Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = multi-model QPF

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 7128 KB  
Article
Long-Term Flooding Maps Forecasting System Using Series Machine Learning and Numerical Weather Prediction System
by Ming-Jui Chang, I-Hang Huang, Chih-Tsung Hsu, Shiang-Jen Wu, Jihn-Sung Lai and Gwo-Fong Lin
Water 2022, 14(20), 3346; https://doi.org/10.3390/w14203346 - 21 Oct 2022
Cited by 6 | Viewed by 3581
Abstract
Accurate real-time forecasts of inundation depth and area during typhoon flooding is crucial to disaster emergency response. The development of an inundation forecasting model has been recognized as essential to manage disaster risk. In the past, most researchers used multiple single-point forecasts to [...] Read more.
Accurate real-time forecasts of inundation depth and area during typhoon flooding is crucial to disaster emergency response. The development of an inundation forecasting model has been recognized as essential to manage disaster risk. In the past, most researchers used multiple single-point forecasts to obtain surface flooding depth forecasts with spatial interpolation. In this study, a forecasting model (QPF-RIF) integrating a hydrodynamic model (SOBEK), support vector machine–multi-step forecast (SVM-MSF), and a self-organizing map (SOM) were proposed. The task of this model was divided into four parts: hydrodynamic simulation, point forecasting, inundation database clustering, and spatial expansion. First, the SOBEK model was used in simulating inundation hydrodynamics to construct the flooding maps database. Second, the SVM-MSF yields water level (inundation volume) forecasted with a 1 to 72 h lead time. Third, the SOM clustered the previous flooding maps database into several groups representing different flooding characteristics. Finally, a spatial expansion module produced inundation maps based on forecasting information from forecasting flood volume and flood causative factors. To demonstrate the effectiveness of the proposed forecasting model, we presented an application to the Yilan River basin in Taiwan. Our forecasting results indicated that the proposed model yields accurate flood inundation maps (less than 1 cm error) for a 1 h lead time. For long-term forecasting (46 h to 72 h ahead), the model controlled the error of the forecast results within 7 cm. In the testing events, the model forecasted an average of 83% of the flooding area in the long term. This flood inundation forecasting model is expected to be useful in providing early flood warning information for disaster emergency response. Full article
(This article belongs to the Topic Natural Hazards and Disaster Risks Reduction)
Show Figures

Figure 1

12 pages, 4512 KB  
Article
Quantitative Precipitation Forecasting Using an Improved Probability-Matching Method and Its Application to a Typhoon Event
by Jin-Qing Liu, Zi-Liang Li and Qiong-Qun Wang
Atmosphere 2021, 12(10), 1346; https://doi.org/10.3390/atmos12101346 - 14 Oct 2021
Cited by 7 | Viewed by 3659
Abstract
This present study aims to explore how forecasters can quickly make accurate predictions by using various high-resolution model forecasts. Based on three high temporal-spatial resolution (3 km, hourly) numerical weather prediction models (CMA-MESO, CMA-GD, CMA-SH3) from the China Meteorological Administration (CMA), the hourly [...] Read more.
This present study aims to explore how forecasters can quickly make accurate predictions by using various high-resolution model forecasts. Based on three high temporal-spatial resolution (3 km, hourly) numerical weather prediction models (CMA-MESO, CMA-GD, CMA-SH3) from the China Meteorological Administration (CMA), the hourly precipitation characteristics of three model within 24 h from March to September 2020 are discussed and integrated into a single, hourly, deterministic quantitative precipitation forecast (QPF) by making use of an improved weighted moving average probability-matching method (WPM). The results are as follows: (1) In non-rainstorm forecasts, CMA-MESO and CMA-GD have similar forecast abilities. However, in rainstorm forecasts, CMA-MESO has a notable advantage over the other two models. Thus, CMA-MESO is selected as a critical factor when participating in sensitivity experiments. (2) Compared with the traditional equal-weight probability-matching method (PM), the WPM improves the different grade QPF because it can effectively reduce rainfall pattern bias by making use of the weighted moving average (WMA). Additionally, the WPM threat score in rainstorm forecast similarly improved from 0.051 to 0.056, with a 9.8% increase relative to the PM. (3) The sensitivity experiments show that an optimal rainfall intensity score (WPM-best) can further improve the QPF and overcome all single models in both rainstorm and non-rainstorm forecasts, and the WPM-best has a rainstorm threat score skill of 0.062, with an increase of 21.6% compared with the PM. The performance of the WPM-best will be better if the precipitation intensity is stronger and the valid forecast periods is longer. It should be noted that there is no need to select models before using the WPM-best method, because WPM-best can give a very low weight to the less-skillful model in a more objective way. (4) The improved WPM method is also applied to investigate the heavy-rainfall case induced by typhoon Mekkhala (2020), where the improved WPM technique significantly improves rainstorm forecasting ability compared with a single model. Full article
Show Figures

Figure 1

Back to TopTop