Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (610)

Search Parameters:
Keywords = multibody dynamics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3633 KB  
Article
A FMBD-DEM Coupled Modeling for Semi-Active Controlled Lunar Lander
by Hanyu Lin, Bo Lei and Weixing Yao
Aerospace 2025, 12(10), 935; https://doi.org/10.3390/aerospace12100935 - 16 Oct 2025
Abstract
This study examines the landing performance of a four-legged lunar lander equipped with magnetorheological dampers when landing on discrete lunar soil. To capture the complex interaction between the lander and the soil, a coupled dynamic model is developed that integrates flexible multibody dynamics [...] Read more.
This study examines the landing performance of a four-legged lunar lander equipped with magnetorheological dampers when landing on discrete lunar soil. To capture the complex interaction between the lander and the soil, a coupled dynamic model is developed that integrates flexible multibody dynamics (FMBD), granular material modeling, and a semi-active fuzzy control strategy. The flexible structures of the lander are described using the floating frame of reference, while the lunar soil behavior is simulated using the discrete element method (DEM). A fuzzy controller is designed to achieve the adaptive MR damping force under varying landing conditions. The FMBD and DEM modules are coupled through a serial staggered approach to ensure stable and accurate data exchange between the two systems. The proposed model is validated through a lander impact experiment, demonstrating good agreement with experimental results. Based on the validated model, the influence of discrete lunar regolith properties on MR damping performance is analyzed. The results show that the MR-based landing leg system can effectively absorb impact energy and adapt well to the uneven, granular lunar surface. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

18 pages, 3076 KB  
Article
Study on Mooring Design and Hydrodynamic Performance of Floating Offshore Wind Turbines with CFRP Mooring Lines
by Yaqiang Yang, Riwei Xi, Mingxin Li, Jianzhe Shi, Yongzheng Li, Xin Wang, Wentao Shang and Hongming Li
Buildings 2025, 15(20), 3734; https://doi.org/10.3390/buildings15203734 - 16 Oct 2025
Abstract
To address the issues of traditional mooring lines, such as high self-weight, low strength, and poor durability, Carbon-Fiber-Reinforced Polymer (CFRP) was investigated as a material for mooring lines of offshore floating wind turbines, aiming to achieve high performance, lightweight design, and long service [...] Read more.
To address the issues of traditional mooring lines, such as high self-weight, low strength, and poor durability, Carbon-Fiber-Reinforced Polymer (CFRP) was investigated as a material for mooring lines of offshore floating wind turbines, aiming to achieve high performance, lightweight design, and long service life for mooring systems. Based on a “chain–cable–chain” configuration, a CFRP mooring line design is proposed in this study. Taking a 5 MW offshore floating wind turbine as the research object, the dynamic performance of offshore floating wind turbines with steel chains, steel cables, polyester ropes, and CFRP mooring lines under combined wind, wave, and current loads was compared and analyzed to demonstrate the feasibility of applying CFRP mooring lines by combining the potential flow theory and the rigid–flexible coupling multi-body model. The research results indicate that, compared to traditional mooring systems such as steel chains, steel cables, and polyester ropes, (1) under static water, the CFRP mooring system exhibits a larger static water free decay response and longer free decay duration; (2) under operating sea conditions, the motion response and mooring tension of the offshore floating wind turbine with CFRP mooring lines are smaller than those with steel cables and steel chains but greater than those with polyester ropes; and (3) under extreme sea conditions, the motion responses of the offshore floating wind turbine with CFRP mooring lines are smaller than those with steel wire ropes and steel chains but close to the displacement responses of the polyester rope system, while the increase in mooring tension is relatively moderate and the safety factor is the highest. Full article
Show Figures

Figure 1

22 pages, 4593 KB  
Article
Multibody Dynamics for Assessing Tolerance Effects in Roller-Bearing-Supported Rings
by Ulyana Konopada, Giulia Pascoletti, Mauro Corrado and Elisabetta Maria Zanetti
Designs 2025, 9(5), 120; https://doi.org/10.3390/designs9050120 - 13 Oct 2025
Viewed by 202
Abstract
The accurate motion of roller-bearing-supported rings is critically influenced by shape and positional tolerances, which are often underestimated in conventional modeling approaches. The aim of this study is to develop and validate a multibody dynamic framework capable of quantifying the impact of roundness [...] Read more.
The accurate motion of roller-bearing-supported rings is critically influenced by shape and positional tolerances, which are often underestimated in conventional modeling approaches. The aim of this study is to develop and validate a multibody dynamic framework capable of quantifying the impact of roundness and positional errors on the motion accuracy of roller-bearing-supported rings. Shape errors are modeled using Fourier series and incorporated into a high-fidelity multibody simulation environment. Experimental validation using laser triangulation reveals a maximum runout error of 72.9 μm, compared to a numerically predicted value of 88.6 μm, resulting in a quantified numerical overestimation of 21.5%. Parametric studies investigated the effects of harmonic order, error amplitude, and combined error scenarios on key performance metrics, including trajectory runout and initial offset displacement. Results reveal that the trajectory errors range between 0.29 mm and 0.63 mm for shape error orders and can escalate to 2.84 mm for high amplitude errors, demonstrating the critical role of error order and amplitude. Furthermore, combined simulations show that bearing position errors exert a more pronounced effect on radial accuracy than shape deviations alone. The proposed approach enables precision design evaluation and tolerance optimization in high-accuracy applications, including robotics, aerospace mechanisms, and optical alignment systems. Full article
(This article belongs to the Section Mechanical Engineering Design)
Show Figures

Graphical abstract

25 pages, 20024 KB  
Article
Divergence Evaluation Criteria for Lunar Departure Trajectories Under Bi-Circular Restricted Four-Body Problem
by Kohei Takeda and Toshinori Kuwahara
Aerospace 2025, 12(10), 918; https://doi.org/10.3390/aerospace12100918 - 12 Oct 2025
Viewed by 128
Abstract
This study focuses on the nonlinear departure dynamics of spacecraft from the Near Rectilinear Halo Orbit (NRHO) to the outer regions of Selenocentric Space. By carefully selecting the combination of orbital parameters and the order of the evaluation process, it becomes possible to [...] Read more.
This study focuses on the nonlinear departure dynamics of spacecraft from the Near Rectilinear Halo Orbit (NRHO) to the outer regions of Selenocentric Space. By carefully selecting the combination of orbital parameters and the order of the evaluation process, it becomes possible to precisely identify the divergence moment and to reliably classify the subsequent dynamical space. An empirical divergence detection algorithm is proposed by integrating multiple parameters derived from multi-body dynamical models, including gravitational potentials and related quantities. In an applied analysis using this method, it is found that the majority of perturbed trajectories diverge into the outer Earth–Moon Vicinity, while transfers into the inner Earth–Moon Vicinity are relatively limited. Furthermore, transfers to Heliocentric Space are found to be dependent not on the magnitude of the initial perturbation but on the geometric configuration of the Sun, Earth, and Moon during the transfer phase. The investigation of the Sun’s initial phase reveals a rotationally symmetric structure in the perturbation distribution within the Sun–Earth–Moon system, as well as localized conditions under which the destination space varies significantly depending on the initial state. Identifying the divergence moment allows for comparative evaluation of the spacecraft’s nonlinear dynamical state, providing valuable insights for the development of safe and efficient transfer strategies from selenocentric orbits, including those originating from the NRHO. Full article
Show Figures

Figure 1

35 pages, 6889 KB  
Article
Numerical Optimization of Root Blanket-Cutting Device for Rice Blanket Seedling Cutting and Throwing Transplanter Based on DEM-MBD
by Xuan Jia, Shuaihua Hao, Jinyu Song, Cailing Liu, Xiaopei Zheng, Licai Chen, Chengtian Zhu, Jitong Xu and Jianjun Liu
Agriculture 2025, 15(20), 2105; https://doi.org/10.3390/agriculture15202105 - 10 Oct 2025
Viewed by 265
Abstract
To solve the problems of large root damage and incomplete seedling blocks (SBs) in rice machine transplanting, this study numerically optimized the root blanket-cutting device for rice blanket seedling cutting and throwing transplanters based on the discrete element method (DEM) and multi-body dynamics [...] Read more.
To solve the problems of large root damage and incomplete seedling blocks (SBs) in rice machine transplanting, this study numerically optimized the root blanket-cutting device for rice blanket seedling cutting and throwing transplanters based on the discrete element method (DEM) and multi-body dynamics (MBD) coupling method. A longitudinal sliding cutter (LSC)–substrate–root interaction model was established. Based on the simulation tests of Center Composite Design and response surface analysis, the sliding angle and cutter shaft speed of the LSCs arranged at the circumferential angles (CAs) of 0°, 30°, and 60° were optimized. The simulation results indicated that the LSC arrangement CA significantly affected the cutting performance, with the optimal configuration achieved at a CA of 60°. Under the optimal parameters (sliding angle of 57°, cutter shaft speed of 65.3 r/min), the average deviation between the simulated and physical tests was less than 11%, and the reliability of the parameters was verified. A seedling needle–substrate–root interaction model was established. The Box–Behnken Design method was applied to conduct simulation tests and response surface optimization, focusing on the picking angle, needle width, and rotary gearbox speed. The simulation results showed that the picking angle was the key influencing factor. Under the optimal parameters (picking angle of 20°, seedling needle width of 15 mm, rotary gearbox speed of 209 r/min), the average deviation between the simulated and physical tests was less than 10%, which met the design requirements. This study provides a new solution for reducing root injury, improving SB integrity, and reducing energy consumption in rice transplanting, and provides theoretical and technical references for optimizing transplanting machinery structure and selecting working parameters. Full article
Show Figures

Figure 1

15 pages, 3812 KB  
Article
Comparative Analysis of Static Rollover Stability Between Conventional and Electric Tractor
by Juhee Lee, Seokho Kang, Yujin Han, Jinho Son and Yushin Ha
Agriculture 2025, 15(19), 2099; https://doi.org/10.3390/agriculture15192099 - 9 Oct 2025
Viewed by 240
Abstract
As the development of electric tractors progresses, battery systems have become a key component, accounting for a significant portion of the vehicle’s total weight. With rollover accidents remaining a leading cause of fatal injuries in agricultural machinery, the stability of electric tractors is [...] Read more.
As the development of electric tractors progresses, battery systems have become a key component, accounting for a significant portion of the vehicle’s total weight. With rollover accidents remaining a leading cause of fatal injuries in agricultural machinery, the stability of electric tractors is drawing increasing attention. In particular, battery placement may critically affect the overall mass distribution and rollover behavior, highlighting the need for safety-focused design optimization. This study evaluates the static rollover stability of a 55 kW electric tractor by analyzing the effect of battery mounting position and comparing it with a conventional tractor. Three tractor models were considered: an electric tractor with a front-mounted battery, one with a center-mounted battery, and a conventional tractor. Multibody dynamic simulations were conducted using RecurDyn, and a total of 24 orientations, at 15° intervals, were simulated to determine the tipping angles in all directions. The results revealed that battery placement had a significant impact on rollover stability. The front-mounted battery type exhibited up to 30% higher tipping angles than the conventional tractor in the forward pitch direction near 90°, indicating improved stability. In contrast, the center-mounted battery type showed a tipping angle distribution generally similar to that of the conventional tractor, with smaller variations across directions. These findings demonstrate the influence of mass distribution on rollover safety and provide valuable insight for structural design of electric tractors. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

18 pages, 5138 KB  
Article
Model Order Reduction for Rigid–Flexible–Thermal Coupled Viscoelastic Multibody System via the Modal Truncation with Complex Global Modes
by Qinglong Tian, Chengyu Pan, Zhuo Liu and Xiaoming Chen
Actuators 2025, 14(10), 479; https://doi.org/10.3390/act14100479 - 30 Sep 2025
Viewed by 263
Abstract
A spacecraft is a typical rigid–flexible–thermal coupled multibody system, and the study of such rigid–flexible–thermal coupled systems has important engineering significance. The dissipation effect of material damping has a significant impact on the response of multibody system dynamics. Owing to the increasing multitude [...] Read more.
A spacecraft is a typical rigid–flexible–thermal coupled multibody system, and the study of such rigid–flexible–thermal coupled systems has important engineering significance. The dissipation effect of material damping has a significant impact on the response of multibody system dynamics. Owing to the increasing multitude of computational dimensions, computational efficiency has remained a significant bottleneck hindering their practical applications in engineering. However, due to the fact that the stiffness matrix is a highly nonlinear function of generalized coordinates, traditional methods of modal truncation are difficult to apply directly. In this study, the absolute nodal coordinate formulation (ANCF) is used to uniformly describe the modeling of rigid–flexible–thermal coupled multibody systems with large-scale motion and deformation. The constant tangent stiffness matrix and damping matrix can be obtained by locally linearizing the dynamic equation and heat transfer equations, which are based on the Taylor expansion. The dynamic and heat transfer equations obtained by reducing the order of complex modes are transformed into a unified first-order equation, which is solved simultaneously. The orthogonal complement matrix of the constraint equation is proposed to eliminate the nonlinear constraints. A strategy based on energy preservation was proposed to update the reduced-order basis vectors, which improved the calculation accuracy and efficiency. Finally, a systematic method for rigid–flexible–thermal coupled viscoelastic multibody systems via modal truncation with complex global modes is developed. Full article
(This article belongs to the Section Aerospace Actuators)
Show Figures

Figure 1

39 pages, 11725 KB  
Article
Research on Shape–Performance Integrated Monitoring Technology for Planetary Gearboxes Based on the Integration of Artificial Intelligence, Finite Element Analysis, and Multibody Dynamics Simulation
by Yanping Cui, Boshuo An, Zhe Wu, Ziao Shang and Xuanrui Zhang
Sensors 2025, 25(18), 5810; https://doi.org/10.3390/s25185810 - 17 Sep 2025
Viewed by 510
Abstract
To address gear tooth damage and the difficulty of acquiring performance data under high-speed and high-load operating conditions of planetary gearboxes, a digital twin-based system for operational state recognition and performance prediction is proposed, integrating morphological and functional characteristics. Driven by experimental data, [...] Read more.
To address gear tooth damage and the difficulty of acquiring performance data under high-speed and high-load operating conditions of planetary gearboxes, a digital twin-based system for operational state recognition and performance prediction is proposed, integrating morphological and functional characteristics. Driven by experimental data, the system incorporates finite element analysis, multibody dynamics simulation, artificial intelligence algorithms, and 3D visualization to achieve a virtual mapping of the gearbox’s geometric configuration, structural properties, and dynamic behavior. Structural performance is represented using finite element and dynamic simulation techniques combined with texture mapping, visualized through color gradients; dynamic performance is captured through multibody dynamics simulations and stored in a time-series database, presented as sequential images. The integrated system is constructed by combining a structural performance surrogate model, a system-driven model, and a dynamic performance database, enabling comprehensive functionality. Results demonstrate that the maximum error of the structural performance model is 3%, occurring only under specific working conditions, with negligible impact on the overall meshing performance evaluation of the sun gear. The maximum error in dynamic performance prediction is 1.68%, showing strong consistency with experimental data. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

21 pages, 6710 KB  
Article
Design and Test of Active Rotating Hole-Forming Mechanism on Film Surface
by Chunshun Tao, Wei Yang, Zhouyi Lv, Guocheng Bao, Zhendong Zhang, Jiandong Li and Xinxin Chen
AgriEngineering 2025, 7(9), 301; https://doi.org/10.3390/agriengineering7090301 - 16 Sep 2025
Viewed by 375
Abstract
This study addresses the agricultural requirement for flexible adjustment of planting spacing in seed breeding corn, designing an active rotating in-film hole-forming mechanism driven by an independent motor. The mechanism allows flexible regulation of planting spacing by adjusting the motor speed. The study [...] Read more.
This study addresses the agricultural requirement for flexible adjustment of planting spacing in seed breeding corn, designing an active rotating in-film hole-forming mechanism driven by an independent motor. The mechanism allows flexible regulation of planting spacing by adjusting the motor speed. The study first optimized the structure of the hole-forming device, selecting a rhombic duckbill as its core component and analyzing its motion trajectory and hole-forming shape. Single-factor experiments were conducted to determine the structural parameter ranges affecting film hole length. Using discrete element and multibody dynamics co-simulation, experiments were carried out with duckbill number, duckbill bottom width, and duckbill bottom height as experimental factors, and film hole length as the response variable, employing a three-factor, three-level orthogonal experimental method. Simulation results indicated that the factors influencing film hole length, in descending order of impact, were duckbill number, duckbill bottom height, and duckbill bottom width. The optimized best structural parameters were: 9 duckbills, bottom height of 351 mm, and bottom width of 22 mm, ensuring film hole length control within the range of 25–40 mm, meeting planting requirements, preventing weed growth, and ensuring a seed growth environment. Furrow testing validated the adaptability and planting performance of the mechanism under different spacing conditions, providing a theoretical basis and practical reference for the promotion of small-scale breeding and the sowing technology on the film for field seed production. Full article
Show Figures

Figure 1

22 pages, 6249 KB  
Review
Computational Fluid Dynamics and Potential Flow Modelling Techniques for Floating Photovoltaic Systems: A Systematic Review
by Aditya Nair, Luofeng Huang and Patrick G. Verdin
Symmetry 2025, 17(9), 1508; https://doi.org/10.3390/sym17091508 - 10 Sep 2025
Viewed by 536
Abstract
Land availability constraints limit the installation of conventional ground-mounted solar installations. As a result, Floating Photovoltaic (FPV) systems are gaining popularity as an alternative to renewable energy generation. FPV consist of individual solar panels that are commonly symmetrical and modular. However, the hydrodynamic [...] Read more.
Land availability constraints limit the installation of conventional ground-mounted solar installations. As a result, Floating Photovoltaic (FPV) systems are gaining popularity as an alternative to renewable energy generation. FPV consist of individual solar panels that are commonly symmetrical and modular. However, the hydrodynamic behaviour of FPVs in water surface waves is understudied to ensure their stability and optimal performance under varying environmental conditions. This literature review examines various modelling techniques applied in studying FPV hydrodynamics. Specifically, the application of Computational Fluid Dynamics (CFD) solvers and potential flow theory solvers is investigated for their effectiveness in capturing the behaviour of FPVs and mooring dynamics under the impact of wind and waves. The review highlights the advantages and limitations of each approach. Findings suggest that a combined CFD-potential flow approach offers a perfect balance between accuracy and computational efficiency, offering valuable insights into the performance of FPVs. However, extensive research is notably absent in hydrodynamic modelling for large-scale FPVs. This lack of research represents a significant gap in our current study on multiscale FPV systems. Full article
(This article belongs to the Special Issue Symmetry in Marine Hydrodynamics: Applications to Ocean Engineering)
Show Figures

Figure 1

25 pages, 18914 KB  
Article
Optimization and Experimental Study of a Soil Loosening and Root Lifting Device for Shanghai Green (Brassica rapa subsp. chinensis) Harvesting Based on an EDEM-RecurDyn Simulation
by Qingqing Dai, Zhiyu Zuo, Qinghui Zheng, Yongqiang Fu, Shenghe Zhang and Hanping Mao
Agriculture 2025, 15(17), 1865; https://doi.org/10.3390/agriculture15171865 - 31 Aug 2025
Viewed by 516
Abstract
To mitigate the high stubble rates (root residue rates) and plant damage associated with the current mechanized harvesting of Shanghai Green (Brassica rapa subsp. chinensis), this study developed and optimized a novel soil loosening and root lifting device. A theoretical dynamic [...] Read more.
To mitigate the high stubble rates (root residue rates) and plant damage associated with the current mechanized harvesting of Shanghai Green (Brassica rapa subsp. chinensis), this study developed and optimized a novel soil loosening and root lifting device. A theoretical dynamic model was first established to analyze the device’s operational principles. Subsequently, a coupled multi-body dynamics and discrete element method (RecurDyn-EDEM) model was established to simulate the complex interactions between the device, soil, and plant roots. Response surface methodology was employed to optimize key operational parameters: walking speed, loosening depth, and vibration frequency. The simulation-based optimization was validated by field tests. The optimal parameters were identified as a walking speed of 0.137 m/s, a loosening depth of 34.5 mm, and a vibration frequency of 1.34 Hz, under which the Shanghai Green pulling force was 35.41 N, yielding optimal extraction performance. Field tests conducted under these optimal conditions demonstrated excellent performance, achieving a qualified plant posture rate of 87.5% and a low damage rate of 7.5%. This research provides a robust design and validated operational parameters, offering significant technical support for the development of low-loss harvesting equipment for leafy vegetables. Full article
Show Figures

Figure 1

34 pages, 6658 KB  
Article
Computational Method for Dynamic Analysis of Multibody Systems with Deformable Elements
by Sorin Dumitru, Nicolae Dumitru, Cristian Copilusi and Adrian Sorin Rosca
Mathematics 2025, 13(17), 2797; https://doi.org/10.3390/math13172797 - 31 Aug 2025
Viewed by 474
Abstract
The dynamics of mechanical systems with fast motions and dynamic loads are strongly influenced by the deformability of kinematic elements. The finite element method and the superposition of rigid body motion with deformable body motion allow us to determine a new structure for [...] Read more.
The dynamics of mechanical systems with fast motions and dynamic loads are strongly influenced by the deformability of kinematic elements. The finite element method and the superposition of rigid body motion with deformable body motion allow us to determine a new structure for the matrices that define the mechanical system equations of motion. Meshing the kinematic elements into finite elements causes the unknowns of the problem to no longer be displacement functions but rather nodal displacements. These displacements are considered as a linear combination of modal shapes and modal coordinates. This method is applied to a drive mechanism of an internal combustion engine with three pistons mounted in line. The system is driven by the pressure exerted by the gas on the piston head, which was experimentally determined. The longitudinal and transversal deformations of the connecting rod are determined, including the nodal displacements. These results were verified through virtual prototyping on the 3D model, using multibody system theory and the finite element method. The recorded differences are mainly explained by the type, size, and shape of the used finite elements. Experimental analysis allows us to determine the connecting rod kinematic and dynamic parameters as functions of time and frequency variation. The developed method is flexible and can be easily adapted to systems with fast motions in which, during operation, impact forces appear in joints for various reasons. Full article
Show Figures

Figure 1

19 pages, 4016 KB  
Article
Multibody Dynamics Simulation of Upper Extremity Rehabilitation Exoskeleton During Task-Oriented Exercises
by Piotr Falkowski and Krzysztof Zawalski
Actuators 2025, 14(9), 426; https://doi.org/10.3390/act14090426 - 30 Aug 2025
Viewed by 695
Abstract
Population aging intensifies the demand for rehabilitation services, which are already suffering from staff shortages. In response to this challenge, the implementation of new technologies in physiotherapy is needed. For such a task, rehabilitation exoskeletons can be used. While designing such tools, their [...] Read more.
Population aging intensifies the demand for rehabilitation services, which are already suffering from staff shortages. In response to this challenge, the implementation of new technologies in physiotherapy is needed. For such a task, rehabilitation exoskeletons can be used. While designing such tools, their functionality and safety must be ensured. Therefore, simulations of their strength and kinematics must meet set criteria. This paper aims to present a methodology for simulating the dynamics of rehabilitation exoskeletons during activities of daily living and determining the reactions in the construction’s joints, as well as the required driving torques. The methodology is applied to the SmartEx-Home exoskeleton. Two versions of a multibody model were developed in the Matlab/Simulink environment—a rigid-only version and one with deformable components. The kinematic chain of construction was reflected with the driven rotational joints and modeled passive sliding open bearings. The simulation outputs include the driving torques and joint reaction forces and the torques for various input trajectories registered using IMU sensors on human participants. The results obtained in the investigation show that in general, to mobilize shoulder flexion/extension or abduction/adduction, around 30 Nm of torque is required in such a lightweight exoskeleton. For elbow flexion/extension, around 10 Nm of torque is needed. All of the reactions are presented in tables for all of the characteristic points on the passive and active joints, as well as the attachments of the extremities. This methodology provides realistic load estimations and can be universally used for similar structures. The presented numerical results can be used as the basis for a strength analysis and motor or force sensor selection. They will be directly implemented for the process of mass minimization of the SmartEx-Home exoskeleton based on computational optimization. Full article
(This article belongs to the Special Issue Advances in Intelligent Control of Actuator Systems)
Show Figures

Figure 1

22 pages, 3921 KB  
Article
Simulative Investigation and Optimization of a Rolling Moment Compensation in a Range-Extender Powertrain
by Oliver Bertrams, Sebastian Sonnen, Martin Pischinger, Matthias Thewes and Stefan Pischinger
Vehicles 2025, 7(3), 92; https://doi.org/10.3390/vehicles7030092 - 29 Aug 2025
Viewed by 536
Abstract
Battery electric vehicles (BEVs) are gaining market share, yet range anxiety and sparse charging still create demand for hybrids with combustion-engine range extenders. Range-extender vehicles face high customer expectations for noise, vibration, and harshness (NVH) due to their direct comparability with fully electric [...] Read more.
Battery electric vehicles (BEVs) are gaining market share, yet range anxiety and sparse charging still create demand for hybrids with combustion-engine range extenders. Range-extender vehicles face high customer expectations for noise, vibration, and harshness (NVH) due to their direct comparability with fully electric vehicles. Key challenges include the vibrations of the internal combustion engine, especially from vehicle-induced starts, and the discontinuous operating principle. A technological concept to reduce vibrations in the drivetrain and on the engine mounts, called “FEVcom,” relies on rolling moment compensation. In this concept, a counter-rotating electric machine is coupled to the internal combustion engine via a gear stage to minimize external mount forces. However, due to high speed fluctuations of the crankshaft, the gear drive tends to rattle, which is perceived as disturbing and must be avoided. As part of this work, the rolling moment compensation system was examined regarding its vibration excitation, and an extension to prevent gear rattling was simulated and optimized. For the simulation, the extension, based on a chain or belt drive, was set up as a multi-body simulation model in combination with the range extender and examined dynamically at different speeds. Variations of the extended system were simulated, and recommendations for an optimized layout were derived. This work demonstrates the feasibility of successful rattling avoidance in a range-extender drivetrain with full utilization of the rolling moment compensation. It also provides a solid foundation for further detailed investigations and for developing a prototype for experimental validation based on the understanding gained of the system. Full article
Show Figures

Figure 1

23 pages, 5549 KB  
Article
Design and Structural Safety Assessment of a Hinge-Based Hoistable Car Deck for Ro-Ro Vessels
by Hyun Soo Kim, Min Goo Cho, Byungmoon Kwak, Kiseok Choi, Jang-Ik Park, Ji Hoon Kim and Sungwook Kang
J. Mar. Sci. Eng. 2025, 13(9), 1662; https://doi.org/10.3390/jmse13091662 - 29 Aug 2025
Viewed by 619
Abstract
Ro-Ro (Roll-on/Roll-off) vessels require adaptable deck systems to efficiently accommodate vehicles of varying sizes. Conventional fixed or hydraulically lifted car decks often face challenges related to structural efficiency, maintainability, and limited flexibility. To address these issues, this study proposes a novel hoistable car [...] Read more.
Ro-Ro (Roll-on/Roll-off) vessels require adaptable deck systems to efficiently accommodate vehicles of varying sizes. Conventional fixed or hydraulically lifted car decks often face challenges related to structural efficiency, maintainability, and limited flexibility. To address these issues, this study proposes a novel hoistable car deck system that incorporates a hinge-based folding mechanism and modular connections. The design enhances maintainability, allows independent adjustment of deck panels without external lifting equipment, and improves adaptability to diverse ship layouts. In addition, the proposed concept was systematically evaluated to verify its structural integrity and serviceability under representative loading conditions, highlighting its compliance with classification society requirements. These results suggest that the hinge-based modular deck provides a promising solution for next-generation Ro-Ro vessels, offering both operational flexibility and improved efficiency while paving the way for practical applications in shipbuilding and retrofitting projects. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

Back to TopTop