign renal neoplasm characterized by dense accumulation of dysfunctional mitochondria possibly resulting from increased mitochondrial biogenesis and decreased mitophagy; however, the mechanisms controlling these mitochondrial changes are unclear. ROs harbor recurrent inactivating mutations in mitochondrial genes encoding the [...] Read more.
Renal oncocytoma (RO) is a benign renal neoplasm characterized by dense accumulation of dysfunctional mitochondria possibly resulting from increased mitochondrial biogenesis and decreased mitophagy; however, the mechanisms controlling these mitochondrial changes are unclear. ROs harbor recurrent inactivating mutations in mitochondrial genes encoding the Electron Transport Chain (ETC) Complex I, and we hypothesize that Complex I loss in ROs directly impairs mitophagy. Our analysis of ROs and normal kidney (NK) tissues shows that a significant portion (8 out of 17) of ROs have mtDNA Complex I loss-of-function mutations with high variant allele frequency (>50%). ROs indeed exhibit reduced Complex I expression and activity. Analysis of the various steps of mitophagy pathway demonstrates that AMPK activation in ROs leads to induction of mitochondrial biogenesis, autophagy, and formation of autophagosomes. However, the subsequent steps involving lysosome biogenesis and function are defective, resulting in an overall inhibition of mitophagy. Inhibiting Complex I in a normal kidney cell line recapitulated the observed lysosomal and mitophagy defects. Our data suggest Complex I loss in RO results in defective mitophagy due to lysosomal loss and dysfunction. Full article
(This article belongs to the Section Molecular Informatics)
Show Figures

Figure 1

14 pages, 2230 KB  
Article
Complete Mitochondrial (mtDNA) Genome Analysis of Economically Significant Fish Cirrhinus cirrhosus in Bangladesh
by Tajmirul Huda, Md. Alamgir Kabir and Md. Golam Rabbane
Int. J. Mol. Sci. 2025, 26(15), 7473; https://doi.org/10.3390/ijms26157473 - 2 Aug 2025
Viewed by 368
Abstract
Complete mitochondrial DNA genome annotation of an ecologically and commercially important fish species Cirrhinus cirrhosus was executed with next-generation sequencing (NGS) for nucleotide and phylogenetic analyses. The findings of this study showed that the Cirrhinus cirrhosus mitochondrial genome contained 16,593 bp, including 13 [...] Read more.
Complete mitochondrial DNA genome annotation of an ecologically and commercially important fish species Cirrhinus cirrhosus was executed with next-generation sequencing (NGS) for nucleotide and phylogenetic analyses. The findings of this study showed that the Cirrhinus cirrhosus mitochondrial genome contained 16,593 bp, including 13 protein-coding genes, 2 ribosomal RNA genes, 22 tRNA genes, and a D-loop region. The overall base composition was 32% adenine, 25% thiamine, 16% guanine, and 27% cytosine. This mitochondrial DNA exhibits an AT biasness, with 56% AT content in its genome. Significant fluctuations were identified in the AT and GC skew values of the ND6 gene, indicating that the selection and mutation forces acting on this gene might be different from those acting on other genes. The Ka/Ks ratios of most protein-coding genes were less than 1, indicating very strong natural selection pressure. Phylogenetic analysis of Cirrhinus cirrhosus with Cirrhinus mrigala and Bangana tungting suggested a closer evolutionary relationship among these species, which might have shared a more recent common ancestor. It has been also found that the genera Labeo and Cirrhinus are not monophyletic. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

13 pages, 1650 KB  
Article
A Fast TaqMan® Real-Time PCR Assay for the Detection of Mitochondrial DNA Haplotypes in a Wolf Population
by Rita Lorenzini, Lorenzo Attili, Martina De Crescenzo and Antonella Pizzarelli
Genes 2025, 16(8), 897; https://doi.org/10.3390/genes16080897 - 28 Jul 2025
Viewed by 338
Abstract
Background/Objectives: The gene pool of the Apennine wolf is affected by admixture with domestic variants due to anthropogenic hybridisation with dogs. Genetic monitoring at the population level involves assessing the extent of admixture in single individuals, ranging from pure wolves to recent [...] Read more.
Background/Objectives: The gene pool of the Apennine wolf is affected by admixture with domestic variants due to anthropogenic hybridisation with dogs. Genetic monitoring at the population level involves assessing the extent of admixture in single individuals, ranging from pure wolves to recent hybrids or wolf backcrosses, through the analysis of nuclear and mitochondrial DNA (mtDNA) markers. Although individually non-diagnostic, mtDNA is nevertheless essential for completing the final diagnosis of genetic admixture. Typically, the identification of wolf mtDNA haplotypes is carried out via sequencing of coding genes and non-coding DNA stretches. Our objective was to develop a fast real-time PCR assay to detect the mtDNA haplotypes that occur exclusively in the Apennine wolf population, as a valuable alternative to the demanding sequence-based typing. Methods: We validated a qualitative duplex real-time PCR that exploits the combined presence of diagnostic point mutations in two mtDNA segments, the NDH-4 gene and the control region, and is performed in a single-tube step through TaqMan-MGB chemistry. The aim was to detect mtDNA multi-fragment haplotypes that are exclusive to the Apennine wolf, bypassing sequencing. Results: Basic validation of 149 field samples, consisting of pure Apennine wolves, dogs, wolf × dog hybrids, and Dinaric wolves, showed that the assay is highly specific and sensitive, with genomic DNA amounts as low as 10−5 ng still producing positive results. It also proved high repeatability and reproducibility, thereby enabling reliable high-throughput testing. Conclusions: The results indicate that the assay presented here provides a valuable alternative method to the time- and cost-consuming sequencing procedure to reliably diagnose the maternal lineage of the still-threatened Apennine wolf, and it covers a wide range of applications, from scientific research to conservation, diagnostics, and forensics. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

21 pages, 8405 KB  
Article
Distinct Mitochondrial DNA Deletion Profiles in Pediatric B- and T-ALL During Diagnosis, Remission, and Relapse
by Hesamedin Hakimjavadi, Elizabeth Eom, Eirini Christodoulou, Brooke E. Hjelm, Audrey A. Omidsalar, Dejerianne Ostrow, Jaclyn A. Biegel and Xiaowu Gai
Int. J. Mol. Sci. 2025, 26(15), 7117; https://doi.org/10.3390/ijms26157117 - 23 Jul 2025
Viewed by 707
Abstract
Mitochondria are critical for cellular energy, and while large deletions in their genome (mtDNA) are linked to primary mitochondrial diseases, their significance in cancer is less understood. Given cancer’s metabolic nature, investigating mtDNA deletions in tumors at various stages could provide insights into [...] Read more.
Mitochondria are critical for cellular energy, and while large deletions in their genome (mtDNA) are linked to primary mitochondrial diseases, their significance in cancer is less understood. Given cancer’s metabolic nature, investigating mtDNA deletions in tumors at various stages could provide insights into disease origins and treatment responses. In this study, we analyzed 148 bone marrow samples from 129 pediatric patients with B-cell (B-ALL) and T-cell (T-ALL) acute lymphoblastic leukemia at diagnosis, remission, and relapse using long-range PCR, next-generation sequencing, and the Splice-Break2 pipeline. Both T-ALL and B-ALL exhibited significantly more mtDNA deletions than did the controls, with T-ALL showing a ~100-fold increase and B-ALL a ~15-fold increase. The T-ALL samples also exhibited larger deletions (median size > 2000 bp) and greater heterogeneity, suggesting increased mitochondrial instability. Clustering analysis revealed distinct deletion profiles between ALL subtypes and across disease stages. Notably, large clonal deletions were detected in some B-ALL remission samples, including one affecting up to 88% of mtDNA molecules, which points toward treatment-driven selection or toxicity. A multivariate analysis confirmed that disease type, timepoint, and WHO subtype significantly influenced mtDNA deletion metrics, while age and gender did not. These findings suggest that mtDNA deletion profiling could serve as a biomarker for pediatric ALL and may indicate mitochondrial toxicity contributing to late effects in survivors. Full article
(This article belongs to the Special Issue Mitochondrial Function in Human Health and Disease: 2nd Edition)
Show Figures

Figure 1

19 pages, 6789 KB  
Article
Metabolic Plasticity and Transcriptomic Reprogramming Orchestrate Hypoxia Adaptation in Yak
by Ci Huang, Yilie Liao, Wei Peng, Hai Xiang, Hui Wang, Jieqiong Ma, Zhixin Chai, Zhijuan Wu, Binglin Yue, Xin Cai, Jincheng Zhong and Jikun Wang
Animals 2025, 15(14), 2084; https://doi.org/10.3390/ani15142084 - 15 Jul 2025
Viewed by 408
Abstract
The yak (Bos grunniens) has exceptional hypoxia resilience, making it an ideal model for studying high-altitude adaptation. Here, we investigated the effects of oxygen concentration on yak cardiac fibroblast proliferation and the underlying molecular regulatory pathways using RNA sequencing (RNA-seq) and [...] Read more.
The yak (Bos grunniens) has exceptional hypoxia resilience, making it an ideal model for studying high-altitude adaptation. Here, we investigated the effects of oxygen concentration on yak cardiac fibroblast proliferation and the underlying molecular regulatory pathways using RNA sequencing (RNA-seq) and metabolic analyses. Decreased oxygen levels significantly inhibited cardiac fibroblast proliferation and activity. Intriguingly, while the mitochondrial DNA (mtDNA) content remained stable, we observed coordinated upregulation of mtDNA-encoded oxidative phosphorylation components. Live-cell metabolic assessment further demonstrated that hypoxia led to mitochondrial respiratory inhibition and enhanced glycolysis. RNA-seq analysis identified key hypoxia adaptation genes, including glycolysis regulators (e.g., HK2, TPI1), and hypoxia-inducible factor 1-alpha (HIF-1α), with Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses highlighting their involvement in metabolic regulation. The protein–protein interaction network identified three consensus hub genes across five topological algorithms (CCNA2, PLK1, and TP53) that may be involved in hypoxia adaptation. These findings highlight the importance of metabolic reprogramming underlying yak adaptation to hypoxia, providing valuable molecular insights into the mechanisms underlying high-altitude survival. Full article
Show Figures

Figure 1

20 pages, 1844 KB  
Review
Causes of and Solutions to Mitochondrial Disorders: A Literature Review
by Vera Belousova, Irina Ignatko, Irina Bogomazova, Elena Sosnova, Svetlana Pesegova, Anastasia Samusevich, Evdokiya Zarova, Madina Kardanova, Oxana Skorobogatova and Anna Maltseva
Int. J. Mol. Sci. 2025, 26(14), 6645; https://doi.org/10.3390/ijms26146645 - 11 Jul 2025
Viewed by 889
Abstract
Mitochondria are currently of great interest to scientists. The role of mitochondrial DNA (mtDNA) mutations has been proven in the genesis of more than 200 pathologies, which are called mitochondrial disorders. Therefore, the study of mitochondria and mitochondrial DNA is of great interest [...] Read more.
Mitochondria are currently of great interest to scientists. The role of mitochondrial DNA (mtDNA) mutations has been proven in the genesis of more than 200 pathologies, which are called mitochondrial disorders. Therefore, the study of mitochondria and mitochondrial DNA is of great interest not only for understanding cell biology but also for the treatment and prevention of many mitochondria-related pathologies. There are two main trends of mitochondrial therapy: mitochondrial replacement therapy (MRT) and mitochondrial transplantation therapy (MTT). Also, there are two main categories of MRT based on the source of mitochondria. The heterologous approach includes the following methods: pronuclear transfer technique (PNT), maternal spindle transfer (MST), Polar body genome transfer (PBT) and germinal vesicle transfer (GVT). An alternative approach is the autologous method. One promising autologous technique was the autologous germline mitochondrial energy transfer (AUGMENT), which involved isolating oogonial precursor cells from the patient, extracting their mitochondria, and then injecting them during ICSI. Transmission of defective mtDNA to the next generation can also be prevented by using these approaches. The development of a healthy child, free from genetic disorders, and the prevention of the occurrence of lethal mitochondrial disorders are the main tasks of this method. However, a number of moral, social, and cultural objections have restricted its exploration, since humanity first encountered the appearance of a three-parent baby. Therefore, this review summarizes the causes of mitochondrial diseases, the various methods involved in MRT and the results of their application. In addition, a new technology, mitochondrial transplantation therapy (MTT), is currently being actively studied. MTT is an innovative approach that involves the introduction of healthy mitochondria into damaged tissues, leading to the replacement of defective mitochondria and the restoration of their function. This technology is being actively studied in animals, but there are also reports of its use in humans. A bibliographic review in PubMed and Web of Science databases and a search for relevant clinical trials and news articles were performed. A total of 81 publications were selected for analysis. Methods of MRT procedures were reviewed, their risks described, and the results of their use presented. Results of animal studies of the MTT procedure and attempts to apply this therapy in humans were reviewed. MRT is an effective way to minimize the risk of transmission of mtDNA-related diseases, but it does not eliminate it completely. There is a need for global legal regulation of MRT. MTT is a new and promising method of treating damaged tissues by injecting the body’s own mitochondria. The considered methods are extremely good in theory, but their clinical application in humans and the success of such therapy remain a question for further study. Full article
(This article belongs to the Special Issue Mitochondrial Biology and Reactive Oxygen Species)
Show Figures

Figure 1

13 pages, 702 KB  
Review
Mitochondrial DNA Copy Numbers and Lung Cancer: A Systematic Review and Meta-Analysis
by Manuela Chiavarini, Jacopo Dolcini, Giorgio Firmani, Kasey J. M. Brennan, Andrès Cardenas, Andrea A. Baccarelli and Pamela Barbadoro
Int. J. Mol. Sci. 2025, 26(14), 6610; https://doi.org/10.3390/ijms26146610 - 10 Jul 2025
Viewed by 565
Abstract
LC continues to be the leading cause of cancer mortality globally, among both males and females, representing a major public health challenge. The impact of mitochondria on human health and disease is a rapidly growing focus in scientific research, due to their critical [...] Read more.
LC continues to be the leading cause of cancer mortality globally, among both males and females, representing a major public health challenge. The impact of mitochondria on human health and disease is a rapidly growing focus in scientific research, due to their critical roles in cellular survival and death. Mitochondria play an important role in controlling imperative cellular parameters, and alterations in mtDNAcn might be crucial for LC development. MtDNAcn has been studied as a possible marker for LC risk, but its role in prevention is still unclear. This review and meta-analysis aims to summarize the current evidence and provide an overall estimate of the relationship between the mtDNA copy number in human samples like blood and sputum. PubMed, Web of Science, and Scopus databases were used for studies published up to February 2024, following PRISMA and MOOSE guidelines. Studies were combined using a random-effects model, and we assessed the heterogeneity between studies with the chi-square-based Cochran’s Q statistic and the I2 statistic. Publication bias was checked using Begg’s and Egger’s tests. Five studies, including a total of 3.748 participants, met the eligibility criteria. The MtDNA copy number was measured in blood or sputum samples and compared across different quantiles. The pooled analysis did not find a significant association between the mtDNA copy number and LC risk (OR = 0.94; 95% CI: 0.49–1.78). Moreover, when looking at different study designs, no significant results were found, due to the small number of studies available. No significant publication bias was detected. Further studies are needed to better understand the connection between the mtDNA copy number and LC risk and to better understand the role of potential confounders. Full article
(This article belongs to the Special Issue Cellular and Molecular Mechanisms in Lung Health and Disease)
Show Figures

Figure 1

45 pages, 2961 KB  
Article
The Nariño Cat, the Tigrinas and Their Problematic Systematics and Phylogeography: The Real Story
by Manuel Ruiz-García, Javier Vega, Myreya Pinedo-Castro and Joseph Mark Shostell
Animals 2025, 15(13), 1891; https://doi.org/10.3390/ani15131891 - 26 Jun 2025
Viewed by 769
Abstract
The systematics and phylogeny of the most speciose genus (Leopardus) of the felidae have historically been contentious and problematic. These issues have been compounded with the recent advancement of genetic techniques that make it possible to detect events such as incomplete [...] Read more.
The systematics and phylogeny of the most speciose genus (Leopardus) of the felidae have historically been contentious and problematic. These issues have been compounded with the recent advancement of genetic techniques that make it possible to detect events such as incomplete lineage sorting (ILS), punctual historical ancestral introgression (PHAI), and repetitive introgression or recent hybridization (RI-RH). Each of these events have noteworthily affected the Leopardus genus. One Leopardus taxon (Leopardus tigrinus, herein called tigrina) has been especially complex from a phylogenetic point of view. In the last decade, one new species has been reported (L. guttulus) and two other new species likely exist within the tigrinas (L. emiliae and L. pardinoides). However, the most surprising find was the discovery of a new and not previously reported tigrina, the Nariño cat, from the southern Andean region of Colombia (2023). Later that same year, a new paper criticized the discovery. In response to that criticism, herein, we provide new molecular genetics results of the Nariño cat as well as new insights into the molecular phylogeny of the tigrinas inside the Leopardus genus: (1) In this new work, we analyzed the mtND5 gene of Nariño cat samples collected over four years (2001, 2007, 2017, 2023) as well as analyzed mitogenomes of Nariño cat samples collected in three different years (2001, 2017, 2023). The temporal Nariño cat samples (2001, 2007, 2017, 2023) refer to samples taken from a single specimen across different years. Based on these analyses, data from 2001 and 2007 represent the most reliable information. In contrast, samples from 2017 and 2023 may be contaminated with DNA from the Pampas cat and tigrina, respectively. (2) On the other hand, based on sequencing the mtND5 gene of 164 specimens of Leopardus, northern Andean and Central American tigrinas (37 specimens) are divided into at least six different groups (without counting the Nariño cat). Based on our analysis of sequenced mitogenomes of 102 specimens (including 34 northern Andean and Central American tigrinas) of the Leopardus genus, there are at least eight different groups of tigrinas (without counting the Nariño cat). Henceforth, there are strong datasets which support the existence of multiple lineages within the presumed “a priori” northern Andean tigrina and thus much of the genetic diversity of this wild cat has gone unnoticed. There are a series of potential taxa that have gone unnoticed due to a lack of sampling of this polyphyletic Andean feline. Full article
Show Figures

Figure 1

Back to TopTop