Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (660)

Search Parameters:
Keywords = multispectral imaging techniques

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 4781 KB  
Article
The Gardener of the Grand Duke: History and Analysis of Ms. 462 Hortus Pisanus, Icones variarum plantarum
by Luca Nodari, Claudia Giostrella, Giulia Lorenzetti, Vincenzo Palleschi, Stefano Legnaioli and Patrizia Tomasin
Appl. Sci. 2025, 15(19), 10626; https://doi.org/10.3390/app151910626 - 30 Sep 2025
Abstract
Codex 462 of the Fondo Hortus Pisanus of the Biblioteca Universitaria of Pisa is a precious example of a 16th century illustrated herbal, Icones variarum plantarum, containing 35 tempera paintings by the German soldier Georg Dyckman, an amateur but highly talented artist. [...] Read more.
Codex 462 of the Fondo Hortus Pisanus of the Biblioteca Universitaria of Pisa is a precious example of a 16th century illustrated herbal, Icones variarum plantarum, containing 35 tempera paintings by the German soldier Georg Dyckman, an amateur but highly talented artist. The manuscript was recently restored on the occasion of an international exhibition; the necessary preliminary studies for the restoration included a series of in situ diagnostic studies using contactless techniques (digital microscope, multispectral imaging, XRF, Raman and ER-FTIR). These analyses proved useful in deepening the knowledge of the materials and the execution technique of this type of illustrated herbals and in choosing the most appropriate solutions during the restoration phase. In view of the growing interest in this type of historical evidence, which involves both art history and the history of science, this study offers an interesting new perspective on the subject, useful both from a technical point of view for future conservation and for analytical and historical artistic studies. Full article
(This article belongs to the Special Issue Application of Digital Technology in Cultural Heritage)
17 pages, 2527 KB  
Article
Monocular Depth Estimation Driven Canopy Segmentation for Enhanced Determination of Vegetation Indices in Olive Grove Monitoring
by Vladan Papić, Nediljko Bugarin, Ivana Marin, Sven Gotovac and Josip Gugić
Remote Sens. 2025, 17(18), 3245; https://doi.org/10.3390/rs17183245 - 19 Sep 2025
Viewed by 183
Abstract
This study investigates the application of unmanned aerial vehicles with multispectral cameras for monitoring the condition of olive groves with high accuracy. Multispectral images of olive groves provided detailed insight into the spectral data required for the analysis of vegetation indices. Using deep [...] Read more.
This study investigates the application of unmanned aerial vehicles with multispectral cameras for monitoring the condition of olive groves with high accuracy. Multispectral images of olive groves provided detailed insight into the spectral data required for the analysis of vegetation indices. Using deep learning-based object detection, individual olive trees were identified within the images, which allowed the extraction of parts corresponding to each tree. To separate the background from the canopy, segmentation based on the monocular depth estimation algorithm, Depth Anything, was applied. In this way, elements that are not part of the tree’s crown were removed for more accurate analysis and calculation of the NDVI (Normalized Difference Vegetation Index) and NDRE (Normalized Difference Red Edge Index) indices. The obtained results were compared with the results obtained for unsegmented patches, threshold-based patches, and manually segmented patches. The comparison and analysis carried out shows that the proposed segmentation approach improved the accuracy of NDVI and NDRE by focusing exclusively on the crowns of the observed trees, excluding the noise of the surrounding vegetation and soil. In addition, measurements were carried out on three observed olive groves at different parts of the vegetation cycle, and the values of the vegetation indices were compared. This integrated method combining drone-based multispectral imaging, deep learning object detection, and advanced segmentation techniques highlights a robust approach to olive tree health monitoring and provides insight into seasonal vegetation dynamics, for winter and spring, to capture differences in vegetative activity. Full article
Show Figures

Figure 1

23 pages, 9332 KB  
Article
Scientific Art in Glass: Archaeometric Analysis and Conservation of Blaschka Models
by Gemma Giani, Silvia Ferucci, Chiara Matteucci, Salvatore Andrea Apicella, Gaia Tarantola, Maria Pia Morigi, Matteo Bettuzzi, Maria Pia Riccardi and Mariangela Vandini
Heritage 2025, 8(9), 376; https://doi.org/10.3390/heritage8090376 - 12 Sep 2025
Viewed by 260
Abstract
Leopold Blaschka (1822–1895) and his son Rudolf (1857–1939) created scientifically accurate glass models of marine invertebrates that reshaped natural history education in the 19th century. Their work overcame the limitations of traditional preservation techniques, allowing for detailed and lifelike representations of soft-bodied sea [...] Read more.
Leopold Blaschka (1822–1895) and his son Rudolf (1857–1939) created scientifically accurate glass models of marine invertebrates that reshaped natural history education in the 19th century. Their work overcame the limitations of traditional preservation techniques, allowing for detailed and lifelike representations of soft-bodied sea creatures and botanic species. Today, their models are preserved in prestigious collections worldwide. This paper examines not only the historical and artistic significance of the Blaschka models but also presents the findings of recent material analyses, including computed tomography (CT), scanning electron microscopy combined with energy dispersive X-ray analysis (SEM-EDS), visible ultraviolet fluorescence (UVF), and Fourier-transform infrared spectroscopy (FTIR). The multi-analytical approach allowed for the characterization of the chemical composition of the glass and adhesives used, shedding light on the Blaschkas’ unique manufacturing processes and material choices. Data from this study demonstrate how the combination of a multi-analytical approach with knowledge of historical glassmaking practices can provide a solid foundation for both conservation efforts and further academic investigation into these composite objects. The study underscores the models’ value not only as artistic masterpieces but also as technological artifacts, offering insights into 19th-century scientific craftsmanship at the intersection of art and biology. Furthermore, the study presents a conservation intervention based on scientific evidence and a skilfully tailored solution, chosen piece-by-piece, part-by-part of the intricate glass models. Full article
(This article belongs to the Special Issue The Conservation of Glass in Heritage Science)
Show Figures

Figure 1

26 pages, 1078 KB  
Review
Recent Trends in Machine Learning, Deep Learning, Ensemble Learning, and Explainable Artificial Intelligence Techniques for Evaluating Crop Yields Under Abnormal Climate Conditions
by Ji Won Choi, Mohamad Soleh Hidayat, Soo Been Cho, Woon-Ha Hwang, Hoonsoo Lee, Byoung-Kwan Cho, Moon S. Kim, Insuck Baek and Geonwoo Kim
Plants 2025, 14(18), 2841; https://doi.org/10.3390/plants14182841 - 11 Sep 2025
Viewed by 858
Abstract
Crop yield prediction (CYP) has become increasingly critical in addressing the adverse effects of abnormal climate and enhancing agricultural productivity. This review investigates the application of advanced Artificial Intelligence (AI) techniques including Machine Learning (ML), Deep Learning (DL), Ensemble Learning, and Explainable AI [...] Read more.
Crop yield prediction (CYP) has become increasingly critical in addressing the adverse effects of abnormal climate and enhancing agricultural productivity. This review investigates the application of advanced Artificial Intelligence (AI) techniques including Machine Learning (ML), Deep Learning (DL), Ensemble Learning, and Explainable AI (XAI) to CYP. It also explores the use of remote sensing and imaging technologies, identifies key environmental factors, and analyzes the primary causes of yield reduction. A wide diversity of input features was observed across studies, largely influenced by data availability and specific research goals. Stepwise feature selection was found to be more effective than increasing feature volume in improving model accuracy. Frequently used algorithms include Random Forest (RF) and Support Vector Machines (SVM) for ML, Artificial Neural Networks (ANNs) and Convolutional Neural Networks (CNNs) for DL, as well as stacking-based ensemble methods. Although XAI remains in the early stages of adoption, it shows strong potential for interpreting complex, multi-dimensional CYP models. Hyperspectral imaging (HSI) and multispectral imaging (MSI), often collected via drones, were the most commonly used sensing techniques. Major factors contributing to yield reduction included atmospheric and soil-related conditions under abnormal climate, as well as pest outbreaks, declining soil fertility, and economic constraints. Providing a comprehensive overview of AI-driven CYP frameworks, this review offers insights that support the advancement of precision agriculture and the development of data-informed agricultural policies. Full article
(This article belongs to the Section Plant Modeling)
Show Figures

Figure 1

23 pages, 6105 KB  
Article
YUV Color Model-Based Adaptive Pansharpening with Lanczos Interpolation and Spectral Weights
by Shavkat Fazilov, Ozod Yusupov, Erali Eshonqulov, Khabiba Abdieva and Ziyodullo Malikov
Mathematics 2025, 13(17), 2868; https://doi.org/10.3390/math13172868 - 5 Sep 2025
Viewed by 383
Abstract
Pansharpening is a method of image fusion that combines a panchromatic (PAN) image with high spatial resolution and multispectral (MS) images which possess different spectral characteristics and are frequently obtained from satellite sensors. Despite the development of numerous pansharpening methods in recent years, [...] Read more.
Pansharpening is a method of image fusion that combines a panchromatic (PAN) image with high spatial resolution and multispectral (MS) images which possess different spectral characteristics and are frequently obtained from satellite sensors. Despite the development of numerous pansharpening methods in recent years, a key challenge continues to be the maintenance of both spatial details and spectral accuracy in the combined image. To tackle this challenge, we introduce a new approach that enhances the component substitution-based Adaptive IHS method by integrating the YUV color model along with weighting coefficients influenced by the multispectral data. In our proposed approach, the conventional IHS color model is substituted with the YUV model to enhance spectral consistency. Additionally, Lanczos interpolation is used to upscale the MS image to match the spatial resolution of the PAN image. Each channel of the MS image is fused using adaptive weights derived from the influence of multispectral data, leading to the final pansharpened image. Based on the findings from experiments conducted on the PairMax and PanCollection datasets, our proposed method exhibited superior spectral and spatial performance when compared to several existing pansharpening techniques. Full article
(This article belongs to the Special Issue Machine Learning Applications in Image Processing and Computer Vision)
Show Figures

Figure 1

31 pages, 3219 KB  
Review
Data-Driven Integration of Remote Sensing, Agro-Meteorology, and Wireless Sensor Networks for Crop Water Demand Estimation: Tools Towards Sustainable Irrigation in High-Value Fruit Crops
by Fernando Fuentes-Peñailillo, María Luisa del Campo-Hitschfeld, Karen Gutter and Emmanuel Torres-Quezada
Agronomy 2025, 15(9), 2122; https://doi.org/10.3390/agronomy15092122 - 4 Sep 2025
Viewed by 813
Abstract
Despite advances in precision irrigation, no systematic review has yet integrated the roles of remote sensing, agro-meteorological data, and wireless sensor networks in high-value, water-sensitive crops such as mango, avocado, and vineyards. Existing research often isolates technologies or crop types, overlooking their convergence [...] Read more.
Despite advances in precision irrigation, no systematic review has yet integrated the roles of remote sensing, agro-meteorological data, and wireless sensor networks in high-value, water-sensitive crops such as mango, avocado, and vineyards. Existing research often isolates technologies or crop types, overlooking their convergence and joint performance in the field. This review fills that gap by examining how these tools estimate crop water demand and support sustainable, site-specific irrigation under variable climate conditions. A structured search across major databases yielded 365 articles, of which 92 met the inclusion criteria. Studies were grouped into four categories: remote sensing, agro-meteorology, wireless sensor networks, and integrated approaches. Remote sensing techniques, including multispectral and thermal imaging, enable the spatial monitoring of vegetation indices and stress indicators, such as the Crop Water Stress Index. Agro-meteorological data feed evapotranspiration models using temperature, humidity, wind, and radiation inputs. Wireless sensor networks provide continuous, localized data on soil moisture and canopy temperature. Integrated approaches combine these sources to improve irrigation recommendations. Findings suggest that combining remote sensing, wireless sensor networks, and agro-meteorological inputs can reduce water use by up to 30% without yield loss. Challenges include sensor calibration, data integration complexity, and limited scalability. This review also compares methodologies and highlights future directions, including artificial intelligence systems, digital twins, and affordable Internet of Things platforms for irrigation optimization. Full article
(This article belongs to the Section Water Use and Irrigation)
Show Figures

Figure 1

23 pages, 10211 KB  
Article
Potential of Remote Sensing for the Analysis of Mineralization in Geological Studies
by Ilyass-Essaid Lerhris, Hassan Admou, Hassan Ibouh and Noureddine El Binna
Geomatics 2025, 5(3), 40; https://doi.org/10.3390/geomatics5030040 - 1 Sep 2025
Viewed by 539
Abstract
Multispectral remote sensing offers powerful capabilities for mineral exploration, particularly in regions with complex geological settings. This study investigates the mineralization potential of the Tidili region in Morocco, located between the South Atlasic and Anti-Atlas Major Faults, using Advanced Spaceborne Thermal Emission and [...] Read more.
Multispectral remote sensing offers powerful capabilities for mineral exploration, particularly in regions with complex geological settings. This study investigates the mineralization potential of the Tidili region in Morocco, located between the South Atlasic and Anti-Atlas Major Faults, using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) imagery to extract hydrothermal alteration zones. Key techniques include band ratio analysis and Principal Components Analysis (PCA), supported by the Crósta method, to identify spectral anomalies associated with alteration minerals such as Alunite, Kaolinite, and Illite. To validate the remote sensing results, field-based geological mapping and mineralogical analysis using X-ray diffraction (XRD) were conducted. The integration of satellite data with ground-truth and laboratory results confirmed the presence of argillic and phyllic alteration patterns consistent with porphyry-style mineralization. This integrated approach reveals spatial correlations between alteration zones and structural features linked to Pan-African and Hercynian deformation events. The findings demonstrate the effectiveness of combining multispectral remote sensing images analysis with field validation to improve mineral targeting, and the proposed methodology provides a transferable framework for exploration in similar tectonic environments. Full article
Show Figures

Figure 1

28 pages, 1950 KB  
Review
Remote Sensing Approaches for Water Hyacinth and Water Quality Monitoring: Global Trends, Techniques, and Applications
by Lakachew Y. Alemneh, Daganchew Aklog, Ann van Griensven, Goraw Goshu, Seleshi Yalew, Wubneh B. Abebe, Minychl G. Dersseh, Demesew A. Mhiret, Claire I. Michailovsky, Selamawit Amare and Sisay Asress
Water 2025, 17(17), 2573; https://doi.org/10.3390/w17172573 - 31 Aug 2025
Viewed by 1549
Abstract
Water hyacinth (Eichhornia crassipes), native to South America, is a highly invasive aquatic plant threatening freshwater ecosystems worldwide. Its rapid proliferation negatively impacts water quality, biodiversity, and navigation. Remote sensing offers an effective means to monitor such aquatic environments by providing extensive spatial [...] Read more.
Water hyacinth (Eichhornia crassipes), native to South America, is a highly invasive aquatic plant threatening freshwater ecosystems worldwide. Its rapid proliferation negatively impacts water quality, biodiversity, and navigation. Remote sensing offers an effective means to monitor such aquatic environments by providing extensive spatial and temporal coverage with improved resolution. This systematic review examines remote sensing applications for monitoring water hyacinth and water quality in studies published from 2014 to 2024. Seventy-eight peer-reviewed articles were selected from the Web of Science, Scopus, and Google Scholar following strict criteria. The research spans 25 countries across five continents, focusing mainly on lakes (61.5%), rivers (21%), and wetlands (10.3%). Approximately 49% of studies addressed water quality, 42% focused on water hyacinth, and 9% covered both. The Sentinel-2 Multispectral Instrument (MSI) was the most used sensor (35%), followed by the Landsat 8 Operational Land Imager (OLI) (26%). Multi-sensor fusion, especially Sentinel-2 MSI with Unmanned Aerial Vehicles (UAVs), was frequently applied to enhance monitoring capabilities. Detection accuracies ranged from 74% to 98% using statistical, machine learning, and deep learning techniques. Key challenges include limited ground-truth data and inadequate atmospheric correction. The integration of high-resolution sensors with advanced analytics shows strong promise for effective inland water monitoring. Full article
(This article belongs to the Section Ecohydrology)
Show Figures

Graphical abstract

26 pages, 3612 KB  
Article
Field-Based, Non-Destructive and Rapid Detection of Citrus Leaf Physiological and Pathological Conditions Using a Handheld Spectrometer and ASTransformer
by Qiufang Dai, Ying Huang, Zhen Li, Shilei Lyu, Xiuyun Xue, Shuran Song, Shiyao Liang, Jiaheng Fu and Shaoyu Zhang
Agriculture 2025, 15(17), 1864; https://doi.org/10.3390/agriculture15171864 - 31 Aug 2025
Viewed by 496
Abstract
Citrus diseases severely impact fruit yield and quality. To facilitate in-field, non-destructive, and rapid detection of citrus leaf physiological and pathological conditions, this study proposes a classification method for citrus leaf physiological and pathological statuses that integrates visible/near-infrared multispectral technology with deep learning. [...] Read more.
Citrus diseases severely impact fruit yield and quality. To facilitate in-field, non-destructive, and rapid detection of citrus leaf physiological and pathological conditions, this study proposes a classification method for citrus leaf physiological and pathological statuses that integrates visible/near-infrared multispectral technology with deep learning. First, a handheld spectrometer was employed to acquire spectral images of five sample categories—Healthy, Huanglongbing, Yellow Vein Disease, Magnesium Deficiency and Manganese Deficiency. Mean spectral data were extracted from regions of interest within the 350–2500 nm wavelength range, and various preprocessing techniques were evaluated. The Standard Normal Variate (SNV) transformation, which demonstrated optimal performance, was selected for data preprocessing. Next, we innovatively introduced an adaptive spectral positional encoding mechanism into the Transformer framework. A lightweight, learnable network dynamically optimizes positional biases, yielding the ASTransformer (Adaptive Spectral Transformer) model, which more effectively captures complex dependencies among spectral features and identifies critical wavelength bands, thereby significantly enhancing the model’s adaptive representation of discriminative bands. Finally, the preprocessed spectra were fed into three deep learning architectures (1D-CNN, 1D-ResNet, and ASTransformer) for comparative evaluation. The results indicate that ASTransformer achieves the best classification performance: an overall accuracy of 97.7%, underscoring its excellent global classification capability; a Macro Average of 97.5%, reflecting balanced performance across categories; a Weighted Average of 97.8%, indicating superior performance in classes with larger sample sizes; an average precision of 97.5%, demonstrating high predictive accuracy; an average recall of 97.7%, showing effective detection of most affected samples; and an average F1-score of 97.6%, confirming a well-balanced trade-off between precision and recall. Furthermore, interpretability analysis via Integrated Gradients quantitatively assesses the contribution of each wavelength to the classification decisions. These findings validate the feasibility of combining a handheld spectrometer with the ASTransformer model for effective citrus leaf physiological and pathological detection, enabling efficient classification and feature visualization, and offer a valuable reference for disease detection of physiological and pathological conditions in other fruit crops. Full article
(This article belongs to the Special Issue Agricultural Machinery and Technology for Fruit Orchard Management)
Show Figures

Figure 1

21 pages, 11808 KB  
Article
A Slope Adaptive Bathymetric Method by Integrating ICESat-2 ATL03 Data with Sentinel-2 Images
by Jizhe Li, Sensen Chu, Qixin Hu, Ziyang Qu, Jinghao Zhang and Liang Cheng
Remote Sens. 2025, 17(17), 3019; https://doi.org/10.3390/rs17173019 - 31 Aug 2025
Viewed by 875
Abstract
The detection of seafloor signal photons in various topographies is challenging. Previous research has divided photons into clusters based solely on their density, which is closely related to the settings of the empirical parameters. Inappropriate parameters may mistakenly identify the water column noise [...] Read more.
The detection of seafloor signal photons in various topographies is challenging. Previous research has divided photons into clusters based solely on their density, which is closely related to the settings of the empirical parameters. Inappropriate parameters may mistakenly identify the water column noise photons as seafloor photons. To overcome these limitations, this study introduces a novel slope iterative adaptive filter (SIAF) method that innovatively integrates ICESat-2 ATL03 photon data with Sentinel-2-derived topographic slopes. Inspired by satellite-derived bathymetry, we extracted topographic slopes from multispectral images as auxiliary information to guide the photon extraction. The initial slope estimation was derived from the multispectral images, and the optimal slope direction was determined iteratively, using the detected signal photons in each step. The average and maximum overall accuracies of SIAF were 93.43% and 95.7%, respectively. The validation of the extraction results with sonar data indicated that the SIAF achieved an average root mean square error (RMSE) of 0.49 m. Crucially, the SIAF resolves critical shortcomings of prior techniques: (1) it avoids the isotropic assumption of density-based methods, (2) it mitigates AVEBM’s vulnerability to noise in steep-slope regions, and (3) it enables robust automation without manual parameter tuning. Consequently, SIAF proved to be an efficient approach for the automatic mapping of water depths in shallow-water zones. Full article
(This article belongs to the Special Issue Space-Geodetic Techniques (Third Edition))
Show Figures

Figure 1

23 pages, 11770 KB  
Review
Advancements in Diagnosis of Neoplastic and Inflammatory Skin Diseases: Old and Emerging Approaches
by Serena Federico, Fortunato Cassalia, Marcodomenico Mazza, Paolo Del Fiore, Nuria Ferrera, Josep Malvehy, Irma Trilli, Ana Claudia Rivas, Gerardo Cazzato, Giuseppe Ingravallo, Marco Ardigò and Francesco Piscazzi
Diagnostics 2025, 15(16), 2100; https://doi.org/10.3390/diagnostics15162100 - 20 Aug 2025
Viewed by 731
Abstract
Background: In recent decades, dermatological diagnostics have undergone a profound transformation, driven by the integration of new technologies alongside traditional methods. Classic techniques such as the Tzanck smear, potassium hydroxide (KOH) preparation, and Wood’s lamp examination remain fundamental in everyday clinical practice due [...] Read more.
Background: In recent decades, dermatological diagnostics have undergone a profound transformation, driven by the integration of new technologies alongside traditional methods. Classic techniques such as the Tzanck smear, potassium hydroxide (KOH) preparation, and Wood’s lamp examination remain fundamental in everyday clinical practice due to their simplicity, speed, and accessibility. At the same time, the development of non-invasive imaging technologies and the application of artificial intelligence (AI) have opened new frontiers in the early detection and monitoring of both neoplastic and inflammatory skin diseases. Methods: This review aims to provide a comprehensive overview of how conventional and emerging diagnostic tools can be integrated into dermatologic practice. Results: We examined a broad spectrum of diagnostic methods currently used in dermatology, ranging from traditional techniques to advanced approaches such as digital dermoscopy, reflectance confocal microscopy (RCM), optical coherence tomography (OCT), line-field confocal OCT (LC-OCT), 3D total body imaging systems with AI integration, mobile applications, electrical impedance spectroscopy (EIS), and multispectral imaging. Each method is discussed in terms of diagnostic accuracy, clinical applications, and potential limitations. While traditional methods continue to play a crucial role—especially in resource-limited settings or for immediate bedside decision-making—modern tools significantly enhance diagnostic precision. Dermoscopy and its digital evolution have improved the accuracy of melanoma and basal cell carcinoma detection. RCM and LC-OCT allow near-histological visualization of skin structures, reducing the need for invasive procedures. AI-powered platforms support lesion tracking and risk stratification, though their routine implementation requires further clinical validation and regulatory oversight. Tools like EIS and multispectral imaging may offer additional value in diagnostically challenging cases. An effective diagnostic approach in dermatology should rely on a thoughtful combination of methods, selected based on clinical suspicion and guided by Bayesian reasoning. Conclusions: Rather than replacing traditional tools, advanced technologies should complement them—optimizing diagnostic accuracy, improving patient outcomes, and supporting more individualized, evidence-based care. Full article
Show Figures

Figure 1

25 pages, 5194 KB  
Article
A Graph-Based Superpixel Segmentation Approach Applied to Pansharpening
by Hind Hallabia
Sensors 2025, 25(16), 4992; https://doi.org/10.3390/s25164992 - 12 Aug 2025
Viewed by 526
Abstract
In this paper, an image-driven regional pansharpening technique based on simplex optimization analysis with a graph-based superpixel segmentation strategy is proposed. This fusion approach optimally combines spatial information derived from a high-resolution panchromatic (PAN) image and spectral information captured from a low-resolution multispectral [...] Read more.
In this paper, an image-driven regional pansharpening technique based on simplex optimization analysis with a graph-based superpixel segmentation strategy is proposed. This fusion approach optimally combines spatial information derived from a high-resolution panchromatic (PAN) image and spectral information captured from a low-resolution multispectral (MS) image to generate a unique comprehensive high-resolution MS image. As the performance of such a fusion method relies on the choice of the fusion strategy, and in particular, on the way the algorithm is used for estimating gain coefficients, our proposal is dedicated to computing the injection gains over a graph-driven segmentation map. The graph-based segments are obtained by applying simple linear iterative clustering (SLIC) on the MS image followed by a region adjacency graph (RAG) merging stage. This graphical representation of the segmentation map is used as guidance for spatial information to be injected during fusion processing. The high-resolution MS image is achieved by inferring locally the details in accordance with the local simplex injection fusion rule. The quality improvements achievable by our proposal are evaluated and validated at reduced and at full scales using two high resolution datasets collected by GeoEye-1 and WorldView-3 sensors. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

9 pages, 1443 KB  
Article
Imaging Through Scattering Tissue Based on NIR Multispectral Image Fusion Technique
by Nisan Atiya, Amir Shemer, Ariel Schwarz, Yevgeny Beiderman and Yossef Danan
Sensors 2025, 25(16), 4977; https://doi.org/10.3390/s25164977 - 12 Aug 2025
Viewed by 454
Abstract
Non-invasive diagnostics play a crucial role in medicine, and they ensure both contamination safety and patient comfort. The proposed study integrates hyperspectral imaging with advanced image fusion, enabling non-invasive, diagnostic procedure within tissue. It utilizes near-infrared (NIR) wavelength vision that is suitable for [...] Read more.
Non-invasive diagnostics play a crucial role in medicine, and they ensure both contamination safety and patient comfort. The proposed study integrates hyperspectral imaging with advanced image fusion, enabling non-invasive, diagnostic procedure within tissue. It utilizes near-infrared (NIR) wavelength vision that is suitable for reflections from objects within a dispersive layer, enabling the reconstruction of internal tissue layers images. It can detect objects, including cancerous tumors (presented as phantoms), inside human tissue. This involves processing data from multiple images taken in different NIR bands and merging them through image fusion techniques. Our research demonstrates evident data about objects within the diffusive media, visible only in the reconstructed images. The experimental results demonstrate a significant correlation with the samples employed in the study’s experimental design. Full article
(This article belongs to the Special Issue Multi-sensor Fusion in Medical Imaging, Diagnosis and Therapy)
Show Figures

Figure 1

36 pages, 9354 KB  
Article
Effects of Clouds and Shadows on the Use of Independent Component Analysis for Feature Extraction
by Marcos A. Bosques-Perez, Naphtali Rishe, Thony Yan, Liangdong Deng and Malek Adjouadi
Remote Sens. 2025, 17(15), 2632; https://doi.org/10.3390/rs17152632 - 29 Jul 2025
Viewed by 348
Abstract
One of the persistent challenges in multispectral image analysis is the interference caused by dense cloud cover and its resulting shadows, which can significantly obscure surface features. This becomes especially problematic when attempting to monitor surface changes over time using satellite imagery, such [...] Read more.
One of the persistent challenges in multispectral image analysis is the interference caused by dense cloud cover and its resulting shadows, which can significantly obscure surface features. This becomes especially problematic when attempting to monitor surface changes over time using satellite imagery, such as from Landsat-8. In this study, rather than simply masking visual obstructions, we aimed to investigate the role and influence of clouds within the spectral data itself. To achieve this, we employed Independent Component Analysis (ICA), a statistical method capable of decomposing mixed signals into independent source components. By applying ICA to selected Landsat-8 bands and analyzing each component individually, we assessed the extent to which cloud signatures are entangled with surface data. This process revealed that clouds contribute to multiple ICA components simultaneously, indicating their broad spectral influence. With this influence on multiple wavebands, we managed to configure a set of components that could perfectly delineate the extent and location of clouds. Moreover, because Landsat-8 lacks cloud-penetrating wavebands, such as those in the microwave range (e.g., SAR), the surface information beneath dense cloud cover is not captured at all, making it physically impossible for ICA to recover what is not sensed in the first place. Despite these limitations, ICA proved effective in isolating and delineating cloud structures, allowing us to selectively suppress them in reconstructed images. Additionally, the technique successfully highlighted features such as water bodies, vegetation, and color-based land cover differences. These findings suggest that while ICA is a powerful tool for signal separation and cloud-related artifact suppression, its performance is ultimately constrained by the spectral and spatial properties of the input data. Future improvements could be realized by integrating data from complementary sensors—especially those operating in cloud-penetrating wavelengths—or by using higher spectral resolution imagery with narrower bands. Full article
(This article belongs to the Section Environmental Remote Sensing)
Show Figures

Graphical abstract

38 pages, 6652 KB  
Review
Remote Sensing Perspective on Monitoring and Predicting Underground Energy Sources Storage Environmental Impacts: Literature Review
by Aleksandra Kaczmarek and Jan Blachowski
Remote Sens. 2025, 17(15), 2628; https://doi.org/10.3390/rs17152628 - 29 Jul 2025
Cited by 2 | Viewed by 1112
Abstract
Geological storage is an integral element of the green energy transition. Geological formations, such as aquifers, depleted reservoirs, and hard rock caverns, are used mainly for the storage of hydrocarbons, carbon dioxide and increasingly hydrogen. However, potential adverse effects such as ground movements, [...] Read more.
Geological storage is an integral element of the green energy transition. Geological formations, such as aquifers, depleted reservoirs, and hard rock caverns, are used mainly for the storage of hydrocarbons, carbon dioxide and increasingly hydrogen. However, potential adverse effects such as ground movements, leakage, seismic activity, and environmental pollution are observed. Existing research focuses on monitoring subsurface elements of the storage, while on the surface it is limited to ground movement observations. The review was carried out based on 191 research contributions related to geological storage. It emphasizes the importance of monitoring underground gas storage (UGS) sites and their surroundings to ensure sustainable and safe operation. It details surface monitoring methods, distinguishing geodetic surveys and remote sensing techniques. Remote sensing, including active methods such as InSAR and LiDAR, and passive methods of multispectral and hyperspectral imaging, provide valuable spatiotemporal information on UGS sites on a large scale. The review covers modelling and prediction methods used to analyze the environmental impacts of UGS, with data-driven models employing geostatistical tools and machine learning algorithms. The limited number of contributions treating geological storage sites holistically opens perspectives for the development of complex approaches capable of monitoring and modelling its environmental impacts. Full article
(This article belongs to the Special Issue Advancements in Environmental Remote Sensing and GIS)
Show Figures

Figure 1

Back to TopTop