Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,518)

Search Parameters:
Keywords = multilayer perceptron neural network

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 7875 KB  
Article
Intelligent Optimal Seismic Design of Buildings Based on the Inversion of Artificial Neural Networks
by Augusto Montisci, Francesca Pibi, Maria Cristina Porcu and Juan Carlos Vielma
Appl. Sci. 2025, 15(19), 10713; https://doi.org/10.3390/app151910713 (registering DOI) - 4 Oct 2025
Abstract
The growing need for safe, cheap and sustainable earthquake-resistant buildings means that efficient methods for optimal seismic design must be found. The complexity and nonlinearity of the problem can be addressed using advanced automated techniques. This paper presents an intelligent three-step procedure for [...] Read more.
The growing need for safe, cheap and sustainable earthquake-resistant buildings means that efficient methods for optimal seismic design must be found. The complexity and nonlinearity of the problem can be addressed using advanced automated techniques. This paper presents an intelligent three-step procedure for optimally designing earthquake-resistant buildings based on the training (1st step) and successive inversion (2nd step) of Multi-Layer Perceptron Neural Networks. This involves solving the inverse problem of determining the optimal design parameters that meet pre-assigned, code-based performance targets, by means of a gradient-based optimization algorithm (3rd step). The effectiveness of the procedure was tested using an archetypal multistory, moment-resisting, concentrically braced steel frame with active tension diagonal bracing. The input dataset was obtained by varying four design parameters. The output dataset resulted from performance variables obtained through non-linear dynamic analyses carried out under three earthquakes consistent with the Chilean code spectrum, for all cases considered. Three spectrum-consistent records are sufficient for code-based seismic design, while each seismic excitation provides a wealth of information about the behavior of the structure, highlighting potential issues. For optimization purposes, only information relevant to critical sections was used as a performance indicator. Thus, the dataset for training consisted of pairs of design parameter sets and their corresponding performance indicator sets. A dedicated MLP was trained for each of the outputs over the entire dataset, which greatly reduced the total complexity of the problem without compromising the effectiveness of the solution. Due to the comparatively low number of cases considered, the leave-one-out method was adopted, which made the validation process more rigorous than usual since each case acted once as a validation set. The trained network was then inverted to find the input design search domain, where a cost-effective gradient-based algorithm determined the optimal design parameters. The feasibility of the solution was tested through numerical analyses, which proved the effectiveness of the proposed artificial intelligence-aided optimal seismic design procedure. Although the proposed methodology was tested on an archetypal building, the significance of the results highlights the effectiveness of the three-step procedure in solving complex optimization problems. This paves the way for its use in the design optimization of different kinds of earthquake-resistant buildings. Full article
Show Figures

Figure 1

20 pages, 5116 KB  
Article
Design of Portable Water Quality Spectral Detector and Study on Nitrogen Estimation Model in Water
by Hongfei Lu, Hao Zhou, Renyong Cao, Delin Shi, Chao Xu, Fangfang Bai, Yang Han, Song Liu, Minye Wang and Bo Zhen
Processes 2025, 13(10), 3161; https://doi.org/10.3390/pr13103161 - 3 Oct 2025
Abstract
A portable spectral detector for water quality assessment was developed, utilizing potassium nitrate and ammonium chloride standard solutions as the subjects of investigation. By preparing solutions with differing concentrations, spectral data ranging from 254 to 1275 nm was collected and subsequently preprocessed using [...] Read more.
A portable spectral detector for water quality assessment was developed, utilizing potassium nitrate and ammonium chloride standard solutions as the subjects of investigation. By preparing solutions with differing concentrations, spectral data ranging from 254 to 1275 nm was collected and subsequently preprocessed using methods such as multiple scattering correction (MSC), Savitzky–Golay filtering (SG), and standardization (SS). Estimation models were constructed employing modeling algorithms including Support Vector Machine-Multilayer Perceptron (SVM-MLP), Support Vector Regression (SVR), random forest (RF), RF-Lasso, and partial least squares regression (PLSR). The research revealed that the primary variation bands for NH4+ and NO3 are concentrated within the 254–550 nm and 950–1275 nm ranges, respectively. For predicting ammonium chloride, the optimal model was found to be the SVM-MLP model, which utilized spectral data reduced to 400 feature bands after SS processing, achieving R2 and RMSE of 0.8876 and 0.0883, respectively. For predicting potassium nitrate, the optimal model was the 1D Convolutional Neural Network (1DCNN) model applied to the full band of spectral data after SS processing, with R2 and RMSE of 0.7758 and 0.1469, respectively. This study offers both theoretical and technical support for the practical implementation of spectral technology in rapid water quality monitoring. Full article
Show Figures

Figure 1

10 pages, 1464 KB  
Communication
A Signal Detection Method Based on BiGRU for FSO Communications with Atmospheric Turbulence
by Zhenning Yi, Zhiyong Xu, Jianhua Li, Jingyuan Wang, Jiyong Zhao, Yang Su and Yimin Wang
Photonics 2025, 12(10), 980; https://doi.org/10.3390/photonics12100980 - 2 Oct 2025
Abstract
In free space optical (FSO) communications, signals are affected by turbulence when transmitted through the atmosphere. Fluctuations in intensity caused by atmospheric turbulence lead to an increase in the bit error rate of FSO systems. Deep learning (DL), as a current research hotspot, [...] Read more.
In free space optical (FSO) communications, signals are affected by turbulence when transmitted through the atmosphere. Fluctuations in intensity caused by atmospheric turbulence lead to an increase in the bit error rate of FSO systems. Deep learning (DL), as a current research hotspot, offers a promising approach to improve the accuracy of signal detection. In this paper, we propose a signal detection method based on a bidirectional gated recurrent unit (BiGRU) neural network for FSO communications. The proposed detection method considers the temporal correlation of received signals due to the properties of the BiGRU neural network, which is not available in existing detection methods based on DL. In addition, the proposed detection method does not require channel state information (CSI) for channel estimation, unlike maximum likelihood (ML) detection technology with perfect CSI. Numerical results demonstrate that the proposed BiGRU-based detector achieves significant improvements in bit error rate (BER) performance compared with a multilayer perceptron (MLP)-based detector. Specifically, under weak turbulence conditions, the BiGRU-based detector achieves an approximate 2 dB signal-to-noise ratio (SNR) gain at a target BER of 106 compared to the MLP-based detector. Under moderate turbulence conditions, it achieves an approximate 6 dB SNR gain at the same target BER of 106. Under strong turbulence conditions, the proposed detector obtains a 6 dB SNR gain at a target BER of 104. Additionally, it outperforms conventional methods by more than one order of magnitude in BER under the same turbulence and SNR conditions. Full article
(This article belongs to the Section Optical Communication and Network)
Show Figures

Figure 1

31 pages, 3643 KB  
Article
Machine Learning for Basketball Game Outcomes: NBA and WNBA Leagues
by João M. Alves and Ramiro S. Barbosa
Computation 2025, 13(10), 230; https://doi.org/10.3390/computation13100230 - 1 Oct 2025
Abstract
Artificial intelligence has become crucial in sports, leveraging its analytical capabilities to enhance the understanding and prediction of complex events. Machine learning algorithms in sports, especially basketball, are transforming performance analysis by identifying patterns and trends invisible to traditional methods. This technology provides [...] Read more.
Artificial intelligence has become crucial in sports, leveraging its analytical capabilities to enhance the understanding and prediction of complex events. Machine learning algorithms in sports, especially basketball, are transforming performance analysis by identifying patterns and trends invisible to traditional methods. This technology provides in-depth insights into individual and team performance, enabling precise evaluation of strategies and tactics. Consequently, the detailed analysis of every aspect of a team’s routine can significantly elevate the level of competition in the sport. This study investigates a range of machine learning models, including Logistic Regression (LR), Ridge Regression Classifier (RR), Random Forest (RF), Naive Bayes (NB), K-Nearest Neighbors (KNNs), Support Vector Machine (SVM), Stacking Classifier (STACK), Bagging Classifier (BAG), Multi-Layer Perceptron (MLP), AdaBoost (AB), and XGBoost (XGB), as well as deep learning architectures such as Long Short-Term Memory (LSTM) networks and Convolutional Neural Networks (CNNs), to compare their effectiveness in predicting game outcomes in the NBA and WNBA leagues. The results show highly acceptable prediction accuracies of 65.50% for the NBA and 67.48% for the WNBA. This study allows us to understand the impact that artificial intelligence can have on the world of basketball and its current state in relation to previous studies. It can provide valuable insights for coaches, performance analysts, team managers, and sports strategists by using machine learning and deep learning models to predict NBA and WNBA outcomes, enabling informed decisions and enhancing competitive performance. Full article
(This article belongs to the Section Computational Engineering)
22 pages, 2963 KB  
Article
Classification Machine Learning Models for Enhancing the Sustainability of Postal System Modules Within the Smart Transportation Concept
by Milorad K. Banjanin, Mirko Stojčić, Đorđe Popović, Dejan Anđelković, Goran Jauševac and Maid Husić
Sustainability 2025, 17(19), 8718; https://doi.org/10.3390/su17198718 - 28 Sep 2025
Abstract
Postal traffic and transport face challenges related to the rapid growth of parcel volumes, increasing demands for sustainability, and the need for integration into the smart transportation concept. This study explores the application of machine learning (ML) models for the classification of postal [...] Read more.
Postal traffic and transport face challenges related to the rapid growth of parcel volumes, increasing demands for sustainability, and the need for integration into the smart transportation concept. This study explores the application of machine learning (ML) models for the classification of postal delivery times, with the aim of improving service efficiency and quality. As a case study, the Postal Center Zenica, one of the seven organizational units of the Public Enterprise “BH Pošta” in Bosnia and Herzegovina, was analyzed. The available dataset comprised 11,138 instances, which were cleaned and filtered, then expanded through two iterations of data augmentation using an autoencoder neural network. Five ML models, Random Forest, Support Vector Machine (SVM), Extreme Gradient Boosting (XGBoost), k-Nearest Neighbors (kNN), and Multi-Layer Perceptron (MLP), were developed and compared, with hyperparameters optimized using the Bayesian method and evaluated through standard classification metrics. The results indicate that the data augmentation method significantly improves model performance, particularly in the classification of delayed shipments, with ensemble, especially Random Forest and XGBoost, emerging as the most robust solutions. Beyond contributions in the context of postal traffic and transport, the proposed methodological framework demonstrates interdisciplinary relevance, as it can also be applied in telecommunication traffic classes, where similar network dynamics require reliable predictive models. Full article
(This article belongs to the Special Issue Sustainable Traffic Flow Management and Smart Transportation)
Show Figures

Figure 1

31 pages, 5176 KB  
Article
Leveraging Machine Learning for Porosity Prediction in AM Using FDM for Pretrained Models and Process Development
by Khadija Ouajjani, James E. Steck and Gerardo Olivares
Materials 2025, 18(19), 4499; https://doi.org/10.3390/ma18194499 - 27 Sep 2025
Abstract
Additive manufacturing involves numerous independent parameters, often leading to inconsistent print quality and necessitating costly trial-and-error approaches to optimize input variables. Machine learning offers a solution to this non-linear problem by predicting optimal printing parameters from a minimal set of experiments. Using Fused [...] Read more.
Additive manufacturing involves numerous independent parameters, often leading to inconsistent print quality and necessitating costly trial-and-error approaches to optimize input variables. Machine learning offers a solution to this non-linear problem by predicting optimal printing parameters from a minimal set of experiments. Using Fused Deposition Modeling (FDM) as a case study, this work develops a machine learning-powered process to predict porosity defects. Specimens in two geometrical scales were 3D-printed and CT-scanned, yielding raw datasets of grayscale images. A machine learning image classifier was trained on the small-cube dataset (~2200 images) to distinguish exploitable images from defective ones, averaging over 97% accuracy and correctly classifying more than 90% of the large-cube exploitable images. The developed preprocessing scripts extracted porosity features from the exploitable images. A repeatability study analyzed three replicate specimens printed under identical conditions, and quantified the intrinsic process variability, showing an average porosity standard deviation of 0.47% and defining an uncertainty zone for quality control. A multi-layer perceptron (MLP) was independently trained on 1709 data points derived from the small-cube dataset and 3746 data points derived from the large-cube dataset. Its accuracy was 54.4% for the small cube and increased to 77.6% with the large-cube dataset, due to the larger sample size. A rigorous grouped k-fold cross-validation protocol, relying on splitting data per cube, strengthened the ML algorithms against data leakage and overfitting. Finally, a dimensional scalability study further assessed the use of the pipeline for the large-cube dataset and established the impact of geometrical scaling on defect formation and prediction in 3D-printed parts. Full article
Show Figures

Figure 1

29 pages, 3761 KB  
Article
An Adaptive Transfer Learning Framework for Multimodal Autism Spectrum Disorder Diagnosis
by Wajeeha Malik, Muhammad Abuzar Fahiem, Jawad Khan, Younhyun Jung and Fahad Alturise
Life 2025, 15(10), 1524; https://doi.org/10.3390/life15101524 - 26 Sep 2025
Abstract
Autism Spectrum Disorder (ASD) is a complex neurodevelopmental condition with diverse behavioral, genetic, and structural characteristics. Due to its heterogeneous nature, early diagnosis of ASD is challenging, and conventional unimodal approaches often fail to capture cross-modal dependencies. To address this, this study introduces [...] Read more.
Autism Spectrum Disorder (ASD) is a complex neurodevelopmental condition with diverse behavioral, genetic, and structural characteristics. Due to its heterogeneous nature, early diagnosis of ASD is challenging, and conventional unimodal approaches often fail to capture cross-modal dependencies. To address this, this study introduces an adaptive multimodal fusion framework that integrates behavioral, genetic, and structural MRI (sMRI) data, addressing the limitations of unimodal approaches. Each modality undergoes a dedicated preprocessing and feature optimization phase. For behavioral data, an ensemble of classifiers using a stacking technique and attention mechanism is applied for feature extraction, achieving an accuracy of 95.5%. The genetic data is analyzed using Gradient Boosting, which attained a classification accuracy of 86.6%. For the sMRI data, a Hybrid Convolutional Neural Network–Graph Neural Network (Hybrid-CNN-GNN) architecture is proposed, demonstrating a strong performance with an accuracy of 96.32%, surpassing existing methods. To unify these modalities, fused using an adaptive late fusion strategy implemented with a Multilayer Perceptron (MLP), where adaptive weighting adjusts each modality’s contribution based on validation performance. The integrated framework addresses the limitations of unimodal approaches by creating a unified diagnostic model. The transfer learning framework achieves superior diagnostic accuracy (98.7%) compared to unimodal baselines, demonstrating strong generalization across heterogeneous datasets and offering a promising step toward reliable, multimodal ASD diagnosis. Full article
(This article belongs to the Special Issue Advanced Machine Learning for Disease Prediction and Prevention)
Show Figures

Figure 1

28 pages, 6039 KB  
Article
Detection and Classification of Unhealthy Heartbeats Using Deep Learning Techniques
by Abdullah M. Albarrak, Raneem Alharbi and Ibrahim A. Ibrahim
Sensors 2025, 25(19), 5976; https://doi.org/10.3390/s25195976 - 26 Sep 2025
Abstract
Arrhythmias are a common and potentially life-threatening category of cardiac disorders, making accurate and early detection crucial for improving clinical outcomes. Electrocardiograms are widely used to monitor heart rhythms, yet their manual interpretation remains prone to inconsistencies due to the complexity of the [...] Read more.
Arrhythmias are a common and potentially life-threatening category of cardiac disorders, making accurate and early detection crucial for improving clinical outcomes. Electrocardiograms are widely used to monitor heart rhythms, yet their manual interpretation remains prone to inconsistencies due to the complexity of the signals. This research investigates the effectiveness of machine learning and deep learning techniques for automated arrhythmia classification using ECG signals from the MIT-BIH dataset. We compared Gradient Boosting Machine (GBM) and Multilayer Perceptron (MLP) as traditional machine learning models with a hybrid deep learning model combining one-dimensional convolutional neural networks (1D-CNNs) and long short-term memory (LSTM) networks. Furthermore, the Grey Wolf Optimizer (GWO) was utilized to automatically optimize the hyperparameters of the 1D-CNN-LSTM model, enhancing its performance. Experimental results show that the proposed 1D-CNN-LSTM model achieved the highest accuracy of 97%, outperforming both classical machine learning and other deep learning baselines. The classification report and confusion matrix confirm the model’s robustness in identifying various arrhythmia types. These findings emphasize the possible benefits of integrating metaheuristic optimization with hybrid deep learning. Full article
(This article belongs to the Special Issue Sensors Technology and Application in ECG Signal Processing)
Show Figures

Figure 1

29 pages, 3717 KB  
Article
Inverse Procedure to Initial Parameter Estimation for Air-Dropped Packages Using Neural Networks
by Beata Potrzeszcz-Sut and Marta Grzyb
Appl. Sci. 2025, 15(19), 10422; https://doi.org/10.3390/app151910422 - 25 Sep 2025
Abstract
This paper presents a neural network–driven framework for solving the inverse problem of initial parameter estimation in air-dropped package missions. Unlike traditional analytical methods, which are computationally intensive and often impractical in real time, the proposed system leverages the flexibility of multilayer perceptrons [...] Read more.
This paper presents a neural network–driven framework for solving the inverse problem of initial parameter estimation in air-dropped package missions. Unlike traditional analytical methods, which are computationally intensive and often impractical in real time, the proposed system leverages the flexibility of multilayer perceptrons to model both forward and inverse relationships between drop conditions and flight outcomes. In the forward stage, a trained network predicts range, flight time, and impact velocity from predefined release parameters. In the inverse stage, a deeper neural model reconstructs the required release velocity, angle, and altitude directly from the desired operational outcomes. By employing a hybrid workflow—combining physics-based simulation with neural approximation—our approach generates large, high-quality datasets at low computational cost. Results demonstrate that the inverse network achieves high accuracy across deterministic and stochastic tests, with minimal error when operating within the training domain. The study confirms the suitability of neural architectures for tackling complex, nonlinear identification tasks in precision airdrop operations. Beyond their technical efficiency, such models enable agile, GPS-independent mission planning, offering a reliable and low-cost decision support tool for humanitarian aid, scientific research, and defense logistics. This work highlights how artificial intelligence can transform conventional trajectory design into a fast, adaptive, and autonomous capability. Full article
(This article belongs to the Special Issue Application of Neural Computation in Artificial Intelligence)
Show Figures

Figure 1

15 pages, 2412 KB  
Article
A Physics-Informed Neural Network Integration Framework for Efficient Dynamic Fracture Simulation in an Explicit Algorithm
by Mingyang Wan, Yue Pan and Zhennan Zhang
Appl. Sci. 2025, 15(19), 10336; https://doi.org/10.3390/app151910336 - 23 Sep 2025
Viewed by 117
Abstract
The conventional dynamic fracture simulation by using the explicit algorithm often involves a large number of iteration computation due to the extremely small time interval. Thus, the most time-consuming process is the integration of constitutive relation. To improve the efficiency of the dynamic [...] Read more.
The conventional dynamic fracture simulation by using the explicit algorithm often involves a large number of iteration computation due to the extremely small time interval. Thus, the most time-consuming process is the integration of constitutive relation. To improve the efficiency of the dynamic fracture simulation, a physics-informed neural network integration (PINNI) model is developed to calculate the integration of constitutive relation. PINNI employs a shallow multilayer perceptron with integrable activations to approximate constitutive integrand. To train PINNI, a large number of strains in a reasonable range are generated at first, and then the corresponding stresses are calculated by the mechanical constitutive relation. With the generated strains as input data and the calculated stresses as output data, the PINNI can be trained to reach a very high precision, whose relative error is about 7.8×105%. Next, the mechanical integration of constitutive relation is replaced by the well-trained PINNI to perform the dynamic fracture simulation. It is found that the simulation results by the mechanical and PINNI approach are almost the same. This suggests that it is feasible to use PINNI to replace the rigorous mechanical integration of constitutive relation. The computational efficiency is significantly enhanced, especially for the complicated constitutive relation. It provides a new AI-combined approach to dynamic fracture simulation. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

19 pages, 3042 KB  
Article
An Implicit Registration Framework Integrating Kolmogorov–Arnold Networks with Velocity Regularization for Image-Guided Radiation Therapy
by Pulin Sun, Chulong Zhang, Zhenyu Yang, Fang-Fang Yin and Manju Liu
Bioengineering 2025, 12(9), 1005; https://doi.org/10.3390/bioengineering12091005 - 22 Sep 2025
Viewed by 158
Abstract
In image-guided radiation therapy (IGRT), deformable image registration between computed tomography (CT) and cone beam computed tomography (CBCT) images remain challenging due to the computational cost of iterative algorithms and the data dependence of supervised deep learning methods. Implicit neural representation (INR) provides [...] Read more.
In image-guided radiation therapy (IGRT), deformable image registration between computed tomography (CT) and cone beam computed tomography (CBCT) images remain challenging due to the computational cost of iterative algorithms and the data dependence of supervised deep learning methods. Implicit neural representation (INR) provides a promising alternative, but conventional multilayer perceptron (MLP) might struggle to efficiently represent complex, nonlinear deformations. This study introduces a novel INR-based registration framework that models the deformation as a continuous, time-varying velocity field, parameterized by a Kolmogorov–Arnold Network (KAN) constructed using Jacobi polynomials. To our knowledge, this is the first integration of KAN into medical image registration, establishing a new paradigm beyond standard MLP-based INR. For improved efficiency, the KAN estimates low-dimensional principal components of the velocity field, which are reconstructed via inverse principal component analysis and temporally integrated to derive the final deformation. This approach achieves a ~70% improvement in computational efficiency relative to direct velocity field modeling while ensuring smooth and topology-preserving transformations through velocity regularization. Evaluation on a publicly available pelvic CT–CBCT dataset demonstrates up to 6% improvement in registration accuracy over traditional iterative methods and ~3% over MLP-based INR baselines, indicating the potential of the proposed method as an efficient and generalizable alternative for deformable registration. Full article
(This article belongs to the Special Issue Novel Imaging Techniques in Radiotherapy)
Show Figures

Graphical abstract

17 pages, 1671 KB  
Article
Early-Stage Prediction of Steel Weight in Industrial Buildings Using Neural Networks
by Johnny Setiawan, Ridho Bayuaji, Mohammad Arif Rohman and Delima Canny Valentine Simarmata
Symmetry 2025, 17(9), 1579; https://doi.org/10.3390/sym17091579 - 22 Sep 2025
Viewed by 200
Abstract
In industrial building projects, steel is the main material used to create sturdy structures that have large open spaces without many columns in the center of the building. To estimate the cost of constructing a building before it enters the detailed design stage, [...] Read more.
In industrial building projects, steel is the main material used to create sturdy structures that have large open spaces without many columns in the center of the building. To estimate the cost of constructing a building before it enters the detailed design stage, engineers and stakeholders must have the right tools and guidelines. Steel is an important construction material used at high volumes in industrial buildings, and it plays a significant role in determining the total cost of a project. This study develops and evaluates an artificial neural network (ANN) model based on multilayer perceptron (MLP) to predict the weight of steel structures in industrial buildings. The data collected include actual projects from 180 industrial building projects, using parameters that influence the weight of steel. The findings show that the ANN method can accurately estimate the weight of steel at an early stage in the building project, even before the detailed design phase. It was found that ANN has the ability to predict the weight of steel for industrial buildings with an excellent degree of accuracy, with a coefficient of correlation (R2) of 94.85% and prediction accuracy (PA) of 94.23%. This indicates that the relationship between the independent and dependent variables of the developed models is good and the predicted values from the forecast model fit with the real-life data. Full article
Show Figures

Figure 1

17 pages, 1133 KB  
Article
Spatio-Temporal Recursive Method for Traffic Flow Interpolation
by Gang Wang, Yuhao Mao, Xu Liu, Haohan Liang and Keqiang Li
Symmetry 2025, 17(9), 1577; https://doi.org/10.3390/sym17091577 - 21 Sep 2025
Viewed by 248
Abstract
Traffic data sequence imputation plays a crucial role in maintaining the integrity and reliability of transportation analytics and decision-making systems. With the proliferation of sensor technologies and IoT devices, traffic data often contain missing values due to sensor failures, communication issues, or data [...] Read more.
Traffic data sequence imputation plays a crucial role in maintaining the integrity and reliability of transportation analytics and decision-making systems. With the proliferation of sensor technologies and IoT devices, traffic data often contain missing values due to sensor failures, communication issues, or data processing errors. It is necessary to effectively interpolate these missing parts to ensure the correctness of downstream work. Compared with other data, the monitoring data of traffic flow shows significant temporal and spatial correlations. However, most methods have not fully integrated the correlations of these types. In this work, we introduce the Temporal–Spatial Fusion Neural Network (TSFNN), a framework designed to address missing data recovery in transportation monitoring by jointly modeling spatial and temporal patterns. The architecture incorporates a temporal component, implemented with a Recurrent Neural Network (RNN), to learn sequential dependencies, alongside a spatial component, implemented with a Multilayer Perceptron (MLP), to learn spatial correlations. For performance validation, the model was benchmarked against several established methods. Using real-world datasets with varying missing-data ratios, TSFNN consistently delivered more accurate interpolations than all baseline approaches, highlighting the advantage of combining temporal and spatial learning within a single framework. Full article
(This article belongs to the Section Computer)
Show Figures

Figure 1

32 pages, 1727 KB  
Article
Client-Oriented Highway Construction Cost Estimation Models Using Machine Learning
by Fani Antoniou and Konstantinos Konstantinidis
Appl. Sci. 2025, 15(18), 10237; https://doi.org/10.3390/app151810237 - 19 Sep 2025
Viewed by 213
Abstract
Accurate cost estimation during the conceptual and feasibility phase of highway projects is essential for informed decision making by public contracting authorities. Existing approaches often rely on pavement cross-section descriptors, general project classifications, or quantity estimates of major work categories that are not [...] Read more.
Accurate cost estimation during the conceptual and feasibility phase of highway projects is essential for informed decision making by public contracting authorities. Existing approaches often rely on pavement cross-section descriptors, general project classifications, or quantity estimates of major work categories that are not reliably available at the early planning stage, while focusing on one or more key asset categories such as roadworks, bridges or tunnels. This study makes a novel contribution to both scientific literature and practice by proposing the first early-stage highway construction cost estimation model that explicitly incorporates roadworks, interchanges, tunnels and bridges, using only readily available or easily derived geometric characteristics. A comprehensive and practical approach was adopted by developing and comparing models across multiple machine learning (ML) methods, including Multilayer Perceptron-Artificial Neural Network (MLP-ANN), Radial Basis Function-Artificial Neural Network (RBF-ANN), Multiple Linear Regression (MLR), Random Forests (RF), Support Vector Regression (SVR), XGBoost Technique, and K-Nearest Neighbors (KNN). Results demonstrate that the MLR model based on six independent variables—mainline length, service road length, number of interchanges, total area of structures, tunnel length, and number of culverts—consistently outperformed more complex alternatives. The full MLR model, including its coefficients and standardized parameters, is provided, enabling direct replication and immediate use by contracting authorities, hence supporting more informed decisions on project funding and procurement. Full article
Show Figures

Graphical abstract

30 pages, 2308 KB  
Article
Forecasting Installation Demand Using Machine Learning: Evidence from a Large PV Installer in Poland
by Anna Zielińska and Rafał Jankowski
Energies 2025, 18(18), 4998; https://doi.org/10.3390/en18184998 - 19 Sep 2025
Viewed by 248
Abstract
The dynamic growth of the photovoltaic (PV) market in Poland, driven by declining technology costs, government support programs, and the decentralization of energy generation, has created a strong demand for accurate short-term forecasts to support sales planning, logistics, and resource management. This study [...] Read more.
The dynamic growth of the photovoltaic (PV) market in Poland, driven by declining technology costs, government support programs, and the decentralization of energy generation, has created a strong demand for accurate short-term forecasts to support sales planning, logistics, and resource management. This study investigates the application of long short-term memory (LSTM) recurrent neural networks to forecast two key market indicators: the monthly number of completed PV installations and their average unit capacity. The analysis is based on proprietary two-year data from one of the largest PV companies in Poland, covering both sales and completed installations. The dataset was preprocessed through cleaning, filtering, and aggregation into a consistent monthly time series. Results demonstrate that the LSTM model effectively captured seasonality and temporal dependencies in the PV market, outperforming multilayer perceptron (MLP) models in forecasting installation counts and providing robust predictions for average capacity. These findings confirm the potential of LSTM-based forecasting as a valuable decision-support tool for enterprises and policymakers, enabling improved market strategy, optimized resource allocation, and more effective design of support mechanisms in the renewable energy sector. The originality of this study lies in the use of a unique, proprietary dataset of over 12,000 completed PV micro-installations, rarely available in the literature, and in its direct focus on market demand forecasting rather than energy production. This perspective highlights the practical value of the model for companies in sales planning, logistics, and resource allocation. Full article
Show Figures

Figure 1

Back to TopTop