Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (556)

Search Parameters:
Keywords = multi-precision squaring

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 12549 KB  
Article
An Enhanced Faster R-CNN for High-Throughput Winter Wheat Spike Monitoring to Improved Yield Prediction and Water Use Efficiency
by Donglin Wang, Longfei Shi, Yanbin Li, Binbin Zhang, Guangguang Yang and Serestina Viriri
Agronomy 2025, 15(10), 2388; https://doi.org/10.3390/agronomy15102388 (registering DOI) - 14 Oct 2025
Abstract
This study develops an innovative unmanned aerial vehicle (UAV)-based intelligent system for winter wheat yield prediction, addressing the inefficiencies of traditional manual counting methods (with approximately 15% error rate) and enabling quantitative analysis of water–fertilizer interactions. By integrating an enhanced Faster Region-Based Convolutional [...] Read more.
This study develops an innovative unmanned aerial vehicle (UAV)-based intelligent system for winter wheat yield prediction, addressing the inefficiencies of traditional manual counting methods (with approximately 15% error rate) and enabling quantitative analysis of water–fertilizer interactions. By integrating an enhanced Faster Region-Based Convolutional Neural Network (Faster R-CNN) architecture with multi-source data fusion and machine learning, the system significantly improves both spike detection accuracy and yield forecasting performance. Field experiments during the 2022–2023 growing season captured high-resolution multispectral imagery for varied irrigation regimes and fertilization treatments. The optimized detection model incorporates ResNet-50 as the backbone feature extraction network, with residual connections and channel attention mechanisms, achieving a mean average precision (mAP) of 91.2% (calculated at IoU threshold 0.5) and 88.72% recall while reducing computational complexity. The model outperformed YOLOv8 by a statistically significant 2.1% margin (p < 0.05). Using model-generated spike counts as input, the random forest (RF) model regressor demonstrated superior yield prediction performance (R2 = 0.82, RMSE = 324.42 kg·ha−1), exceeding the Partial Least Squares Regression (PLSR) (R2 +46%, RMSE-44.3%), Least Squares Support Vector Machine (LSSVM) (R2 + 32.3%, RMSE-32.4%), Support Vector Regression (SVR) (R2 + 30.2%, RMSE-29.6%), and Backpropagation (BP) Neural Network (R2+22.4%, RMSE-24.4%) models. Analysis of different water–fertilizer treatments revealed that while organic fertilizer under full irrigation (750 m3 ha−1) conditions achieved maximum yield benefit (13,679.26 CNY·ha−1), it showed relatively low water productivity (WP = 7.43 kg·m−3). Conversely, under deficit irrigation (450 m3 ha−1) conditions, the 3:7 organic/inorganic fertilizer treatment achieved optimal WP (11.65 kg m−3) and WUE (20.16 kg∙ha−1∙mm−1) while increasing yield benefit by 25.46% compared to organic fertilizer alone. This research establishes an integrated technical framework for high-throughput spike monitoring and yield estimation, providing actionable insights for synergistic water–fertilizer management strategies in sustainable precision agriculture. Full article
(This article belongs to the Section Water Use and Irrigation)
Show Figures

Figure 1

19 pages, 7359 KB  
Article
Estimating Field-Scale Soil Organic Matter in Agricultural Soils Using UAV Hyperspectral Imagery
by Chenzhen Xia and Yue Zhang
AgriEngineering 2025, 7(10), 339; https://doi.org/10.3390/agriengineering7100339 - 10 Oct 2025
Viewed by 98
Abstract
Fast and precise monitoring of soil organic matter (SOM) during maize growth periods is crucial for real-time assessment of soil quality. However, the big challenge we usually face is that many agricultural soils are covered by crops or snow, and the bare soil [...] Read more.
Fast and precise monitoring of soil organic matter (SOM) during maize growth periods is crucial for real-time assessment of soil quality. However, the big challenge we usually face is that many agricultural soils are covered by crops or snow, and the bare soil period is short, which makes reliable SOM prediction complex and difficult. In this study, an unmanned aerial vehicle (UAV) was utilized to acquire multi-temporal hyperspectral images of maize across the key growth stages at the field scale. The auxiliary predictors, such as spectral indices (I), field management (F), plant characteristics (V), and soil properties (S), were also introduced. We used stepwise multiple linear regression, partial least squares regression (PLSR), random forest (RF) regression, and XGBoost regression models for SOM prediction, and the results show the following: (1) Multi-temporal remote sensing information combined with multi-source predictors and their combinations can accurately estimate SOM content across the key growth periods. The best-fitting model depended on the types of models and predictors selected. With the I + F + V + S predictor combination, the best SOM prediction was achieved by using the XGBoost model (R2 = 0.72, RMSE = 0.27%, nRMSE = 0.16%) in the R3 stage. (2) The relative importance of soil properties, spectral indices, plant characteristics, and field management was 55.36%, 26.09%, 9.69%, and 8.86%, respectively, for the multiple periods combination. Here, this approach can overcome the impact of the crop cover condition by using multi-temporal UAV hyperspectral images combined with valuable auxiliary variables. This study can also improve the field-scale farmland soil properties assessment and mapping accuracy, which will aid in soil carbon sequestration and soil management. Full article
(This article belongs to the Section Remote Sensing in Agriculture)
Show Figures

Figure 1

34 pages, 3834 KB  
Article
PINN-DT: Optimizing Energy Consumption in Smart Building Using Hybrid Physics-Informed Neural Networks and Digital Twin Framework with Blockchain Security
by Hajar Kazemi Naeini, Roya Shomali, Abolhassan Pishahang, Hamidreza Hasanzadeh, Saeed Asadi and Ahmad Gholizadeh Lonbar
Sensors 2025, 25(19), 6242; https://doi.org/10.3390/s25196242 - 9 Oct 2025
Viewed by 377
Abstract
The advancement of smart grid technologies necessitates the integration of cutting-edge computational methods to enhance predictive energy optimization. This study proposes a multi-faceted approach by incorporating (1) Deep Reinforcement Learning (DRL) agents trained using data from digital twins (DTs) to optimize energy consumption [...] Read more.
The advancement of smart grid technologies necessitates the integration of cutting-edge computational methods to enhance predictive energy optimization. This study proposes a multi-faceted approach by incorporating (1) Deep Reinforcement Learning (DRL) agents trained using data from digital twins (DTs) to optimize energy consumption in real time, (2) Physics-Informed Neural Networks (PINNs) to seamlessly embed physical laws within the optimization process, ensuring model accuracy and interpretability, and (3) blockchain (BC) technology to facilitate secure and transparent communication across the smart grid infrastructure. The model was trained and validated using comprehensive datasets, including smart meter energy consumption data, renewable energy outputs, dynamic pricing, and user preferences collected from IoT devices. The proposed framework achieved superior predictive performance with a Mean Absolute Error (MAE) of 0.237 kWh, Root Mean Square Error (RMSE) of 0.298 kWh, and an R-squared (R2) value of 0.978, indicating a 97.8% explanation of data variance. Classification metrics further demonstrated the model’s robustness, achieving 97.7% accuracy, 97.8% precision, 97.6% recall, and an F1 Score of 97.7%. Comparative analysis with traditional models like Linear Regression, Random Forest, SVM, LSTM, and XGBoost revealed the superior accuracy and real-time adaptability of the proposed method. In addition to enhancing energy efficiency, the model reduced energy costs by 35%, maintained a 96% user comfort index, and increased renewable energy utilization to 40%. This study demonstrates the transformative potential of integrating PINNs, DT, and blockchain technologies to optimize energy consumption in smart grids, paving the way for sustainable, secure, and efficient energy management systems. Full article
(This article belongs to the Special Issue IoT and Big Data Analytics for Smart Cities)
Show Figures

Figure 1

18 pages, 14975 KB  
Article
Precision Carbon Stock Estimation in Urban Campuses Using Fused Backpack and UAV LiDAR Data
by Shijun Zhang, Nan Li, Longwei Li, Yuchan Liu, Hong Wang, Tingting Xue, Jing Ma and Mengyi Hu
Forests 2025, 16(10), 1550; https://doi.org/10.3390/f16101550 - 8 Oct 2025
Viewed by 201
Abstract
Accurate quantification of campus vegetation carbon stocks is essential for advancing carbon neutrality goals and refining urban carbon management strategies. This study pioneers the integration of drone and backpack LiDAR data to overcome limitations in conventional carbon estimation approaches. The Comparative Shortest-Path (CSP) [...] Read more.
Accurate quantification of campus vegetation carbon stocks is essential for advancing carbon neutrality goals and refining urban carbon management strategies. This study pioneers the integration of drone and backpack LiDAR data to overcome limitations in conventional carbon estimation approaches. The Comparative Shortest-Path (CSP) algorithm was originally developed to segment tree crowns from point cloud data, with its design informed by metabolic ecology theory—specifically, that vascular plants tend to minimize the transport distance to their roots. In this study, we deployed the Comparative Shortest-Path (CSP) algorithm for individual tree recognition across 897 campus trees, achieving 88.52% recall, 72.45% precision, and 79.68% F-score—with 100% accuracy for eight dominant species. Diameter at breast height (DBH) was extracted via least-squares circle fitting, attaining >95% accuracy for key species such as Magnolia grandiflora and Triadica sebifera. Carbon storage was calculated through species-specific allometric models integrated with field inventory data, revealing a total stock of 163,601 kg (mean 182.4 kg/tree). Four dominant species—Cinnamomum camphora, Liriodendron chinense, Salix babylonica, and Metasequoia glyptostroboides—collectively contributed 84.3% of total storage. As the first integrated application of multi-platform LiDAR for campus-scale carbon mapping, this work establishes a replicable framework for precision urban carbon sink assessment, supporting data-driven campus greening strategies and climate action planning. Full article
(This article belongs to the Special Issue Urban Forests and Greening for Sustainable Cities)
Show Figures

Figure 1

30 pages, 1549 KB  
Article
Satellite Constellation Multi-Target Robust Observation Method Based on Hypergraph Algebraic Connectivity and Observation Precision Theory
by Jie Cao, Xiaogang Pan, Yuanyuan Jiao, Bowen Sun and Yangyang Lu
Mathematics 2025, 13(19), 3220; https://doi.org/10.3390/math13193220 - 8 Oct 2025
Viewed by 240
Abstract
A multi-target robust observation method for satellite constellations based on hypergraph algebraic connectivity and observation precision theory is proposed to address the challenges posed by the surge in space targets and system failures. First, a precision metric framework is constructed based on nonlinear [...] Read more.
A multi-target robust observation method for satellite constellations based on hypergraph algebraic connectivity and observation precision theory is proposed to address the challenges posed by the surge in space targets and system failures. First, a precision metric framework is constructed based on nonlinear batch least squares estimation theory, deriving the theoretical precision covariance through cumulative observation matrices to provide a theoretical foundation for tracking accuracy evaluation. Second, multi-satellite collaborative observation is modeled as an edge-dependent vertex-weighted hypergraph, enhancing system robustness by maximizing algebraic connectivity. A constrained simulated annealing (CSA) algorithm is designed, employing a precision-guided perturbation strategy to efficiently solve the optimization problem. Simulation experiments are conducted using 24 Walker constellation satellites tracking 50 targets, comparing the proposed method with greedy algorithm, CBBA, and CSA-bipartite Graph methods across three scenarios: baseline, maneuvering, and failure. Results demonstrate that the CSA-hypergraph method achieves 0.089 km steady-state precision in the baseline scenario, representing a 41.4% improvement over traditional methods; in maneuvering scenarios, detection delay is reduced by 34.3% and re-achievement time is decreased by 47.4%; with a 30% satellite failure rate, performance degradation is only 9.8%, significantly outperforming other methods. Full article
(This article belongs to the Section E: Applied Mathematics)
Show Figures

Figure 1

18 pages, 748 KB  
Review
Statistical Methods for Multi-Omics Analysis in Neurodevelopmental Disorders: From High Dimensionality to Mechanistic Insight
by Manuel Airoldi, Veronica Remori and Mauro Fasano
Biomolecules 2025, 15(10), 1401; https://doi.org/10.3390/biom15101401 - 2 Oct 2025
Viewed by 588
Abstract
Neurodevelopmental disorders (NDDs), including autism spectrum disorder, intellectual disability, and attention-deficit/hyperactivity disorder, are genetically and phenotypically heterogeneous conditions affecting millions worldwide. High-throughput omics technologies—transcriptomics, proteomics, metabolomics, and epigenomics—offer a unique opportunity to link genetic variation to molecular and cellular mechanisms underlying these disorders. [...] Read more.
Neurodevelopmental disorders (NDDs), including autism spectrum disorder, intellectual disability, and attention-deficit/hyperactivity disorder, are genetically and phenotypically heterogeneous conditions affecting millions worldwide. High-throughput omics technologies—transcriptomics, proteomics, metabolomics, and epigenomics—offer a unique opportunity to link genetic variation to molecular and cellular mechanisms underlying these disorders. However, the high dimensionality, sparsity, batch effects, and complex covariance structures of omics data present significant statistical challenges, requiring robust normalization, batch correction, imputation, dimensionality reduction, and multivariate modeling approaches. This review provides a comprehensive overview of statistical frameworks for analyzing high-dimensional omics datasets in NDDs, including univariate and multivariate models, penalized regression, sparse canonical correlation analysis, partial least squares, and integrative multi-omics methods such as DIABLO, similarity network fusion, and MOFA. We illustrate how these approaches have revealed convergent molecular signatures—synaptic, mitochondrial, and immune dysregulation—across transcriptomic, proteomic, and metabolomic layers in human cohorts and experimental models. Finally, we discuss emerging strategies, including single-cell and spatially resolved omics, machine learning-driven integration, and longitudinal multi-modal analyses, highlighting their potential to translate complex molecular patterns into mechanistic insights, biomarkers, and therapeutic targets. Integrative multi-omics analyses, grounded in rigorous statistical methodology, are poised to advance mechanistic understanding and precision medicine in NDDs. Full article
(This article belongs to the Section Bioinformatics and Systems Biology)
Show Figures

Figure 1

24 pages, 6138 KB  
Article
Research on Liquid Flow Pulsation Reduction in Microchannel of Pneumatic Microfluidic Chip Based on Membrane Microvalve
by Xuling Liu, Le Bo, Yusong Zhang, Chaofeng Peng, Kaiyi Zhang, Shaobo Jin, Guoyong Ye and Jinggan Shao
Fluids 2025, 10(10), 256; https://doi.org/10.3390/fluids10100256 - 28 Sep 2025
Viewed by 311
Abstract
The unsteady and discontinuous liquid flow in the microchannel affects the efficiency of sample mixing, molecular detection, target acquisition, and biochemical reaction. In this work, an active method of reducing the flow pulsation in the microchannel of a pneumatic microfluidic chip is proposed [...] Read more.
The unsteady and discontinuous liquid flow in the microchannel affects the efficiency of sample mixing, molecular detection, target acquisition, and biochemical reaction. In this work, an active method of reducing the flow pulsation in the microchannel of a pneumatic microfluidic chip is proposed by using an on-chip membrane microvalve as a valve chamber damping hole or a valve chamber accumulator. The structure, working principle, and multi-physical model of the reducing element of reducing the flow pulsation in a microchannel are presented. When the flow pulsation in the microchannel is sinusoidal, square wave, or pulse, the simulation effect of flow pulsation reduction is given when the membrane valve has different permutations and combinations. The experimental results show that the inlet flow of the reducing element is a square wave pulsation with an amplitude of 0.1 mL/s and a period of 2 s, the outlet flow of the reducing element is assisted by 0.017 and the fluctuation frequency is accompanied by a decrease. The test data and simulation results verify the rationality of the flow reduction element in the membrane valve microchannel, the correctness of the theoretical model, and the practicability of the specific application, which provides a higher precision automatic control technology for the microfluidic chip with high integration and complex reaction function. Full article
Show Figures

Figure 1

31 pages, 10644 KB  
Article
An Instance Segmentation Method for Agricultural Plastic Residual Film on Cotton Fields Based on RSE-YOLO-Seg
by Huimin Fang, Quanwang Xu, Xuegeng Chen, Xinzhong Wang, Limin Yan and Qingyi Zhang
Agriculture 2025, 15(19), 2025; https://doi.org/10.3390/agriculture15192025 - 26 Sep 2025
Viewed by 349
Abstract
To address the challenges of multi-scale missed detections, false positives, and incomplete boundary segmentation in cotton field residual plastic film detection, this study proposes the RSE-YOLO-Seg model. First, a PKI module (adaptive receptive field) is integrated into the C3K2 block and combined with [...] Read more.
To address the challenges of multi-scale missed detections, false positives, and incomplete boundary segmentation in cotton field residual plastic film detection, this study proposes the RSE-YOLO-Seg model. First, a PKI module (adaptive receptive field) is integrated into the C3K2 block and combined with the SegNext attention mechanism (multi-scale convolutional kernels) to capture multi-scale residual film features. Second, RFCAConv replaces standard convolutional layers to differentially process regions and receptive fields of different sizes, and an Efficient-Head is designed to reduce parameters. Finally, an NM-IoU loss function is proposed to enhance small residual film detection and boundary segmentation. Experiments on a self-constructed dataset show that RSE-YOLO-Seg improves the object detection average precision (mAP50(B)) by 3% and mask segmentation average precision (mAP50(M)) by 2.7% compared with the baseline, with all module improvements being statistically significant (p < 0.05). Across four complex scenarios, it exhibits stronger robustness than mainstream models (YOLOv5n-seg, YOLOv8n-seg, YOLOv10n-seg, YOLO11n-seg), and achieves 17/38 FPS on Jetson Nano B01/Orin. Additionally, when combined with DeepSORT, compared with random image sampling, the mean error between predicted and actual residual film area decreases from 232.30 cm2 to 142.00 cm2, and the root mean square error (RMSE) drops from 251.53 cm2 to 130.25 cm2. This effectively mitigates pose-induced random errors in static images and significantly improves area estimation accuracy. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

26 pages, 1605 KB  
Article
Variable Bayesian-Based Maximum Correntropy Criterion Cubature Kalman Filter with Application to Target Tracking
by Yu Ma, Guanghua Zhang, Songtao Ye and Dou An
Entropy 2025, 27(10), 997; https://doi.org/10.3390/e27100997 - 24 Sep 2025
Viewed by 325
Abstract
Target tracking in typical radar applications faces critical challenges in complex environments, including nonlinear dynamics, non-Gaussian noise, and sensor outliers. Current robustness-enhanced approaches remain constrained by empirical kernel tuning and computational trade-offs, failing to achieve balanced noise suppression and real-time efficiency. To address [...] Read more.
Target tracking in typical radar applications faces critical challenges in complex environments, including nonlinear dynamics, non-Gaussian noise, and sensor outliers. Current robustness-enhanced approaches remain constrained by empirical kernel tuning and computational trade-offs, failing to achieve balanced noise suppression and real-time efficiency. To address these limitations, this paper proposes the variational Bayesian-based maximum correntropy criterion cubature Kalman filter (VBMCC-CKF), which integrates variational Bayesian inference with CKF to establish a fully adaptive robust filtering framework for nonlinear systems. The core innovation lies in constructing a joint estimation framework of state and kernel size, where the kernel size is modeled as an inverse-gamma distributed random variable. Leveraging the conjugate properties of Gaussian-inverse gamma distributions, the method synchronously optimizes the state posterior distribution and kernel size parameters via variational Bayesian inference, eliminating reliance on manual empirical adjustments inherent to conventional correntropy-based filters. Simulation confirms the robust performance of the VBMCC-CKF framework in both single and multi-target tracking under non-Gaussian noise conditions. For the single-target case, it achieves a reduction in trajectory average root mean square error (Avg-RMSE) by at least 14.33% compared to benchmark methods while maintaining real-time computational efficiency. Integrated with multi-Bernoulli filtering, the method achieves a 40% lower optimal subpattern assignment (OSPA) distance even under 10-fold covariance mutations, accompanied by superior hit rates (HRs) and minimal trajectory position RMSEs in cluttered environments. These results substantiate its precision and adaptability for dynamic tracking scenarios. Full article
(This article belongs to the Section Information Theory, Probability and Statistics)
Show Figures

Figure 1

29 pages, 3798 KB  
Article
Hybrid Adaptive MPC with Edge AI for 6-DoF Industrial Robotic Manipulators
by Claudio Urrea
Mathematics 2025, 13(19), 3066; https://doi.org/10.3390/math13193066 - 24 Sep 2025
Viewed by 632
Abstract
Autonomous robotic manipulators in industrial environments face significant challenges, including time-varying payloads, multi-source disturbances, and real-time computational constraints. Traditional model predictive control frameworks degrade by over 40% under model uncertainties, while conventional adaptive techniques exhibit convergence times incompatible with industrial cycles. This work [...] Read more.
Autonomous robotic manipulators in industrial environments face significant challenges, including time-varying payloads, multi-source disturbances, and real-time computational constraints. Traditional model predictive control frameworks degrade by over 40% under model uncertainties, while conventional adaptive techniques exhibit convergence times incompatible with industrial cycles. This work presents a hybrid adaptive model predictive control framework integrating edge artificial intelligence with dual-stage parameter estimation for 6-DoF industrial manipulators. The approach combines recursive least squares with a resource-optimized neural network (three layers, 32 neurons, <500 KB memory) designed for industrial edge deployment. The system employs innovation-based adaptive forgetting factors, providing exponential convergence with mathematically proven Lyapunov-based stability guarantees. Simulation validation using the Fanuc CR-7iA/L manipulator demonstrates superior performance across demanding scenarios, including precision laser cutting and obstacle avoidance. Results show 52% trajectory tracking RMSE reduction (0.022 m to 0.012 m) under 20% payload variations compared to standard MPC, while achieving sub-5 ms edge inference latency with 99.2% reliability. The hybrid estimator achieves 65% faster parameter convergence than classical RLS, with 18% energy efficiency improvement. Statistical significance is confirmed through ANOVA (F = 24.7, p < 0.001) with large effect sizes (Cohen’s d > 1.2). This performance surpasses recent adaptive control methods while maintaining proven stability guarantees. Hardware validation under realistic industrial conditions remains necessary to confirm practical applicability. Full article
(This article belongs to the Special Issue Computation, Modeling and Algorithms for Control Systems)
Show Figures

Figure 1

19 pages, 2794 KB  
Article
Estimating Soil Moisture Content in Winter Wheat in Southern Xinjiang by Fusing UAV Texture Feature with Novel Three-Dimensional Texture Indexes
by Tao Sun, Zhijun Li, Zijun Tang, Wei Zhang, Wangyang Li, Zhiying Liu, Jinqi Wu, Shiqi Liu, Youzhen Xiang and Fucang Zhang
Plants 2025, 14(19), 2948; https://doi.org/10.3390/plants14192948 - 23 Sep 2025
Viewed by 319
Abstract
Winter wheat is a major staple crop worldwide, and real-time monitoring of soil moisture content (SMC) is critical for yield security. Targeting the monitoring needs under arid conditions in southern Xinjiang, this study proposes a UAV multispectral-based SMC estimation method that constructs novel [...] Read more.
Winter wheat is a major staple crop worldwide, and real-time monitoring of soil moisture content (SMC) is critical for yield security. Targeting the monitoring needs under arid conditions in southern Xinjiang, this study proposes a UAV multispectral-based SMC estimation method that constructs novel three-dimensional (3-D) texture indices. Field experiments were conducted over two consecutive growing seasons in Kunyu City, southern Xinjiang, China, with four irrigation and four fertilization levels. High-resolution multispectral imagery was acquired at the jointing stage using a UAV-mounted camera. From the imagery, conventional texture features were extracted, and six two-dimensional (2-D) and four 3-D texture indices were constructed. A correlation matrix approach was used to screen feature combinations significantly associated with SMC. Random forest (RF), partial least squares regression (PLSR), and back-propagation neural networks (BPNN) were then used to develop SMC models for three soil depths (0–20, 20–40, and 40–60 cm). Results showed that estimation accuracy for the shallow layer (0–20 cm) was markedly higher than for the middle and deep layers. Under single-source input, using 3-D texture indices (Combination 3) with RF achieved the best shallow-layer performance (validation R2 = 0.827, RMSE = 0.534, MRE = 2.686%). With multi-source fusion inputs (Combination 7: texture features + 2-D texture indices + 3-D texture indices) combined with RF, shallow-layer SMC estimation further improved (R2 = 0.890, RMSE = 0.395, MRE = 1.91%). Relative to models using only conventional texture features, fusion increased R2 by approximately 11.4%, 11.7%, and 18.1% for the shallow, middle, and deep layers, respectively. The findings indicate that 3-D texture indices (e.g., DTTI), which integrate multi-band texture information, more comprehensively capture canopy spatial structure and are more sensitive to shallow-layer moisture dynamics. Multi-source fusion provides complementary information and substantially enhances model accuracy. The proposed approach offers a new pathway for accurate SMC monitoring in arid croplands and is of practical significance for remote sensing-based moisture estimation and precision irrigation. Full article
Show Figures

Figure 1

11 pages, 225 KB  
Article
Lack of Association Between COL1A1 rs1800012 Polymorphism and Anterior Open Bite Malocclusion in a Turkish Case–Control Cohort
by Tolga Polat, Özlem Özge Yılmaz, Elvan Önem Özbilen and Beste Tacal Aslan
Genes 2025, 16(10), 1122; https://doi.org/10.3390/genes16101122 - 23 Sep 2025
Viewed by 314
Abstract
Background/Objectives: Anterior open bite is a multifact orial malocclusion influenced by genetic and environmental factors. Variants in the Collagen type I, alpha 1 (COL1A1) gene, particularly rs1800012, have been implicated in bone quality, but their role in craniofacial anomalies remains unclear. [...] Read more.
Background/Objectives: Anterior open bite is a multifact orial malocclusion influenced by genetic and environmental factors. Variants in the Collagen type I, alpha 1 (COL1A1) gene, particularly rs1800012, have been implicated in bone quality, but their role in craniofacial anomalies remains unclear. Methods: A case–control study was conducted with 60 participants (30 anterior open bite cases; 30 matched controls). DNA was extracted from buccal swabs, and rs1800012 genotyping was performed using TaqMan assays. Genotype and allele distributions were compared with chi-square and Fisher’s exact tests; Hardy–Weinberg equilibrium was assessed in controls. Results: Genotype (GG/GT/TT: 53.3/40.0/6.7% vs. 60.0/33.3/6.7%) and allele (T allele: 26.7% vs. 23.3%) frequencies did not differ significantly between cases and controls. No association was detected under additive, dominant, or recessive models (all p > 0.05). Wide confidence intervals indicated limited precision of effect estimates. Conclusions: This study provides no evidence of association between COL1A1 rs1800012 and anterior open bite in this Turkish cohort. The relatively small sample size, the rarity of the TT genotype, and the multifactorial nature of craniofacial development represent important limitations. Larger, multi-gene, and functionally integrated studies are required to clarify the genetic architecture of open bite malocclusion. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
16 pages, 2449 KB  
Article
Multi-Objective Intelligent Industrial Robot Calibration Using Meta-Heuristic Optimization Approaches
by Mojtaba A. Khanesar, Aslihan Karaca, Minrui Yan, Samanta Piano and David Branson
Robotics 2025, 14(9), 129; https://doi.org/10.3390/robotics14090129 - 19 Sep 2025
Viewed by 359
Abstract
Precision component displacement, processing, and manipulation in an industrial environment require the high-precision positioning and orientation of industrial robots. However, industrial robots’ positioning includes uncertainties due to assembly and manufacturing tolerances. It is therefore required to use calibration techniques for industrial robot parameters. [...] Read more.
Precision component displacement, processing, and manipulation in an industrial environment require the high-precision positioning and orientation of industrial robots. However, industrial robots’ positioning includes uncertainties due to assembly and manufacturing tolerances. It is therefore required to use calibration techniques for industrial robot parameters. One of the major sources of uncertainty is the one associated with industrial robot geometrical parameter values. In this paper, using multi-objective meta-heuristic optimization approaches and optical metrology measurements, more accurate Denavit–Hartenberg (DH) geometrical parameters of an industrial robot are estimated. The sensor data used to perform this calibration are the absolute 3D position readings using a highly accurate laser tracker (LT) and industrial robot joint angle readings. Other than position accuracy, the mean absolute deviation of the DH parameters from the manufacturer’s given parameters is considered as the second objective function. Therefore, the optimization problem investigated in this paper is a multi-objective one. The solution to the multi-objective optimization problem is obtained using different evolutionary and swarm optimization approaches. The evolutionary optimization approaches are nondominated sorting genetic algorithms and a multi-objective evolutionary algorithm based on decomposition. The swarm optimization approach considered in this paper is multi-objective particle swarm optimization. It is observed that NSGAII outperforms the other two optimization algorithms in terms of a more diverse Pareto front and the function corresponding to the positional accuracy. It is further observed that through using NSGAII for calibration purposes, the root mean squared for positional error has been improved significantly compared with nominal values. Full article
(This article belongs to the Section Industrial Robots and Automation)
Show Figures

Figure 1

14 pages, 4070 KB  
Article
Research on Calibration Methods and Experiments for Six-Component Force Sensors
by Hongyang Zhao, Bowen Zhao, Xu Liang and Qianbin Lin
J. Mar. Sci. Eng. 2025, 13(9), 1811; https://doi.org/10.3390/jmse13091811 - 18 Sep 2025
Viewed by 410
Abstract
The measurement accuracy of six-component force sensors is crucial for reliable hydrodynamic model test results. To enhance data precision, this study presents an efficient calibration device based on a dual-axis rotational mechanism, enabling multi-degree-of-freedom attitude adjustment of the sensor. By applying known forces [...] Read more.
The measurement accuracy of six-component force sensors is crucial for reliable hydrodynamic model test results. To enhance data precision, this study presents an efficient calibration device based on a dual-axis rotational mechanism, enabling multi-degree-of-freedom attitude adjustment of the sensor. By applying known forces and moments through various loading conditions and employing the least squares method to obtain a 6 × 6 calibration coefficient matrix, we effectively reduce system errors and external disturbances. The effectiveness of the proposed calibration method is validated using rotational arm tests with a KCS standard ship model. The results indicate that most calibration point errors are below 1%, with the maximum error not exceeding 7%, and the measured data show good agreement with international standards. This method offers high calibration efficiency and accuracy, making it well-suited for the calibration of multi-component force sensors and for use in hydrodynamic, wind tunnel, and other multi-disciplinary experimental applications, promising potential for wider use. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

27 pages, 13052 KB  
Article
A Multi-Scale Geographically Weighted Regression Approach to Understanding Community-Built Environment Determinants of Cardiovascular Disease: Evidence from Nanning, China
by Shuguang Deng, Shuyan Zhu, Xueying Chen, Jinlong Liang and Rui Zheng
ISPRS Int. J. Geo-Inf. 2025, 14(9), 362; https://doi.org/10.3390/ijgi14090362 - 18 Sep 2025
Viewed by 520
Abstract
Clarifying how the community-scale built environment shapes the spatial heterogeneity of cardiovascular disease (CVD) prevalence is essential for precision urban health interventions. We integrated CVD prevalence data from the Guangxi Zhuang Autonomous Region Hospital (2020–2022) with 14 built-environment indicators across 77 communities in [...] Read more.
Clarifying how the community-scale built environment shapes the spatial heterogeneity of cardiovascular disease (CVD) prevalence is essential for precision urban health interventions. We integrated CVD prevalence data from the Guangxi Zhuang Autonomous Region Hospital (2020–2022) with 14 built-environment indicators across 77 communities in Xixiangtang District, Nanning, and compared ordinary least squares (OLS), geographically weighted regression (GWR), and multiscale geographically weighted regression (MGWR). MGWR provided the best model fit (adjusted R2 increased by 0.136 and 0.056, respectively; lowest AICc and residual sum of squares) and revealed significant scale-dependent effects. Distance to metro stations, road network density, and the number of transport facilities exhibited pronounced local-scale heterogeneity, while population density, building density, healthy/unhealthy food outlets, facility POI density, and public transport accessibility predominantly exerted global-scale effects. High-risk clusters of CVD were identified in mixed-use, high-density urban communities lacking rapid transit access. The findings highlight the need for place-specific, multi-scale planning measures, such as transit-oriented development and balanced food environments, to reduce the CVD burden and advance precision healthy-city development. Full article
Show Figures

Figure 1

Back to TopTop