Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,001)

Search Parameters:
Keywords = multi-baseline

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 1581 KB  
Article
Short-Term Displacement Prediction of Rainfall-Induced Landslides Through the Integration of Static and Dynamic Factors: A Case Study of China
by Chuyun Cheng, Wenyi Zhao, Lun Wu, Xiaoyin Chang, Bronte Scheuer, Jianxue Zhang, Ruhao Huang and Yuan Tian
Water 2025, 17(19), 2882; https://doi.org/10.3390/w17192882 - 2 Oct 2025
Abstract
Rainfall-induced landslide deformation is governed by both intrinsic geological conditions and external dynamic triggers. However, many existing predictive models rely primarily on rainfall inputs, which limits their interpretability and robustness. To address these shortcomings, this study introduces a group-based data augmentation method informed [...] Read more.
Rainfall-induced landslide deformation is governed by both intrinsic geological conditions and external dynamic triggers. However, many existing predictive models rely primarily on rainfall inputs, which limits their interpretability and robustness. To address these shortcomings, this study introduces a group-based data augmentation method informed by displacement curve morphology and proposes a multi-slope predictive framework that integrates static geological attributes with dynamic triggering factors. Using monitoring data from 274 sites across China, the framework was implemented with a Temporal Fusion Transformer (TFT) and benchmarked against baseline models, including SVR, XGBoost, and LSTM models. The results demonstrate that group-based augmentation enhances the stability and accuracy of predictions, while the integrated dynamic–static TFT framework delivers superior accuracy and improved interpretability. Statistical significance testing further confirms consistent performance improvements across all groups. Collectively, these findings highlight the framework’s effectiveness for short-term landslide forecasting and underscore its potential to advance early warning systems. Full article
(This article belongs to the Special Issue Water-Related Landslide Hazard Process and Its Triggering Events)
35 pages, 4926 KB  
Article
Hybrid MOCPO–AGE-MOEA for Efficient Bi-Objective Constrained Minimum Spanning Trees
by Dana Faiq Abd, Haval Mohammed Sidqi and Omed Hasan Ahmed
Computers 2025, 14(10), 422; https://doi.org/10.3390/computers14100422 - 2 Oct 2025
Abstract
The constrained bi-objective Minimum Spanning Tree (MST) problem is a fundamental challenge in network design, as it simultaneously requires minimizing both total edge weight and maximum hop distance under strict feasibility limits; however, most existing algorithms tend to emphasize one objective over the [...] Read more.
The constrained bi-objective Minimum Spanning Tree (MST) problem is a fundamental challenge in network design, as it simultaneously requires minimizing both total edge weight and maximum hop distance under strict feasibility limits; however, most existing algorithms tend to emphasize one objective over the other, resulting in imbalanced solutions, limited Pareto fronts, or poor scalability on larger instances. To overcome these shortcomings, this study introduces a Hybrid MOCPO–AGE-MOEA algorithm that strategically combines the exploratory strength of Multi-Objective Crested Porcupines Optimization (MOCPO) with the exploitative refinement of the Adaptive Geometry-based Evolutionary Algorithm (AGE-MOEA), while a Kruskal-based repair operator is integrated to strictly enforce feasibility and preserve solution diversity. Moreover, through extensive experiments conducted on Euclidean graphs with 11–100 nodes, the hybrid consistently demonstrates superior performance compared with five state-of-the-art baselines, as it generates Pareto fronts up to four times larger, achieves nearly 20% reductions in hop counts, and delivers order-of-magnitude runtime improvements with near-linear scalability. Importantly, results reveal that allocating 85% of offspring to MOCPO exploration and 15% to AGE-MOEA exploitation yields the best balance between diversity, efficiency, and feasibility. Therefore, the Hybrid MOCPO–AGE-MOEA not only addresses critical gaps in constrained MST optimization but also establishes itself as a practical and scalable solution with strong applicability to domains such as software-defined networking, wireless mesh systems, and adaptive routing, where both computational efficiency and solution diversity are paramount Full article
Show Figures

Figure 1

17 pages, 1172 KB  
Article
Data-Driven Baseline Analysis of Climate Variability at an Antarctic AWS (2020–2024)
by Arpitha Javali Ashok, Shan Faiz, Raja Hashim Ali and Talha Ali Khan
Digital 2025, 5(4), 50; https://doi.org/10.3390/digital5040050 - 2 Oct 2025
Abstract
Climate change in Antarctica has profound global implications, influencing sea level rise, atmospheric circulation, and the Earth’s energy balance. This study presents a data-driven baseline analysis of meteorological observations from a British Antarctic Survey automatic weather station (2020–2024). Temporal and seasonal analyses reveal [...] Read more.
Climate change in Antarctica has profound global implications, influencing sea level rise, atmospheric circulation, and the Earth’s energy balance. This study presents a data-driven baseline analysis of meteorological observations from a British Antarctic Survey automatic weather station (2020–2024). Temporal and seasonal analyses reveal strong insolation-driven variability in temperature, snow depth, and solar radiation, reflecting the extreme polar day–night cycle. Correlation analysis highlights solar radiation, upwelling longwave flux, and snow depth as the most reliable predictors of near-surface temperature, while humidity, pressure, and wind speed contribute minimally. A linear regression baseline and a Random Forest model are evaluated for temperature prediction, with the ensemble approach demonstrating superior accuracy. Although the short data span limits long-term trend attribution, the findings underscore the potential of lightweight, reproducible pipelines for site-specific climate monitoring. All analysis codes are openly available in github, enabling transparency and future methodological extensions to advanced, non-linear models and multi-site datasets. Full article
11 pages, 1276 KB  
Article
Efficacy of a Novel Treatment Approach for Obstructive Sleep Apnea
by Brandon Hedgecock, Max Kerr, Jenny Tran, Ben Sutter, Phillip Neal, Gilles Besnainou, Erin Mosca and Len Liptak
Biomedicines 2025, 13(10), 2413; https://doi.org/10.3390/biomedicines13102413 - 2 Oct 2025
Abstract
Objective: This study evaluates the efficacy of a novel approach to oral appliance therapy (“OAT”) for the treatment of obstructive sleep apnea (“OSA”). This novel approach utilizes a systemized, oximetry-informed, treatment protocol and a precision-custom oral appliance. Methods: Sixty consecutive patients [...] Read more.
Objective: This study evaluates the efficacy of a novel approach to oral appliance therapy (“OAT”) for the treatment of obstructive sleep apnea (“OSA”). This novel approach utilizes a systemized, oximetry-informed, treatment protocol and a precision-custom oral appliance. Methods: Sixty consecutive patients diagnosed with OSA were treated at Sleep Better Austin (“SBA”) using a structured, multi-step protocol and a precision-custom oral appliance (ProSomnus EVO). Baseline and post-treatment apnea–hypopnea index (“AHI”) values were compared using a matched-pair design. The primary outcome was the percentage of patients achieving a residual AHI of <10 events/h. Secondary outcomes included severity classification improvement. Results: In total, 90% of patients achieved the primary endpoint, and 87% improved by at least one severity classification. The mean AHI improved by 63% from baseline with the precision-custom OAT in situ (p < 0.001). In the moderate-to-severe subgroup, AHI improved by 70%, with 100% of severe patients achieving a residual AHI of <20 and a ≥50% improvement, without patient preselection. No serious adverse events were reported, and all patients continued therapy at follow-up. Conclusions: Precision-custom OAT, when delivered through a standardized clinical protocol informed by oximetry, can be a highly effective and well-tolerated treatment for OSA. These findings support its broader adoption as a non-invasive alternative to continuous positive airway pressure (“CPAP”) and surgical interventions, particularly for patients seeking personalized, high-compliance solutions. Full article
Show Figures

Figure 1

15 pages, 2373 KB  
Article
LLM-Empowered Kolmogorov-Arnold Frequency Learning for Time Series Forecasting in Power Systems
by Zheng Yang, Yang Yu, Shanshan Lin and Yue Zhang
Mathematics 2025, 13(19), 3149; https://doi.org/10.3390/math13193149 - 2 Oct 2025
Abstract
With the rapid evolution of artificial intelligence technologies in power systems, data-driven time-series forecasting has become instrumental in enhancing the stability and reliability of power systems, allowing operators to anticipate demand fluctuations and optimize energy distribution. Despite the notable progress made by current [...] Read more.
With the rapid evolution of artificial intelligence technologies in power systems, data-driven time-series forecasting has become instrumental in enhancing the stability and reliability of power systems, allowing operators to anticipate demand fluctuations and optimize energy distribution. Despite the notable progress made by current methods, they are still hindered by two major limitations: most existing models are relatively small in architecture, failing to fully leverage the potential of large-scale models, and they are based on fixed nonlinear mapping functions that cannot adequately capture complex patterns, leading to information loss. To this end, an LLM-Empowered Kolmogorov–Arnold frequency learning (LKFL) is proposed for time series forecasting in power systems, which consists of LLM-based prompt representation learning, KAN-based frequency representation learning, and entropy-oriented cross-modal fusion. Specifically, LKFL first transforms multivariable time-series data into text prompts and leverages a pre-trained LLM to extract semantic-rich prompt representations. It then applies Fast Fourier Transform to convert the time-series data into the frequency domain and employs Kolmogorov–Arnold networks (KAN) to capture multi-scale periodic structures and complex frequency characteristics. Finally, LKFL integrates the prompt and frequency representations through an entropy-oriented cross-modal fusion strategy, which minimizes the semantic gap between different modalities and ensures full integration of complementary information. This comprehensive approach enables LKFL to achieve superior forecasting performance in power systems. Extensive evaluations on five benchmarks verify that LKFL sets a new standard for time-series forecasting in power systems compared with baseline methods. Full article
(This article belongs to the Special Issue Artificial Intelligence and Data Science, 2nd Edition)
Show Figures

Figure 1

12 pages, 768 KB  
Article
ECG Waveform Segmentation via Dual-Stream Network with Selective Context Fusion
by Yongpeng Niu, Nan Lin, Yuchen Tian, Kaipeng Tang and Baoxiang Liu
Electronics 2025, 14(19), 3925; https://doi.org/10.3390/electronics14193925 - 2 Oct 2025
Abstract
Electrocardiogram (ECG) waveform delineation is fundamental to cardiac disease diagnosis. This task requires precise localization of key fiducial points, specifically the onset, peak, and offset positions of P-waves, QRS complexes, and T-waves. Current methods exhibit significant performance degradation in noisy clinical environments (baseline [...] Read more.
Electrocardiogram (ECG) waveform delineation is fundamental to cardiac disease diagnosis. This task requires precise localization of key fiducial points, specifically the onset, peak, and offset positions of P-waves, QRS complexes, and T-waves. Current methods exhibit significant performance degradation in noisy clinical environments (baseline drift, electromyographic interference, powerline interference, etc.), compromising diagnostic reliability. To address this limitation, we introduce ECG-SCFNet: a novel dual-stream architecture employing selective context fusion. Our framework is further enhanced by a consistency training paradigm, enabling it to maintain robust waveform delineation accuracy under challenging noise conditions.The network employs a dual-stream architecture: (1) A temporal stream captures dynamic rhythmic features through sequential multi-branch convolution and temporal attention mechanisms; (2) A morphology stream combines parallel multi-scale convolution with feature pyramid integration to extract multi-scale waveform structural features through morphological attention; (3) The Selective Context Fusion (SCF) module adaptively integrates features from the temporal and morphology streams using a dual attention mechanism, which operates across both channel and spatial dimensions to selectively emphasize informative features from each stream, thereby enhancing the representation learning for accurate ECG segmentation. On the LUDB and QT datasets, ECG-SCFNet achieves high performance, with F1-scores of 97.83% and 97.80%, respectively. Crucially, it maintains robust performance under challenging noise conditions on these datasets, with 88.49% and 86.25% F1-scores, showing significantly improved noise robustness compared to other methods and demonstrating exceptional robustness and precise boundary localization for clinical ECG analysis. Full article
Show Figures

Figure 1

25 pages, 810 KB  
Article
Studying Evolutionary Solution Adaption by Using a Flexibility Benchmark Based on a Metal Cutting Process
by Léo Françoso Dal Piccol Sotto, Sebastian Mayer, Hemanth Janarthanam, Alexander Butz and Jochen Garcke
Biomimetics 2025, 10(10), 663; https://doi.org/10.3390/biomimetics10100663 - 1 Oct 2025
Abstract
We consider optimization for different production requirements from the viewpoint of a bio-inspired framework for system flexibility that allows us to study the ability of an algorithm to transfer solutions from previous optimization tasks, which also relates to dynamic evolutionary optimization. Optimizing manufacturing [...] Read more.
We consider optimization for different production requirements from the viewpoint of a bio-inspired framework for system flexibility that allows us to study the ability of an algorithm to transfer solutions from previous optimization tasks, which also relates to dynamic evolutionary optimization. Optimizing manufacturing process parameters is typically a multi-objective problem with often contradictory objectives, such as production quality and production time. If production requirements change, process parameters have to be optimized again. Since optimization usually requires costly simulations based on, for example, the Finite Element method, it is of great interest to have a means to reduce the number of evaluations needed for optimization. Based on the extended Oxley model for orthogonal metal cutting, we introduce a multi-objective optimization benchmark where different materials define related optimization tasks. We use the benchmark to study the flexibility of NSGA-II, which we extend by developing two variants: (1) varying goals, which optimizes solutions for two tasks simultaneously to obtain in-between source solutions expected to be more adaptable, and (2) active–inactive genotype, which accommodates different possibilities that can be activated or deactivated. Results show that adaption with standard NSGA-II greatly reduces the number of evaluations required for optimization for a target goal. The proposed variants further improve the adaption costs, where on average, the computational effort is more than halved in comparison to the non-adapted baseline. We note that further work is needed for making the methods advantageous for real applications. Full article
(This article belongs to the Special Issue Bioinspired Engineered Systems)
Show Figures

Graphical abstract

50 pages, 4498 KB  
Review
Reinforcement Learning for Electric Vehicle Charging Management: Theory and Applications
by Panagiotis Michailidis, Iakovos Michailidis and Elias Kosmatopoulos
Energies 2025, 18(19), 5225; https://doi.org/10.3390/en18195225 - 1 Oct 2025
Abstract
The growing complexity of electric vehicle charging station (EVCS) operations—driven by grid constraints, renewable integration, user variability, and dynamic pricing—has positioned reinforcement learning (RL) as a promising approach for intelligent, scalable, and adaptive control. After outlining the core theoretical foundations, including RL algorithms, [...] Read more.
The growing complexity of electric vehicle charging station (EVCS) operations—driven by grid constraints, renewable integration, user variability, and dynamic pricing—has positioned reinforcement learning (RL) as a promising approach for intelligent, scalable, and adaptive control. After outlining the core theoretical foundations, including RL algorithms, agent architectures, and EVCS classifications, this review presents a structured survey of influential research, highlighting how RL has been applied across various charging contexts and control scenarios. This paper categorizes RL methodologies from value-based to actor–critic and hybrid frameworks, and explores their integration with optimization techniques, forecasting models, and multi-agent coordination strategies. By examining key design aspects—including agent structures, training schemes, coordination mechanisms, reward formulation, data usage, and evaluation protocols—this review identifies broader trends across central control dimensions such as scalability, uncertainty management, interpretability, and adaptability. In addition, the review assesses common baselines, performance metrics, and validation settings used in the literature, linking algorithmic developments with real-world deployment needs. By bridging theoretical principles with practical insights, this work provides comprehensive directions for future RL applications in EVCS control, while identifying methodological gaps and opportunities for safer, more efficient, and sustainable operation. Full article
(This article belongs to the Special Issue Advanced Technologies for Electrified Transportation and Robotics)
Show Figures

Figure 1

26 pages, 4789 KB  
Article
EMAT: Enhanced Multi-Aspect Attention Transformer for Financial Time Series Forecasting
by Yingjun Chen, Wenfeng Shen, Han Liu and Xiaolin Cao
Entropy 2025, 27(10), 1029; https://doi.org/10.3390/e27101029 - 1 Oct 2025
Abstract
Financial time series prediction remains a challenging task due to the inherent non-stationarity, noise, and complex temporal dependencies present in market data. Traditional forecasting methods often fail to capture the multifaceted nature of financial markets, where temporal proximity, trend dynamics, and volatility patterns [...] Read more.
Financial time series prediction remains a challenging task due to the inherent non-stationarity, noise, and complex temporal dependencies present in market data. Traditional forecasting methods often fail to capture the multifaceted nature of financial markets, where temporal proximity, trend dynamics, and volatility patterns simultaneously influence price movements. To address these limitations, this paper proposes the Enhanced Multi-Aspect Transformer (EMAT), a novel deep learning architecture specifically designed for stock market prediction. EMAT incorporates a Multi-Aspect Attention Mechanism that simultaneously captures temporal decay patterns, trend dynamics, and volatility regimes through specialized attention components. The model employs an encoder–decoder architecture with enhanced feed-forward networks utilizing SwiGLU activation, enabling superior modeling of complex non-linear relationships. Furthermore, we introduce a comprehensive multi-objective loss function that balances point-wise prediction accuracy with volatility consistency. Extensive experiments on multiple stock market datasets demonstrate that EMAT consistently outperforms a wide range of state-of-the-art baseline models, including various recurrent, hybrid, and Transformer architectures. Our ablation studies further validate the design, confirming that each component of the Multi-Aspect Attention Mechanism makes a critical and quantifiable contribution to the model’s predictive power. The proposed architecture’s ability to simultaneously model these distinct financial characteristics makes it a particularly effective and robust tool for financial forecasting, offering significant improvements in accuracy compared to existing approaches. Full article
(This article belongs to the Special Issue Entropy, Artificial Intelligence and the Financial Markets)
Show Figures

Figure 1

22 pages, 1669 KB  
Article
Adaptive Multi-Objective Optimization for UAV-Assisted Wireless Powered IoT Networks
by Xu Zhu, Junyu He and Ming Zhao
Information 2025, 16(10), 849; https://doi.org/10.3390/info16100849 - 1 Oct 2025
Abstract
This paper studies joint data collection and wireless power transfer in a UAV-assisted IoT network. A rotary-wing UAV follows a fly–hover–communicate cycle. At each hover, it simultaneously receives uplink data in full-duplex mode while delivering radio-frequency energy to nearby devices. Using a realistic [...] Read more.
This paper studies joint data collection and wireless power transfer in a UAV-assisted IoT network. A rotary-wing UAV follows a fly–hover–communicate cycle. At each hover, it simultaneously receives uplink data in full-duplex mode while delivering radio-frequency energy to nearby devices. Using a realistic propulsion-power model and a nonlinear energy-harvesting model, we formulate trajectory and hover control as a multi-objective optimization problem that maximizes the aggregate data rate and total harvested energy while minimizing the UAV’s energy consumption over the mission. To enable flexible trade-offs among these objectives under time-varying conditions, we propose a dynamic, state-adaptive weighting mechanism that generates environment-conditioned weights online, which is integrated into an enhanced deep deterministic policy gradient (DDPG) framework. The resulting dynamic-weight MODDPG (DW-MODDPG) policy adaptively adjusts the UAV’s trajectory and hover strategy in response to real-time variations in data demand and energy status. Simulation results demonstrate that DW-MODDPG achieves superior overall performance and a more favorable balance among the three objectives. Compared with the fixed-weight baseline, our algorithm increases total harvested energy by up to 13.8% and the sum data rate by up to 5.4% while maintaining comparable or even lower UAV energy consumption. Full article
(This article belongs to the Section Internet of Things (IoT))
Show Figures

Figure 1

21 pages, 5777 KB  
Article
S2M-Net: A Novel Lightweight Network for Accurate Smal Ship Recognition in SAR Images
by Guobing Wang, Rui Zhang, Junye He, Yuxin Tang, Yue Wang, Yonghuan He, Xunqiang Gong and Jiang Ye
Remote Sens. 2025, 17(19), 3347; https://doi.org/10.3390/rs17193347 - 1 Oct 2025
Abstract
Synthetic aperture radar (SAR) provides all-weather and all-day imaging capabilities and can penetrate clouds and fog, playing an important role in ship detection. However, small ships usually contain weak feature information in such images and are easily affected by noise, which makes detection [...] Read more.
Synthetic aperture radar (SAR) provides all-weather and all-day imaging capabilities and can penetrate clouds and fog, playing an important role in ship detection. However, small ships usually contain weak feature information in such images and are easily affected by noise, which makes detection challenging. In practical deployment, limited computing resources require lightweight models to improve real-time performance, yet achieving a lightweight design while maintaining high detection accuracy for small targets remains a key challenge in object detection. To address this issue, we propose a novel lightweight network for accurate small-ship recognition in SAR images, named S2M-Net. Specifically, the Space-to-Depth Convolution (SPD-Conv) module is introduced in the feature extraction stage to optimize convolutional structures, reducing computation and parameters while retaining rich feature information. The Mixed Local-Channel Attention (MLCA) module integrates local and channel attention mechanisms to enhance adaptation to complex backgrounds and improve small-target detection accuracy. The Multi-Scale Dilated Attention (MSDA) module employs multi-scale dilated convolutions to fuse features from different receptive fields, strengthening detection across ships of various sizes. The experimental results show that S2M-Net achieved mAP50 values of 0.989, 0.955, and 0.883 on the SSDD, HRSID, and SARDet-100k datasets, respectively. Compared with the baseline model, the F1 score increased by 1.13%, 2.71%, and 2.12%. Moreover, S2M-Net outperformed other state-of-the-art algorithms in FPS across all datasets, achieving a well-balanced trade-off between accuracy and efficiency. This work provides an effective solution for accurate ship detection in SAR images. Full article
Show Figures

Figure 1

25 pages, 9710 KB  
Article
SCS-YOLO: A Lightweight Cross-Scale Detection Network for Sugarcane Surface Cracks with Dynamic Perception
by Meng Li, Xue Ding, Jinliang Wang and Rongxiang Luo
AgriEngineering 2025, 7(10), 321; https://doi.org/10.3390/agriengineering7100321 - 1 Oct 2025
Abstract
Detecting surface cracks on sugarcane is a critical step in ensuring product quality control, with detection precision directly impacting raw material screening efficiency and economic benefits in the sugar industry. Traditional methods face three core challenges: (1) complex background interference complicates texture feature [...] Read more.
Detecting surface cracks on sugarcane is a critical step in ensuring product quality control, with detection precision directly impacting raw material screening efficiency and economic benefits in the sugar industry. Traditional methods face three core challenges: (1) complex background interference complicates texture feature extraction; (2) variable crack scales limit models’ cross-scale feature generalization capabilities; and (3) high computational complexity hinders deployment on edge devices. To address these issues, this study proposes a lightweight sugarcane surface crack detection model, SCS-YOLO (Surface Cracks on Sugarcane-YOLO), based on the YOLOv10 architecture. This model incorporates three key technical innovations. First, the designed RFAC2f module (Receptive-Field Attentive CSP Bottleneck with Dual Convolution) significantly enhances feature representation capabilities in complex backgrounds through dynamic receptive field modeling and multi-branch feature processing/fusion mechanisms. Second, the proposed DSA module (Dynamic SimAM Attention) achieves adaptive spatial optimization of cross-layer crack features by integrating dynamic weight allocation strategies with parameter-free spatial attention mechanisms. Finally, the DyHead detection head employs a dynamic feature optimization mechanism to reduce parameter count and computational complexity. Experiments demonstrate that on the Sugarcane Crack Dataset v3.1, compared to the baseline model YOLOv10, our model achieves mAP50:95 to 71.8% (up 2.1%). Simultaneously, it achieves significant reductions in parameter count (down 19.67%) and computational load (down 11.76%), while boosting FPS to 122 to meet real-time detection requirements. Considering the multiple dimensions of precision indicators, complexity indicators, and FPS comprehensively, the SCS—YOLO detection framework proposed in this study provides a feasible technical reference for the intelligent detection of sugarcane quality in the raw materials of the sugar industry. Full article
Show Figures

Figure 1

13 pages, 1249 KB  
Article
Dynamics of Telomerase-Based PD-L1 Circulating Tumor Cells as a Longitudinal Biomarker for Treatment Response Prediction in Patients with Non-Small Cell Lung Cancer
by Issei Sumiyoshi, Shinsaku Togo, Takahiro Okabe, Kanae Abe, Junko Watanabe, Yusuke Ochi, Kazuaki Hoshi, Shoko Saiwaki, Shuko Nojiri, Yuichi Fujimoto, Yukiko Namba, Yoko Tabe, Yasuo Urata and Kazuhisa Takahashi
Int. J. Mol. Sci. 2025, 26(19), 9583; https://doi.org/10.3390/ijms26199583 - 1 Oct 2025
Abstract
Noninvasive liquid biopsy for monitoring circulating tumor cells offers valuable insights for predicting therapeutic responses. We developed TelomeScan® (OBP-401), based on the detection of telomerase activity as a universal cancer cell marker and an indicator of the presence of viable circulating tumor [...] Read more.
Noninvasive liquid biopsy for monitoring circulating tumor cells offers valuable insights for predicting therapeutic responses. We developed TelomeScan® (OBP-401), based on the detection of telomerase activity as a universal cancer cell marker and an indicator of the presence of viable circulating tumor cells (CTCs) for patients with advanced non-small cell lung cancer (NSCLC). This system evaluated CTC subtypes characterized by programmed death ligand 1 (PD-L1), an immune checkpoint molecule, and vimentin, an epithelial–mesenchymal transition (EMT) marker, using a multi-fluorescent color microscope reader. The prognostic value and therapeutic responses were predicted by dynamically monitoring CTC counts in 79 patients with advanced NSCLC. The sensitivity and specificity values of TelomeScan® for PD-L1(+) cells (≥1 cell) were 75% and 100%, respectively, indicating high diagnostic accuracy. PD-L1(+) and EMT(+) in CTCs were detected in 75% and 12% of patients, respectively. Detection of PD-L1(+)CTCs and PD-L1(+)EMT(+) CTCs before treatment was associated with poor prognosis (p < 0.05). Monitoring of reducing and increasing PD-L1(+) CTC counts in two sequential samples (baseline, cycle 2 treatment) correlated significantly with partial response (p = 0.032) and progressive disease (p = 0.023), respectively. Monitoring PD-L1(+)CTCs by TelomeScan® will aid in anticipating responses or resistance to frontline treatments, optimizing precision medicine choices in patients with NSCLC. Full article
Show Figures

Figure 1

19 pages, 2933 KB  
Article
Image-Based Detection of Chinese Bayberry (Myrica rubra) Maturity Using Cascaded Instance Segmentation and Multi-Feature Regression
by Hao Zheng, Li Sun, Yue Wang, Han Yang and Shuwen Zhang
Horticulturae 2025, 11(10), 1166; https://doi.org/10.3390/horticulturae11101166 - 1 Oct 2025
Abstract
The accurate assessment of Chinese bayberry (Myrica rubra) maturity is critical for intelligent harvesting. This study proposes a novel cascaded framework combining instance segmentation and multi-feature regression for accurate maturity detection. First, a lightweight SOLOv2-Light network is employed to segment each [...] Read more.
The accurate assessment of Chinese bayberry (Myrica rubra) maturity is critical for intelligent harvesting. This study proposes a novel cascaded framework combining instance segmentation and multi-feature regression for accurate maturity detection. First, a lightweight SOLOv2-Light network is employed to segment each fruit individually, which significantly reduces computational costs with only a marginal drop in accuracy. Then, a multi-feature extraction network is developed to fuse deep semantic, color (LAB space), and multi-scale texture features, enhanced by a channel attention mechanism for adaptive weighting. The maturity ground truth is defined using the a*/b* ratio measured by a colorimeter, which correlates strongly with anthocyanin accumulation and visual ripeness. Experimental results demonstrated that the proposed method achieves a mask mAP of 0.788 on the instance segmentation task, outperforming Mask R-CNN and YOLACT. For maturity prediction, a mean absolute error of 3.946% is attained, which is a significant improvement over the baseline. When the data are discretized into three maturity categories, the overall accuracy reaches 95.51%, surpassing YOLOX-s and Faster R-CNN by a considerable margin while reducing processing time by approximately 46%. The modular design facilitates easy adaptation to new varieties. This research provides a robust and efficient solution for in-field bayberry maturity detection, offering substantial value for the development of automated harvesting systems. Full article
Show Figures

Figure 1

18 pages, 4531 KB  
Article
Multi-Scenario Analysis of Brackish Water Irrigation Efficiency Based on the SBM Model
by Jie Wu, Zilong Feng, Xiangbin Kong, Shiwei Zhang, Miao Liu, Xiaojing Zhao, Kuo Liu, Zhongyu Ren and Jin Wu
Water 2025, 17(19), 2860; https://doi.org/10.3390/w17192860 - 30 Sep 2025
Abstract
The North China Plain faces severe water scarcity, and the efficient use of brackish water has become a crucial pathway for sustaining agricultural development. In this study, we combine scenario analysis with Data Envelopment Analysis to establish a multi-scenario efficiency evaluation framework. Focusing [...] Read more.
The North China Plain faces severe water scarcity, and the efficient use of brackish water has become a crucial pathway for sustaining agricultural development. In this study, we combine scenario analysis with Data Envelopment Analysis to establish a multi-scenario efficiency evaluation framework. Focusing on six counties in Handan, Hebei Province, we employ an input-oriented Slack-Based Measure Data Envelopment Analysis (SBM-DEA) model to systematically evaluate brackish water irrigation efficiency (BWIE) across a baseline year (2020) and eight projected scenarios for 2030. The results show that the mean efficiency values across scenarios range from 0.646 to 0.909. Scenarios combining universal adoption of water-saving irrigation with normal hydrological conditions achieve the highest mean efficiency (>0.9), with minimal regional disparities and optimal system stability. The promotion of water-saving irrigation technologies is the primary driver of improved BWIE, whereas simply increasing brackish water application yields only limited marginal benefits. Redundancy analysis further indicates that water resource inputs are the main source of efficiency loss, with brackish water redundancy (42.3%) far exceeding that of land inputs (10.5%). These findings provide quantitative evidence and methodological support for optimizing regional water allocation and advancing sustainable agricultural development. Full article
(This article belongs to the Special Issue Sustainable Water Management in Agricultural Irrigation)
Show Figures

Figure 1

Back to TopTop