Sign in to use this feature.

Years

Between: -

Subjects

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = multi-module micro–nano satellite

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 4871 KB  
Article
Multi-Objective Optimization Method for Multi-Module Micro–Nano Satellite Components Assignment and Layout
by Hao Zhang, Jun Zhou and Guanghui Liu
Aerospace 2025, 12(7), 614; https://doi.org/10.3390/aerospace12070614 - 8 Jul 2025
Viewed by 296
Abstract
The assembly optimization design of satellite components is a crucial element in the overall design of satellites. In this paper, a novel three-dimensional assembly optimization design problem (3D-AODP) for multi-module micro–nano satellite components is proposed according to the engineering requirements, aiming at optimizing [...] Read more.
The assembly optimization design of satellite components is a crucial element in the overall design of satellites. In this paper, a novel three-dimensional assembly optimization design problem (3D-AODP) for multi-module micro–nano satellite components is proposed according to the engineering requirements, aiming at optimizing the satellite mass characteristics, and taking into account constraints such as space interference, space occupation and special location. Multi-module micro–nano satellites are a new type of satellite configuration based on the assembly of multiple U-shaped cube units. The 3D-AODP of its components is a challenging two-layer composite optimization task involving discrete variable optimization of component allocation and continuous variable optimization of component layout, which interact with each other. To solve the problem, a hybrid assembly optimization method based on tabu search (TS) and multi-objective differential evolutionary (MODE) algorithms is proposed, in which the assignment problem of the components is converted into a domain search problem by the TS algorithm. The space interference constraints and space occupancy constraints of the components are considered, and an assignment scheme with the minimum mass difference is obtained. On this basis, a bi-objective differential evolutionary algorithm is used to develop the layout optimization problem for the components, which takes into account the spatial non-interference constraints and special location constraints of the components, and obtains the Pareto solution set of the assembly scheme under the optimal mass characteristics (moment of inertia and product of inertia). Finally, the feasibility and effectiveness of the proposed method is demonstrated by an engineering case. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

Back to TopTop