Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,335)

Search Parameters:
Keywords = mulching

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3049 KB  
Article
Differences in Weed Taxa Community in a Young Apple Orchard (‘King Roat Red Delicious’ Cultivar) Depending on the Presence of Living Mulch and the Application of Two Nitrogen Fertilization Rates
by Urszula Barbara Bałuszyńska and Maria Licznar-Małańczuk
Agronomy 2025, 15(9), 2106; https://doi.org/10.3390/agronomy15092106 - 31 Aug 2025
Abstract
The objective of this study was to evaluate the impact of two nitrogen doses in combination with strong creeping fescue (Festuca rubra L. ssp. rubra Gaudin) and Chewing’s red fescue (Festuca rubra L. ssp. commutata Gaudin) used as living mulches on [...] Read more.
The objective of this study was to evaluate the impact of two nitrogen doses in combination with strong creeping fescue (Festuca rubra L. ssp. rubra Gaudin) and Chewing’s red fescue (Festuca rubra L. ssp. commutata Gaudin) used as living mulches on the weed community in an apple tree (Malus domestica Borkh.) orchard. The cover grasses were sown in the tree rows, and herbicide fallow served as the control. Grass living mulches effectively reduced the number and share of annual weed cover and limited the spread of perennial plants compared with herbicide fallow. Use of F. rubra L. subspecies did not favor the biodiversity of the orchard agroecosystem flora, due to the effective soil surface coverage by sod in the tree rows. Living mulch sod was characterized by lower variability in weed taxa compared with the abundant weed composition in the herbicide fallow, which also exhibited the highest number of weed taxa each year. Dominant species in the orchard across all treatments included Trifolium repens L. and Taraxacum spp. Doubling the nitrogen fertilization rate, while limiting the application area to the tree canopy, did not increase the perennial weed population in the living mulch sod. Both subspecies are useful as living mulch in a young apple orchard, but from the perspective of sod durability and weed control, strong creeping red fescue offers better prospects. Full article
(This article belongs to the Special Issue Weed Biology and Ecology: Importance to Integrated Weed Management)
Show Figures

Figure 1

17 pages, 4741 KB  
Article
Water-Saving and Yield-Increasing Strategies for Maize Under Drip Irrigation and Straw Mulching in Semi-Arid Regions
by Zexin Qi, Chen Xu, Lizi Zhang, Lihua Zhang, Fei Li, Ning Sun, Renjie Zhao, Jingquan Ren, Qian Li, Shaofeng Bian, Zhian Zhang and Hongxiang Zhao
Agronomy 2025, 15(9), 2056; https://doi.org/10.3390/agronomy15092056 - 26 Aug 2025
Viewed by 301
Abstract
An appropriate drip irrigation amount and the straw return method are important ways to save water and achieve efficient maize production in semi-arid areas. A 2-year controlled field plot experiment was performed with two factors: straw return (straw removal, straw mulching) and differing [...] Read more.
An appropriate drip irrigation amount and the straw return method are important ways to save water and achieve efficient maize production in semi-arid areas. A 2-year controlled field plot experiment was performed with two factors: straw return (straw removal, straw mulching) and differing drip irrigation amounts (200, 350, and 500 mm). Changes in growth, development, photosynthesis, yield, the components, and the water-use characteristics of maize under the intercropping conditions of drip irrigation amount and straw return were studied. The results showed that an increase in drip irrigation favored an increase in the net photosynthetic rate (Pn), stomatal conductance (Gs), and intercellular carbon dioxide concentration (Ci) of maize, and promoted an increase in maize plant height and leaf area index, which resulted in the accumulation of more dry matter and increased the maize yield. Compared with straw removal, straw mulching maintained a higher photosynthetic capacity at the later stages of maize growth and development under irrigations of 200 and 350 mm; the average increase in Pn over two years ranged from 4.06 to 19.19%; and good plant growth was maintained, thereby leading to the accumulation of more dry matter, with the average increase over two years ranging from 0.51 to 27.22%. Straw mulching also significantly improved water-use efficiency (WUE) at 350 mm of irrigation, with the average increase in yield over two years ranging from 4.58 to 4.83%. Overall, straw mulching had a positive impact on maize when irrigation was low, and when it was high, straw mulching did not adversely affect maize. Therefore, irrigation combined with straw mulching technology may be used to improve maize yield and WUE in semi-arid areas of Jilin Province. Full article
Show Figures

Figure 1

13 pages, 2347 KB  
Article
Genetic Dissection of Hypocotyl Elongation Responses to Light Quality in Brassica napus
by Yichen Zhou, Qi Wan, Tonghao Huang, Zengjie Hu, Xin Zhang, Shengguan Cai and Huifang Zhao
Agronomy 2025, 15(9), 2047; https://doi.org/10.3390/agronomy15092047 - 26 Aug 2025
Viewed by 259
Abstract
In Brassica napus, hypocotyl elongation under shade conditions poses a significant challenge in intensive agricultural systems, particularly in rice-rapeseed rotation regimes where straw mulching reduces light quality. However, the genetic basis of light-mediated hypocotyl growth responses in B. napus remains poorly understood. [...] Read more.
In Brassica napus, hypocotyl elongation under shade conditions poses a significant challenge in intensive agricultural systems, particularly in rice-rapeseed rotation regimes where straw mulching reduces light quality. However, the genetic basis of light-mediated hypocotyl growth responses in B. napus remains poorly understood. In this study, hypocotyl lengths were measured in a panel of 267 diverse rapeseed accessions under five light conditions including white, red, far-red, blue light, and complete darkness. Substantial phenotypic variation was observed among accessions and treatments, with red light exhibiting the weakest inhibitory effect on elongation, and white light showing the strongest suppression. Genome-wide association studies (GWAS) (−log10 (p) > 4.5) identified numerous significant SNPs associated with light response, highlighting candidate genes such as KAN1, ILL2, VQ18, HDA15, and HAT3 involved in photomorphogenesis and hormonal signaling pathways. These findings elucidate the polygenic control of light responsiveness in B. napus and provide molecular targets for breeding shade-tolerant varieties to enhance crop resilience under dense planting and straw mulching systems. Full article
(This article belongs to the Section Crop Breeding and Genetics)
Show Figures

Figure 1

24 pages, 4903 KB  
Article
Numerical Simulation and Parameter Optimization of Double-Pressing Sowing and Soil Covering Operation for Wheat
by Xiaoxiang Weng, Yu Wang, Lianjie Han, Yunhan Zou, Jieyuan Ding, Yangjie Shi, Ruihong Zhang and Xiaobo Xi
Agronomy 2025, 15(9), 2039; https://doi.org/10.3390/agronomy15092039 - 25 Aug 2025
Viewed by 264
Abstract
Improving sowing quality is crucial for ensuring wheat emergence and healthy growth. To address issues of poor wheat sowing quality, such as uneven sowing depth and inadequate soil coverage, in the Yangtze River Delta region of China, this study systematically analyzed the effects [...] Read more.
Improving sowing quality is crucial for ensuring wheat emergence and healthy growth. To address issues of poor wheat sowing quality, such as uneven sowing depth and inadequate soil coverage, in the Yangtze River Delta region of China, this study systematically analyzed the effects of the implement’s structural and operational parameters on sowing quality. Based on this analysis, a double-shaft rotary tillage and double-press seeder was designed. Protrusions on the grooving press roller are used to form seed furrows, rotary tiller blades cover the seeds with soil, and the rear press roller compacts the soil. DEM-MBD (discrete element method–multibody dynamics) coupled simulations, combined with single-factor and central composite design (CCD) experiments, were conducted with seeding depth as the evaluation index and four experimental factors: the protrusion height on the press grooving roller, forward speed, seed mass in the seed box, and straw mulching amount. The optimal protrusion height was 29 mm. The effects of rotary tiller blade working depth, rotational speed, and forward speed on soil-covering mass and its coefficient of variation were evaluated through discrete element method (DEM) simulations. The optimal working depth and rotational speed were found to be 55 mm and 350 r·min−1, respectively, based on single-factor and Box–Behnken Design experiments. Field experiments based on optimized parameters showed results consistent with the simulations. The qualified rate of seeding depth decreased as forward speed increased. The optimal forward speed was 4.5 km·h−1, at which the average seeding depth was 25.7 mm, the qualified seeding depth rate was 90%, the soil-covering mass within a 50 cm2 area was 143.2 g, and the coefficient of variation was 13.21%, meeting the requirements for wheat sowing operations. Full article
(This article belongs to the Section Precision and Digital Agriculture)
Show Figures

Figure 1

18 pages, 2508 KB  
Article
Effect of Flat Planting Without Film Mulching and Phosphorus Fertilization on Soil Phosphorus Dynamics and Nutrient Uptake in Faba Bean in Alpine Cropping Systems
by Weidi Zhou, Qiuyun Xu, Man Su, Chenglong Han and Yanjie Gu
Agronomy 2025, 15(9), 2037; https://doi.org/10.3390/agronomy15092037 - 25 Aug 2025
Viewed by 303
Abstract
Rational agronomic practice enhances crop productivity and resource use efficiency. Plastic film mulching and phosphorus (P) fertilization are widely applied in alpine agriculture to improve soil water content, temperature, and P availability. However, their effects on soil P transformation and nutrient uptake in [...] Read more.
Rational agronomic practice enhances crop productivity and resource use efficiency. Plastic film mulching and phosphorus (P) fertilization are widely applied in alpine agriculture to improve soil water content, temperature, and P availability. However, their effects on soil P transformation and nutrient uptake in faba bean (Vicia faba L.) remain unclear. This study conducted a field experiment to explore the effects of mulching methods and P levels on soil P fractions and nitrogen (N), P uptake in faba bean. The experiment followed a randomized block design with three film mulching treatments—no-mulching with flat planting (NMF), double ridges and furrows mulched with one film (DRM), and three ridges and furrows mulched with one film (TRM) and three P levels—P0 (0 kg P ha−1), P1 (9.10 kg P ha−1), and P2 (18.2 kg P ha−1). The results showed that soil medium- and highly active P increased, while low-active P decreased with increasing P levels. Compared with DRM and TRM, NMF had lower low-active P and higher medium- and highly active P, particularly under P2. These changes contributed to increases in soil total P and available P. The aboveground N, P uptake and N/P ratio under NMF were significantly higher than under DRM and TRM. As P levels increased, the aboveground N, P uptake and N/P ratio increased in NMF and DRM, but decreased in TRM. In all treatments, the aboveground N/P ratio was below 14, indicating N limitation. NMF, especially with P2, alleviated N limitation to faba bean growth. Overall, NMF combined with about 18.2 kg P ha−1 P fertilizer is a sustainable practice for faba bean cultivation in alpine regions. However, attention should be paid to achieving a balanced supply of N and P fertilizers. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

25 pages, 3579 KB  
Review
Mulching for Weed Management in Medicinal and Aromatic Cropping Systems
by Ana Dragumilo, Tatjana Marković, Sava Vrbničanin, Stefan Gordanić, Milan Lukić, Miloš Rajković, Željana Prijić and Dragana Božić
Horticulturae 2025, 11(9), 998; https://doi.org/10.3390/horticulturae11090998 - 22 Aug 2025
Viewed by 342
Abstract
Weeds are one of the main problems in cultivation of medicinal and aromatic plants (MAPs); they negatively affect yield (herba and essential oil), and the overall quantity and quality of biomass, flowers, roots, seeds, and secondary metabolites. This review evaluates mulching as a [...] Read more.
Weeds are one of the main problems in cultivation of medicinal and aromatic plants (MAPs); they negatively affect yield (herba and essential oil), and the overall quantity and quality of biomass, flowers, roots, seeds, and secondary metabolites. This review evaluates mulching as a sustainable, non-chemical method for weed management in the cultivation of MAPs and examines how effectively organic, synthetic, and living mulches reduce weeds and increase yields. Regarding different mulch materials such as straw, sawdust, bark, needles, compost, polyethylene, and biodegradable films, the basic processes of mulch activity, including light interception, physical suppression, and microclimate adjustment, are examined. The review further analyzes the impact of mulching on soil parameters (moisture, temperature, pH, chlorophyll content) and the biosynthesis of secondary metabolites. The findings consistently indicate that mulching substantially reduces weed biomass, improves crop performance, and supports organic farming practices. However, there are still issues with cost, material availability, and possible soil changes, and the efficacy is affected by variables including cultivated plant species, mulch type, and application thickness. The review highlights the importance of further research to optimize the selection of mulch and MAPs and their application across various agroecological conditions, and indicates that mulching is a potential, environmentally friendly technique for weed control in MAP cultivations. Full article
(This article belongs to the Section Floriculture, Nursery and Landscape, and Turf)
Show Figures

Figure 1

22 pages, 2402 KB  
Article
Influence of Organic Mulching Strategies on Apple Tree (Mallus domestica BORKH.) Development, Fruit Quality and Soil Enzyme Dynamics
by Ioana Maria Borza, Cristina Adriana Rosan, Daniela Gitea, Manuel Alexandru Gitea, Alina Dora Samuel, Carmen Violeta Iancu, Ioana Larisa Bene, Daniela Padilla-Contreras, Cristian Gabriel Domuta and Simona Ioana Vicas
Agronomy 2025, 15(9), 2021; https://doi.org/10.3390/agronomy15092021 - 22 Aug 2025
Viewed by 389
Abstract
Mulching is a sustainable agronomic practice that can improve soil quality and fruit characteristics in crops. This study investigated the influence of sheep wool mulch and a soil conditioner on growth, the accumulation of bioactive compounds, and soil enzymatic activity in apple orchards. [...] Read more.
Mulching is a sustainable agronomic practice that can improve soil quality and fruit characteristics in crops. This study investigated the influence of sheep wool mulch and a soil conditioner on growth, the accumulation of bioactive compounds, and soil enzymatic activity in apple orchards. A two-year field experiment (2023–2024) was conducted using three experimental methods: mulching with sheep wool (V2), application of a soil conditioner, corn starch-based polymer (V3), and a combination of sheep wool and corn starch-based polymer (V4) along with a control (V1). Tree growth parameters, fruit physicochemical properties, total phenolic and flavonoid content, and soil enzyme activities (dehydrogenase, catalase, phosphatase) were assessed. Data were analyzed using Principal Component Analysis (PCA) and Pearson’s correlation. PCA showed that the combined variant (V4) improved fruit size, weight, and bioactive compound content, while wool mulch alone (V2) was associated with higher fruit yield and better vegetative growth. Catalase activity correlated positively and consistently with bioactive compounds in both years, while phosphatase activity showed an intensified positive relationship in 2024. Dehydrogenase activity was negatively correlated with phenolic content in both seasons. Organic and integrated mulching practices can beneficially modulate both aboveground and belowground plant–soil interactions. The combined variant proved to be the most effective strategy, enhancing fruit nutritional quality and supporting sustainable apple orchard management. Full article
Show Figures

Figure 1

22 pages, 2597 KB  
Article
Interactive Effects of Mulching Width and Irrigation Management on Cotton Growth and Dynamic Changes in Soil Factors in Arid Regions
by Nanfang Li, Guang Yang, Yinping Song, Wenzhi Wang, Xianbo Zhang, Hao Liu and Huifeng Ning
Agronomy 2025, 15(8), 1964; https://doi.org/10.3390/agronomy15081964 - 14 Aug 2025
Viewed by 252
Abstract
Mulching and irrigation are key practices for improving cotton yield and soil conditions, especially in Xinjiang, China. This study investigated the combined effects of mulching width and irrigation depth on cotton growth and rhizosphere microorganisms. Two mulching widths—conventional (M1) and ultra-wide (M2)—and three [...] Read more.
Mulching and irrigation are key practices for improving cotton yield and soil conditions, especially in Xinjiang, China. This study investigated the combined effects of mulching width and irrigation depth on cotton growth and rhizosphere microorganisms. Two mulching widths—conventional (M1) and ultra-wide (M2)—and three irrigation depths, 0.8 ETc (W1), 1.0 ETc (W2), and 1.2 ETc (W3), were tested. The impacts on cotton growth, soil environment, and rhizosphere microbial communities were analyzed. Results showed that under the same irrigation depth, M2 significantly increased soil moisture and reduced salt accumulation. Soil temperature under M2 was higher than M1, with increases of 0.55 °C and 1.65 °C during the budding and flowering–boll stages. M2 also increased root length (3.52–10.72%) and root surface area (5.8–7.51%). The beneficial fungus Cladosporium was enriched, while the pathogen Fusarium was suppressed under M2. With the same mulching width, increasing irrigation improved soil moisture, reduced electrical conductivity, and decreased soil temperature. Root diameter and volume increased by 7.67–47% and 9.43–10.36%, respectively. Mulching width and irrigation depth significantly affected bacterial α-diversity. M2W3 showed the highest microbial richness and functional diversity. This study offers guidance for efficient cotton cultivation in southern Xinjiang. Full article
(This article belongs to the Special Issue Crop Management in Water-Limited Cropping Systems)
Show Figures

Figure 1

23 pages, 1540 KB  
Article
Assessment of Evapotranspiration–Yield Relationships in Northern China Tea Plantations: A Basis for Crop Water Productivity Improvement
by Quanru Liu, Zongzhi Wang, Liang Cheng, Kun Wang, Ying Bai, Qi Ding, Ziyue Shao and Yongbing Zhang
Agronomy 2025, 15(8), 1955; https://doi.org/10.3390/agronomy15081955 - 13 Aug 2025
Viewed by 550
Abstract
Global climate warming and freshwater scarcity are intensifying water stress in agricultural fields, severely constraining sustainable agricultural development. As a typical C3 perennial cash crop, tea (Camellia sinensis) is naturally suited to low-latitude regions with abundant heat and evenly distributed precipitation, [...] Read more.
Global climate warming and freshwater scarcity are intensifying water stress in agricultural fields, severely constraining sustainable agricultural development. As a typical C3 perennial cash crop, tea (Camellia sinensis) is naturally suited to low-latitude regions with abundant heat and evenly distributed precipitation, and it is highly sensitive to environmental factors such as temperature and moisture. In northern hilly tea-producing areas, tea plantations often encounter multiple challenges including uneven rainfall distribution and poor soil water retention, resulting in prominent water supply–demand imbalances that critically limit stable and efficient tea production. To explore efficient water-saving irrigation strategies adapted to such ecological conditions, this study was conducted in the Yushan Tea Plantation, Rizhao City, Shandong Province, China. Based on field monitoring data across three growing seasons (spring, summer, and autumn) from 2021 to 2023, five irrigation treatments were evaluated: conventional sprinkler irrigation (CK), drip irrigation (D), micro-sprinkler irrigation (W), drip irrigation with straw mulching (SD), and micro-sprinkler irrigation with straw mulching (SW). Actual crop evapotranspiration (ETc act) was estimated using the soil water balance method, and actual fresh tea leaf yield (FTLY) and crop water productivity (CWP) were measured. Results showed that the SW treatment significantly improved both FTLY and CWP across all three seasons, with summer FTLY in 2022 increasing by 56.58% compared to CK and maximum CWP in spring and autumn reaching 0.916 kg/m3, demonstrating excellent stability and adaptability. Among all irrigation strategies, the SW treatment also exhibited the best regression fitting and yield prediction accuracy. The regression model validated by leave-one-out cross-validation (LOOCV) for the SW treatment demonstrated strong robustness and reliability (R2 = 0.734; RMSE = 208.12 kg/ha; MAE = 183.31 kg/ha). Notably, the samples with the largest prediction errors across all treatments were nearly all associated with the highest or near-highest ETc act values, indicating that model accuracy tends to decrease under extreme evapotranspiration conditions. The results show the synergistic effect of irrigation–mulching integration on enhancing CWP in northern perennial tea systems, providing empirical evidence and theoretical support for developing efficient irrigation strategies in hilly tea-growing regions of Northern China. Full article
Show Figures

Figure 1

15 pages, 3733 KB  
Article
Enhancing Sugarcane Yield and Weed Control Sustainability with Degradable Film Mulching
by Xin Yuan, Rudan Li, Guolei Tang, Shaolin Yang and Jun Deng
Plants 2025, 14(16), 2521; https://doi.org/10.3390/plants14162521 - 13 Aug 2025
Viewed by 338
Abstract
A two-year field study evaluated biodegradable plastic film (BPF; thicknesses: 0.006, 0.008, and 0.010 mm) versus polyethylene film (PE; 0.010 mm) and no-mulch control on sugarcane yield and weed suppression. Key results demonstrated that 0.010 mm BPF significantly enhanced sugarcane emergence (CV [...] Read more.
A two-year field study evaluated biodegradable plastic film (BPF; thicknesses: 0.006, 0.008, and 0.010 mm) versus polyethylene film (PE; 0.010 mm) and no-mulch control on sugarcane yield and weed suppression. Key results demonstrated that 0.010 mm BPF significantly enhanced sugarcane emergence (CV = 5.07% in ratoon), reduced weed biomass by 70%, and increased perennial yield by 3.83% (+5.6 t ha−1), while PE film decreased yield by 3.80%. Regression analysis identified the effective stem number, plant height, and stem diameter as primary yield predictors (R2 = 0.996). Logistic models revealed that film mulching duration >119 days was critical for achieving high yields (>122.2 t ha−1) and sustained weed control (R2 = 0.81). These findings establish 0.010 mm BPF as an optimal sustainable alternative to PE film for enhancing sugarcane productivity. Full article
Show Figures

Figure 1

22 pages, 6844 KB  
Article
Legume Green Manure Further Improves the Effects of Fertilization on the Long-Term Yield and Water and Nitrogen Utilization of Winter Wheat in Rainfed Agriculture
by Xiushuang Li, Juan Chen, Jianglan Shi and Xiaohong Tian
Plants 2025, 14(16), 2476; https://doi.org/10.3390/plants14162476 - 9 Aug 2025
Viewed by 462
Abstract
Context: To revive the practice of planting legume green manure (GM) in the fallow period in rainfed agricultural areas, it is essential to demonstrate the benefits of this practice on the yields and water use efficiency (WUE) of subsequent crops, especially when integrating [...] Read more.
Context: To revive the practice of planting legume green manure (GM) in the fallow period in rainfed agricultural areas, it is essential to demonstrate the benefits of this practice on the yields and water use efficiency (WUE) of subsequent crops, especially when integrating with optimized water and fertilizer management. Objectives: We conducted a field experiment to determine the positive effects of planting legume GM in the summer fallow on the yield, WUE, and nitrogen uptake efficiency (NupE) of subsequent winter wheat, which was grown with plastic film mulching and integrated fertilization in the Loess Plateau of China. Methods: A split-plot-designed experiment was arranged with two main treatments, namely (1) wheat planting followed by GM planting in the summer fallow (GM) and (2) conventional wheat monoculture followed by bare land summer fallow (BL), and three sub-treatments: (1) control treatment without any chemical fertilizer (Ct), (2) application of chemical N, P, and K as basal fertilizer (B), and (3) application of basal fertilizer plus wheat straw return (BS). Results: In the initial two years, even in a dry year, GM did not decrease the soil water content and storage (0–200 cm layer) during the subsequent winter wheat season, relative to BL. But in the third and fourth years, GM increased the grain yield of winter wheat by 3.2% and 3.8%, respectively. B and BS increased the grain yield of winter wheat by 14.4% and 22.2%, respectively, during the third experimental year, and by 12.7% and 19.4% during the fourth experimental year, primarily through increasing the population density of winter wheat. The increase in the grain yield contributed to a higher WUE of winter wheat. In the third year, GM increased the water consumption (WC) and WUE of wheat by 2.4% and 1.7%, respectively, though they were far lower than B (8.3% and 5.6%) and BS (10.4% and 10.7%). B and BS resulted in a higher yield and N nutrition than GM alone, but GM combined with B and BS resulted in the highest yield and N nutrition, thus greatly decreasing the NupE and increasing N productivity. Conclusions: Planting legume GM in the fallow can further increase the long-term yield, WUE, and N utilization of winter wheat when integrated with chemical fertilization and wheat straw return in rainfed agriculture. Implications: Our study yields new insights into the agronomic benefits of legume GM application in semi-arid or analogous rainfed agroecosystems and underscores the critical role of water conservation in ensuring dryland agricultural production, particularly in regions undergoing optimization of fertilization. Full article
Show Figures

Figure 1

15 pages, 1816 KB  
Article
Biological Enzymatic Hydrolysis—Single Screw Co-Extrusion Treatment to Improve the Mechanical Properties of Biodegradable Straw Fiber Mulching Films
by Tao Jiang, Xing Wang, Haoyuan Yang, Chuang Gao, Mende Hongyang, Xinhang Xu, Shubai Cong, Yuanjun Sun, Tianzheng Pei, Bin Wang, Shuang Liu, Yu Wang, Rui Li, Haitao Chen and Longhai Li
Agronomy 2025, 15(8), 1923; https://doi.org/10.3390/agronomy15081923 - 9 Aug 2025
Viewed by 551
Abstract
Biodegradable agricultural films manufactured with straw serve as a viable substitute for plastic films, effectively addressing the issue of white pollution. However, existing biodegradable straw fiber films exhibit insufficient mechanical properties, primarily characterized by their susceptibility to fracture damage. To address this issue, [...] Read more.
Biodegradable agricultural films manufactured with straw serve as a viable substitute for plastic films, effectively addressing the issue of white pollution. However, existing biodegradable straw fiber films exhibit insufficient mechanical properties, primarily characterized by their susceptibility to fracture damage. To address this issue, a novel method for the preparation of film raw materials was proposed, which employs the synergistic treatment of bioenzymes and a single screw extruder, with the aim of enhancing the mechanical properties of the film. The method begins with the application of microbial agents to pretreat the straw, for improving its fiber morphology and inducing beneficial physicochemical structural changes. Subsequently, single screw extrusion technology is employed to further enhance the quality of the straw fibers and the mechanical performance of the film. The bio-mechanical pulp produced with this method demonstrated an increase in the crystallinity index (CrI) from 50.33% to 60.78%, while the degree of polymerization (DP) decreased from 866.51 to 749.60. Furthermore, the tensile strength, tear strength, and burst strength of the fiber covering film increased by 35.74%, 16.22%, and 11.65%, respectively, which meet the mechanical durability requirements for farmland mulching. This research effectively mitigates agricultural white pollution by converting agricultural waste straw into biodegradable mulch film, which promotes the recycling of straw resources. This study presents a novel method with significant potential application value for the production of bio-pulping in the paper industry. Full article
(This article belongs to the Section Agricultural Biosystem and Biological Engineering)
Show Figures

Figure 1

26 pages, 19304 KB  
Article
FreqDyn-YOLO: A High-Performance Multi-Scale Feature Fusion Algorithm for Detecting Plastic Film Residues in Farmland
by Mingyang Zhang, Jianjie Zhang, Yihang Peng and Yi Wang
Sensors 2025, 25(16), 4888; https://doi.org/10.3390/s25164888 - 8 Aug 2025
Viewed by 402
Abstract
Plastic mulch technology plays an important role in increasing agricultural productivity and economic returns. However, residual mulch remaining in agricultural fields poses significant challenges to both crop production and environmental sustainability. Effective recovery and recycling of residual plastic mulch requires accurate detection and [...] Read more.
Plastic mulch technology plays an important role in increasing agricultural productivity and economic returns. However, residual mulch remaining in agricultural fields poses significant challenges to both crop production and environmental sustainability. Effective recovery and recycling of residual plastic mulch requires accurate detection and identification of mulch fragments, which presents a substantial technical challenge. The detection of residual plastic film is complicated by several factors: the visual similarity between residual film fragments and soil in terms of color and texture, as well as the irregular shapes and variable sizes of the target objects. To address these challenges, this study develops FreqDyn-YOLO, a detection model for residual film identification in agricultural environments based on the YOLO11 architecture. The proposed methodology introduces three main technical contributions. First, a Frequency-C3k2 (FreqC3) feature extraction module is implemented, which employs a Frequency Feature Transposed Attention (FreqFTA) mechanism to improve discrimination between residual film and soil backgrounds. Second, a High-Performance Multi-Scale Feature Pyramid Network (HPMSFPN) is developed to enable effective cross-layer feature fusion, enhancing detection performance across different target scales. Third, a Dynamic Detection Head With DCNv4 (DWD4) is introduced to improve the model’s ability to adapt to varying film morphologies while maintaining computational efficiency. Experimental findings on a self-developed agricultural field residual film dataset confirm that FreqDyn-YOLO outperforms the baseline approach, achieving improvements of 5.37%, 1.97%, and 2.96% in mAP50, precision, and recall, respectively. The model also demonstrates superior performance compared to other recent detection methods. This work provides a technical foundation for precise residual film identification in agricultural applications and shows promise for integration into automated recovery systems. Full article
(This article belongs to the Section Smart Agriculture)
Show Figures

Figure 1

19 pages, 6624 KB  
Article
Visual Observation of Polystyrene Microplastics/Nanoplastics in Peanut Seedlings and Their Effects on Growth and the Antioxidant Defense System
by Yuyang Li, Xinyi Huang, Qiang Lv, Zhanqiang Ma, Minhua Zhang, Jing Liu, Liying Fan, Xuejiao Yan, Nianyuan Jiao, Aneela Younas, Muhammad Shaaban, Jiakai Gao, Yanfang Wang and Ling Liu
Agronomy 2025, 15(8), 1895; https://doi.org/10.3390/agronomy15081895 - 6 Aug 2025
Viewed by 336
Abstract
Peanut cultivation is widely practiced using plastic mulch film, resulting in the accumulation of microplastics/nanoplastics (MPs/NPs) in agricultural soils, potentially negatively affecting peanut growth. To investigate the effects of two polystyrene (PS) sizes (5 μm, 50 nm) and three concentrations (0, 10, and [...] Read more.
Peanut cultivation is widely practiced using plastic mulch film, resulting in the accumulation of microplastics/nanoplastics (MPs/NPs) in agricultural soils, potentially negatively affecting peanut growth. To investigate the effects of two polystyrene (PS) sizes (5 μm, 50 nm) and three concentrations (0, 10, and 100 mg L−1) on peanut growth, photosynthetic efficiency, and physiological characteristics, a 15-day hydroponic experiment was conducted using peanut seedlings as the experimental material. The results indicated that PS-MPs/NPs inhibited peanut growth, reduced soil and plant analyzer development (SPAD) values (6.7%), and increased levels of malondialdehyde (MDA, 22.0%), superoxide anion (O2, 3.8%) superoxide dismutase (SOD, 16.1%) and catalase (CAT, 12.1%) activity, and ascorbic acid (ASA, 12.6%) and glutathione (GSH, 9.1%) contents compared to the control. Moreover, high concentrations (100 mg L−1) of PS-MPs/NPs reduced the peanut shoot fresh weight (16.1%) and SPAD value (7.2%) and increased levels of MDA (17.1%), O2 (5.6%), SOD (10.6%), POD (27.2%), CAT (7.3%), ASA (12.3%), and GSH (6.8%) compared to low concentrations (10 mg L−1) of PS-MPs/NPs. Notably, under the same concentration, the impact of 50 nm PS-NPs was stronger than that of 5 μm PS-MPs. The peanut shoot fresh weight of PS-NPs was lower than that of PS-MPs by an average of 7.9%. Additionally, we found that with an increasing exposure time of PS-MPs/NPs, the inhibitory effect of low concentrations of PS-MPs/NPs on the fresh weight was decreased by 2.5%/9.9% (5 d) and then increased by 7.7%/2.7% (15 d). Conversely, high concentrations of PS-MPs/NPs consistently reduced the fresh weight. Correlation analysis revealed a clear positive correlation between peanut biomass and both the SPAD values as well as Fv/Fm, and a negative correlation with MDA, SOD, CAT, ASA, and GSH. Furthermore, the presence of PS-MPs/NPs in roots, stems, and leaves was confirmed using a confocal laser scanning microscope. The internalization of PS-MPs/NPs within peanut tissues negatively impacted peanut growth by increasing the MDA and O2 levels, reducing the SPAD values, and inhibiting the photosynthetic capacity. In conclusion, the study demonstrated that the effects of PS on peanuts were correlated with the PS size, concentration, and exposure time, highlighting the potential risk of 50 nm to 5 μm PS being absorbed by peanuts. Full article
(This article belongs to the Collection Crop Physiology and Stress)
Show Figures

Figure 1

22 pages, 2187 KB  
Article
Long-Term Rotary Tillage and Straw Mulching Enhance Dry Matter Production, Yield, and Water Use Efficiency of Wheat in a Rain-Fed Wheat-Soybean Double Cropping System
by Shiyan Dong, Ming Huang, Junhao Zhang, Qihui Zhou, Chuan Hu, Aohan Liu, Hezheng Wang, Guozhan Fu, Jinzhi Wu and Youjun Li
Plants 2025, 14(15), 2438; https://doi.org/10.3390/plants14152438 - 6 Aug 2025
Viewed by 435
Abstract
Water deficiency and low water use efficiency severely constrain wheat yield in dryland regions. This study aimed to identify suitable tillage methods and straw management to improve dry matter production, grain yield, and water use efficiency of wheat in the dryland winter wheat–summer [...] Read more.
Water deficiency and low water use efficiency severely constrain wheat yield in dryland regions. This study aimed to identify suitable tillage methods and straw management to improve dry matter production, grain yield, and water use efficiency of wheat in the dryland winter wheat–summer bean (hereafter referred to as wheat-soybean) double-cropping system. A long-term located field experiment (onset in October 2009) with two tillage methods—plowing (PT) and rotary tillage (RT)—and two straw management—no straw mulching (NS) and straw mulching (SM)—was conducted at a typical dryland in China. The wheat yield and yield component, dry matter accumulation and translocation characteristics, and water use efficiency were investigated from 2014 to 2018. Straw management significantly affected wheat yield and yield components, while tillage methods had no significant effect. Furthermore, the interaction of tillage methods and straw management significantly affected yield and yield components except for the spike number. RTSM significantly increased the spike number, grains per spike, 1000-grain weight, harvest index, and grain yield by 12.5%, 8.4%, 6.0%, 3.4%, and 13.4%, respectively, compared to PTNS. Likewise, RTSM significantly increased the aforementioned indicators by 14.8%, 10.1%, 7.5%, 3.6%, and 20.5%, compared to RTNS. Mechanistic analysis revealed that, compared to NS, SM not only significantly enhanced pre-anthesis and post-anthesis dry matter accumulation, and pre-anthesis dry matter tanslocation to grain, but also significantly improved pre-sowing water storage, water consumption during wheat growth, water use efficiency, and water-saving for produced per kg grain yield, with the greatest improvements obtained under RT than PT. Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) analysis confirmed RTSM’s yield superiority was mainly ascribed to straw-induced improvements in dry matter and water productivity. In a word, rotary tillage with straw mulching could be recommended as a suitable practice for high-yield wheat production in a dryland wheat-soybean double-cropping system. Full article
(This article belongs to the Special Issue Emerging Trends in Alternative and Sustainable Crop Production)
Show Figures

Figure 1

Back to TopTop