Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (62)

Search Parameters:
Keywords = myelodysplastic/myeloproliferative neoplasm

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 830 KB  
Review
Colony-Stimulating Factor 3 Receptor Mutations and Variants in Hematological Malignancies
by Clifford Liongue, Tarindhi Ratnayake and Alister C. Ward
Cancers 2025, 17(20), 3378; https://doi.org/10.3390/cancers17203378 - 20 Oct 2025
Viewed by 885
Abstract
Colony-stimulating factor 3 (CSF3), additionally called granulocyte colony-stimulating factor (G-CSF), is the major cytokine regulating neutrophil production and also impacting their function. The actions of this cytokine are mediated through its unique receptor, the colony-stimulating factor 3 receptor (CSF3R). Several classes of pathogenic [...] Read more.
Colony-stimulating factor 3 (CSF3), additionally called granulocyte colony-stimulating factor (G-CSF), is the major cytokine regulating neutrophil production and also impacting their function. The actions of this cytokine are mediated through its unique receptor, the colony-stimulating factor 3 receptor (CSF3R). Several classes of pathogenic mutations in the CSF3R gene have been identified that have distinct biological properties and clinical impacts. This review provides an overview of CSF3R, the various pathogenic CSF3R mutations/variants and their biological effects. It also details the diseases to which they contribute, notably including chronic neutrophilic leukemia (CNL) and other myeloproliferative neoplasms (MPNs), myelodysplastic neoplasms (MDS), combined MDS/MPN disorders such as atypical chronic myeloid leukemia (aCML) and chronic myelomonocytic leukemia (CMML), as well as acute myeloid leukemia (AML) and lymphoid malignancies. Full article
Show Figures

Figure 1

12 pages, 5295 KB  
Article
Mutational Spectrum and Clinical Outcomes of Myelodysplastic/Myeloproliferative Neoplasms: A Single-Institution Study in Korea with Emphasis on U2AF1
by Min-Seung Park, Dae-Ho Choi, Jun Ho Jang, Chul Won Jung, Hee-Jin Kim and Hyun-Young Kim
J. Clin. Med. 2025, 14(19), 7074; https://doi.org/10.3390/jcm14197074 - 7 Oct 2025
Viewed by 524
Abstract
Background: Myelodysplastic/myeloproliferative neoplasms (MDS/MPNs) are rare hematopoietic disorders that exhibit overlapping pathological and molecular features of both MDS and MPN. This study aimed to investigate the mutational profiles and prognostic implications of MDS/MPN subtypes in Korean patients. Methods: We retrospectively reviewed [...] Read more.
Background: Myelodysplastic/myeloproliferative neoplasms (MDS/MPNs) are rare hematopoietic disorders that exhibit overlapping pathological and molecular features of both MDS and MPN. This study aimed to investigate the mutational profiles and prognostic implications of MDS/MPN subtypes in Korean patients. Methods: We retrospectively reviewed 53 patients with MDS/MPN who underwent bone marrow examination and next-generation sequencing panel testing. Overall survival was analyzed with 3-year censoring. The cohort included chronic myelomonocytic leukemia (CMML; N = 30); MDS/MPN with neutrophilia (N = 6); MDS/MPN with SF3B1 mutation and thrombocytosis (N = 4); and MDS/MPN, not otherwise specified (MDS/MPN-NOS; N = 13). Results: The most frequently mutated gene was ASXL1 (52.8%), followed by TET2 (39.6%) and U2AF1 (18.9%), in total MDS/MPN. U2AF1 mutations were particularly frequent in myelodysplastic CMML (33.3%) and MDS/MPN-NOS (30.8%). In CMML, ASXL1 and TET2 mutations were associated with a trend toward better prognosis compared with wild-type (HR 0.21, p = 0.052; HR 0.25, p = 0.057, respectively), while U2AF1 mutations were associated with adverse prognosis in univariate analysis with borderline significance (HR 12.20, p = 0.050). Clinical/Molecular CMML-Specific Prognostic Scoring System and Mayo Molecular Model showed stepwise survival patterns across risk groups without statistical significance. In univariate analysis, transfusion dependency was associated with poor prognosis (HR 7.78, p = 0.013). Conclusions: This study provides the first single-institution analysis in Korean patients with MDS/MPN and identified U2AF1 mutations as a potentially significant prognostic factor, enhancing the molecular understanding of MDS/MPN. Full article
(This article belongs to the Section Hematology)
Show Figures

Figure 1

9 pages, 634 KB  
Brief Report
Unveiling Cryptic BCR-ABL1 Rearrangements: Diagnostic Challenges and Clinical Impact in Myeloid Malignancies
by Anna Ferrari, Chiara Salvesi, Eugenio Fonzi, Barbara Giannini, Michela Tonelli, Irene Zacheo, Matteo Paganelli, Federico Lo Schiavo, Marco Rosetti, Giorgia Simonetti and Giovanni Marconi
Int. J. Mol. Sci. 2025, 26(18), 8812; https://doi.org/10.3390/ijms26188812 - 10 Sep 2025
Cited by 1 | Viewed by 841
Abstract
Chromosomal BCR-ABL1 fusions are the defining molecular lesions of chronic myeloid leukemia (CML) and Philadelphia-positive acute lymphoblastic leukemia, and are rarely observed in acute myeloid leukemia. Their detection have transformed treatment paradigms by enabling effective use of specific tyrosine kinase inhibitors (TKIs). Although [...] Read more.
Chromosomal BCR-ABL1 fusions are the defining molecular lesions of chronic myeloid leukemia (CML) and Philadelphia-positive acute lymphoblastic leukemia, and are rarely observed in acute myeloid leukemia. Their detection have transformed treatment paradigms by enabling effective use of specific tyrosine kinase inhibitors (TKIs). Although many BCR-ABL1 rearrangements are identified by standard cytogenetics, a clinically relevant subset is cryptic and can escape detection. High-depth RNA sequencing assays have improved our capacity to detect expressed fusion transcripts. Here, we introduce two myeloid cases in which cryptic BCR-ABL1 rearrangements and precise breakpoints detection required an integrated molecular approach: we describe the initial diagnostic pitfalls, detail the downstream therapeutic and prognostic implications and offer practical recommendations for integrating targeted sequencing and cytogenetics into routine practice. In the first case, a patient initially diagnosed with a myelodysplastic/myeloproliferative neoplasm was reclassified as CML following the discovery of a cryptic e13a2 BCR-ABL1 rearrangement, enabling effective TKI treatment. In the second case, a previously undetected BCR-ABL1 fusion was identified in a relapsed AML patient, along with additional molecular lesions, underscoring the aggressive nature of the disease. Our findings support a systematic, multimodal screening strategy in patients with atypical presentations to ensure the timely detection of clinically actionable fusion events. Full article
(This article belongs to the Special Issue Molecular Mechanisms and Therapies of Hematological Tumors)
Show Figures

Figure 1

14 pages, 3307 KB  
Article
Expanding the Spectrum of CSF3R-Mutated Myeloid Neoplasm Beyond Chronic Neutrophilic Leukemia and Atypical Chronic Myeloid Leukemia: A Comprehensive Analysis of 13 Cases
by Neha Seth, Judith Brody, Peihong Hsu, Jonathan Kolitz, Pratik Q. Deb and Xinmin Zhang
J. Clin. Med. 2025, 14(15), 5174; https://doi.org/10.3390/jcm14155174 - 22 Jul 2025
Viewed by 1063
Abstract
Background: Genetic alterations in CSF3R, typically associated with chronic neutrophilic leukemia (CNL) and atypical chronic myeloid leukemia (aCML), rarely occur in other myeloid neoplasms. Methods: This study characterized the clinical, morphologic, cytogenetic, and molecular features of 13 patients with non-CNL non-aCML myeloid [...] Read more.
Background: Genetic alterations in CSF3R, typically associated with chronic neutrophilic leukemia (CNL) and atypical chronic myeloid leukemia (aCML), rarely occur in other myeloid neoplasms. Methods: This study characterized the clinical, morphologic, cytogenetic, and molecular features of 13 patients with non-CNL non-aCML myeloid neoplasms with CSF3R alterations. Patients (median age, 77 years) were categorized into groups with a myelodysplastic/myeloproliferative neoplasm (MDS/MPN) (n = 5), acute leukemia (n = 4), and other myeloid neoplasms (n = 4) based on the WHO 2022 and ICC criteria. Results: The CSF3R p.Thr618Ile mutation was most frequent (11/13), with additional pathogenic variants including p.Gln743Ter and frameshift mutations affecting the cytoplasmic tail. Variant allele frequencies (VAFs) ranged from 2% to 49%, with the highest median VAF in the MDS/MPN group. Co-mutations varied by subtype; MDS/MPN, NOS, and CMML cases frequently harbored mutations in epigenetic regulators (ASXL1, TET2) and splicing factors (SF3B1, SRSF2, ZRSR2), while acute leukemia cases showed alterations in JAK3, STAT3, and NRAS. Survival analysis revealed distinct patterns across the three diagnostic groups, with MDS/MPN having the poorest prognosis. Conclusion: This study expands the recognized spectrum of CSF3R-related myeloid neoplasms and highlights the clinical and molecular heterogeneity associated with these mutations, emphasizing the need for comprehensive molecular profiling and the potential for targeted therapies. Full article
(This article belongs to the Special Issue Novel Therapeutic Strategies for Acute Myeloid Leukemia)
Show Figures

Figure 1

19 pages, 768 KB  
Article
From Sanger to Oxford Nanopore MinION Technology: The Impact of Third-Generation Sequencing on Genetic Hematological Diagnosis
by María José Larráyoz, Pablo Luri-Martin, Amagoia Mañu, Oihane Churruca, Natalia Gordillo, Irache Erdozain, Ada Esteban-Figuerola, Carlos de Miguel, Diego Robles, María García-Fortes, José Rifón Roca, Ana Alfonso-Pierola, Felipe Prósper, Beñat Ariceta and María José Calasanz
Cancers 2025, 17(11), 1811; https://doi.org/10.3390/cancers17111811 - 29 May 2025
Viewed by 2125
Abstract
Background: Sanger sequencing remains the gold standard for characterizing genetic variants in short DNA fragments (<700 bp). However, the increasing demand for short TATs and high sensitivities in variant detection, particularly in oncohematology, is driving the need for more efficient methods. Next-generation sequencing [...] Read more.
Background: Sanger sequencing remains the gold standard for characterizing genetic variants in short DNA fragments (<700 bp). However, the increasing demand for short TATs and high sensitivities in variant detection, particularly in oncohematology, is driving the need for more efficient methods. Next-generation sequencing (NGS) has improved sensitivity and allows for the simultaneous analysis of multiple genes, but it is still costly and time-consuming. Consequently, Sanger sequencing continues to be widely used. In this study, we have compared Sanger sequencing with Oxford Nanopore technology (ONT), which offers enhanced sensitivity and faster sequencing, delivering diagnostic results within 24 h. Methods: This study involves 164 samples (for a total of 174 analyzed regions of interest) previously characterized using either Sanger sequencing or a next-generation sequencing (NGS) panel, categorized by their genetic alterations. Validation was conducted on 15 genes crucial for the diagnosis, prognosis, or identification of drug resistance in myeloproliferative neoplasms (MPN), myelodysplastic syndromes (MDS), acute myeloid leukemia (AML), and chronic myeloid leukemia (CML). The primary objective was to assess whether MinION could identify the same variants previously detected in these patients. Results and Conclusions: With a 99.43% concordance observed in our comparison, our results support the implementation of MinION technology in routine variant detection in MPN, MDS, AML, and CML cases due to its significant advantages over Sanger sequencing. Full article
(This article belongs to the Special Issue Long-Read Sequencing in Cancer)
Show Figures

Figure 1

15 pages, 1577 KB  
Article
Clinical Utility of Optical Genome Mapping as an Additional Tool in a Standard Cytogenetic Workup in Hematological Malignancies
by Gokce A. Toruner, Shimin Hu, Sanam Loghavi, Chi Young OK, Zhenya Tang, Qing Wei, Rashmi Kanagal-Shamanna, L. Jeffrey Medeiros and Guilin Tang
Cancers 2025, 17(9), 1436; https://doi.org/10.3390/cancers17091436 - 25 Apr 2025
Cited by 4 | Viewed by 1887
Abstract
Background and Objective: The primary objective of this study is to evaluate the added value of optical genome mapping (OGM) when integrated into the standard cytogenetic workup (SCGW) for hematological malignancies. Methods: The study cohort comprised 519 cases with different types of hematological [...] Read more.
Background and Objective: The primary objective of this study is to evaluate the added value of optical genome mapping (OGM) when integrated into the standard cytogenetic workup (SCGW) for hematological malignancies. Methods: The study cohort comprised 519 cases with different types of hematological malignancies. OGM and SCGW (including G-banded karyotyping and fluorescence in situ hybridization) were performed on blood and/or bone marrow. The analytical sensitivity of OGM, defined as the detection of all additional cytogenomic aberrations, and its clinical utility, referring to aberrations with diagnostic, prognostic, or therapeutic significance, were assessed. Results: OGM led to increased analytical sensitivity and clinical utility in 58% and 15% of the cases, respectively. The clinical utility varied across different malignancies, with the highest utility in T-lymphoblast leukemia (52%), followed by mixed phenotype acute leukemia (43%), B-lymphoblastic leukemia (37%), other B-cell lymphomas (22%), mature T-cell leukemia/lymphoma (20%), chronic lymphocytic leukemia (14%), acute myeloid leukemia (13%), multiple myeloma (13%), mantle cell lymphoma (8%), myelodysplastic/myeloproliferative neoplasms (6%), myelodysplastic syndrome (5%), and myeloproliferative neoplasms (0%). Conclusion: Compared to SCGW, OGM detects additional cytogenomic aberrations in approximately 58% of cases. OGM provides clinical utility at varying rates across different types of hematological malignancies. Given these differences, strategic triaging can help maximize the clinical value of OGM by focusing on diseases where it offers the most significant benefit. Full article
(This article belongs to the Special Issue Diagnostic Biomarkers in Cancers Study)
Show Figures

Figure 1

21 pages, 2013 KB  
Review
Diagnostic Approaches in Myeloid Sarcoma
by Elzbieta Patkowska, Agnieszka Krzywdzinska, Iwona Solarska, Magdalena Wojtas and Monika Prochorec-Sobieszek
Curr. Issues Mol. Biol. 2025, 47(2), 111; https://doi.org/10.3390/cimb47020111 - 10 Feb 2025
Cited by 1 | Viewed by 4069
Abstract
Myeloid sarcoma (MS), or extramedullary acute myeloid leukaemia tumour (eAML), is a rare hematopoietic neoplasm. Recognised as a distinct entity within acute myeloid leukaemia (AML), MS presents significant diagnostic challenges due to its rarity, clinical heterogeneity, and variable immunophenotypic and genetic characteristics. The [...] Read more.
Myeloid sarcoma (MS), or extramedullary acute myeloid leukaemia tumour (eAML), is a rare hematopoietic neoplasm. Recognised as a distinct entity within acute myeloid leukaemia (AML), MS presents significant diagnostic challenges due to its rarity, clinical heterogeneity, and variable immunophenotypic and genetic characteristics. The mechanisms by which leukaemic stem cells (LSCs) migrate to form solid tumours in extramedullary (EM) sites remain unclear. MS can occur de novo, precede AML, and manifest alongside AML relapse. It can also develop with myelodysplastic syndromes (MDSs) or myeloproliferative neoplasms (MPNs). MS frequently presents in organs such as the skin, lymph nodes, gastrointestinal (GI) tract, and central nervous system (CNS), often resulting in diverse clinical manifestations. Diagnosis relies on a comprehensive approach, including tissue biopsy, bone marrow (BM) evaluation, and advanced imaging modalities. Accurate diagnosis is crucial for risk stratification and treatment selection. Prognosis is influenced by several factors: MS’s anatomical location, timing of MS diagnosis, genetic profile, and possible treatment. This review emphasises the need for comprehensive diagnostic methods to better define individual MS characteristics and prognosis. It explores the role of novel targeted therapies in improving patient outcomes and further highlights the critical need for future multicentre data collection to optimise diagnostic and therapeutic approaches. Full article
Show Figures

Figure 1

14 pages, 4316 KB  
Article
Classification and Prognostic Stratification Based on Genomic Features in Myelodysplastic and Myeloproliferative Neoplasm- and Their Overlapping Conditions
by Jong-Mi Lee, Ginkyeng Lee, Taeksang Kim, Ari Ahn, Jin Jung, Yoo-Jin Kim, Silvia Park, Daehun Kwag, Sung-Eun Lee, Sung-Soo Park, Tong-Yoon Kim, Bin Cho, Nack-Gyun Chung, Jae Wook Lee, Jae Won Yoo, Suejung Jo, Yonggoo Kim and Myungshin Kim
Cancers 2024, 16(23), 4121; https://doi.org/10.3390/cancers16234121 - 9 Dec 2024
Viewed by 1595
Abstract
Background/Objectives: Myeloid neoplasms encompass a diverse group of disorders. In this study, we aimed to analyze the clinical and genomic data of patients with myeloproliferative neoplasm (MPN), myelodysplastic neoplasm (MDS), and their overlapping conditions, such as MDS/MPN and aplastic anemia (AA), to [...] Read more.
Background/Objectives: Myeloid neoplasms encompass a diverse group of disorders. In this study, we aimed to analyze the clinical and genomic data of patients with myeloproliferative neoplasm (MPN), myelodysplastic neoplasm (MDS), and their overlapping conditions, such as MDS/MPN and aplastic anemia (AA), to help redefine the disease classification. Methods: Clinico-genomic data of 1585 patients diagnosed with MPN (n = 715), MDS (n = 698), MDS/MPN (n = 78), and AA (n = 94) were collected. Patterns of 53 recurrent genomic abnormalities were compartmentalized into 10 groups using a Dirichlet process (DP). Results: These genomic groups were correlated with specific genomic features, survival outcomes, and disease subtypes. Groups DP1 and DP5, characterized by JAK2 and CALR mutations, respectively, showed very favorable prognoses among the patients with MPN. Groups DP2, DP7, and DP9 demonstrated very adverse prognoses across the disease subtypes. DP2 included patients with MDS harboring TP53 mutations and complex karyotypes; DP9 comprised patients with acute myeloid leukemia-related mutations, including NPM1; and DP7 included patients with SETBP1 mutations. Groups DP10 and DP8, linked to SF3B1 and DDX41 mutations or chromosome 1q derivatives, presented a favorable risk profile. Improved survival was observed with transplantation in groups DP2, DP7, and DP9. Conclusions: These findings highlight the role of genomic classifications in guiding personalized treatment strategies, ultimately enhancing the understanding and management of myeloid neoplasms. Full article
(This article belongs to the Section Molecular Cancer Biology)
Show Figures

Figure 1

9 pages, 216 KB  
Article
Survival Outcomes of U.S. Patients with CMML: A Two-Decade Analysis from the SEER Database
by Ayrton Bangolo, Behzad Amoozgar, Abhishek Thapa, Wardah Bajwa, Vignesh K. Nagesh, Yaryna Nyzhnyk, Rakshanda Banu, Tirth Bhavsar, Lili Zhang, Olga Velichko, Challa Mani Shankar Reddy, Edwina Essuman, Amal M. Ibrahim, Ramkumar Krishnasamy, Achint Jethi, Arun Ram, Abdullah A. Haq, Abdulla Ahmad Al hashm, Parna Pathak, Shafia Naeem, Rachana R. Gavva, Prajakta H. Ratnaparkhi, Paula Samaha, Cynthia Elizabeth Armendariz Espinoza, Prasansa Dhakal, Frantz Ricot Martine, Mogahid Elkhidir, Jay Mehta and Simcha Weissmanadd Show full author list remove Hide full author list
Med. Sci. 2024, 12(4), 60; https://doi.org/10.3390/medsci12040060 - 31 Oct 2024
Cited by 2 | Viewed by 2578
Abstract
Background: Chronic Myelomonocytic Leukemia (CMML) is a rare and aggressive form of leukemia with characteristics of both myeloproliferative neoplasms (MPNs) and myelodysplastic syndromes (MDSs). This study aims to explore the clinical features, survival outcomes, and prognostic factors in CMML patients over the past [...] Read more.
Background: Chronic Myelomonocytic Leukemia (CMML) is a rare and aggressive form of leukemia with characteristics of both myeloproliferative neoplasms (MPNs) and myelodysplastic syndromes (MDSs). This study aims to explore the clinical features, survival outcomes, and prognostic factors in CMML patients over the past 20 years using a large sample. Methods: The study data from 4124 patients diagnosed with CMML between 2000 and 2017 were sourced from the SEER database. Demographic and clinical characteristics, along with overall and cancer-specific mortality, were examined. Factors with a p-value < 0.01 in univariate Cox regression were included in the multivariate Cox model to identify independent prognostic factors, with hazard ratios (HRs) greater than one indicating adverse outcomes. Results: The majority of the cohort were male (61.57%), and most diagnoses occurred between ages 60–79 (55.16%), with a small percentage under 40 (1.41%). Non-Hispanic whites represented the largest racial group (79.03%). Multivariate analysis showed higher mortality in males, those aged 80+, residents in metropolitan areas with populations between 250,000 and 1 million, single or widowed individuals, and those who underwent chemotherapy. Conversely, lower mortality was associated with an annual income of $75,000+. Conclusions: CMML remains a rare and highly aggressive hematologic disorder. This U.S.-based retrospective cohort study identified male gender, advanced age, single or widowed status, and chemotherapy as independent poor prognostic factors. While it is expected that older patients and those requiring chemotherapy would have a poorer prognosis, the higher mortality risk in single or widowed patients, as well as males, warrants further investigation. The early involvement of family and community support may help reduce mortality in these groups, suggesting a need for larger prospective studies to explore these associations further. Full article
(This article belongs to the Section Cancer and Cancer-Related Research)
12 pages, 2159 KB  
Article
Genomic Landscape of Myelodysplastic/Myeloproliferative Neoplasms: A Multi-Central Study
by Fei Fei, Amar Jariwala, Sheeja Pullarkat, Eric Loo, Yan Liu, Parastou Tizro, Haris Ali, Salman Otoukesh, Idoroenyi Amanam, Andrew Artz, Feras Ally, Milhan Telatar, Ryotaro Nakamura, Guido Marcucci and Michelle Afkhami
Int. J. Mol. Sci. 2024, 25(18), 10214; https://doi.org/10.3390/ijms251810214 - 23 Sep 2024
Cited by 3 | Viewed by 2481
Abstract
The accurate diagnosis and classification of myelodysplastic/myeloproliferative neoplasm (MDS/MPN) are challenging due to the overlapping pathological and molecular features of myelodysplastic syndrome (MDS) and myeloproliferative neoplasm (MPN). We investigated the genomic landscape in different MDS/MPN subtypes, including chronic myelomonocytic leukemia (CMML; n = [...] Read more.
The accurate diagnosis and classification of myelodysplastic/myeloproliferative neoplasm (MDS/MPN) are challenging due to the overlapping pathological and molecular features of myelodysplastic syndrome (MDS) and myeloproliferative neoplasm (MPN). We investigated the genomic landscape in different MDS/MPN subtypes, including chronic myelomonocytic leukemia (CMML; n = 97), atypical chronic myeloid leukemia (aCML; n = 8), MDS/MPN-unclassified (MDS/MPN-U; n = 44), and MDS/MPN with ring sideroblasts and thrombocytosis (MDS/MPN-RS-T; n = 12). Our study indicated that MDS/MPN is characterized by mutations commonly identified in myeloid neoplasms, with TET2 (52%) being the most frequently mutated gene, followed by ASXL1 (38.7%), SRSF2 (34.7%), and JAK2 (19.7%), among others. However, the distribution of recurrent mutations differs across the MDS/MPN subtypes. We confirmed that specific gene combinations correlate with specific MDS/MPN subtypes (e.g., TET2/SRSF2 in CMML, ASXL1/SETBP1 in aCML, and SF3B1/JAK2 in MDS/MPN-RS-T), with MDS/MPN-U being the most heterogeneous. Furthermore, we found that older age (≥65 years) and mutations in RUNX1 and TP53 were associated with poorer clinical outcomes in CMML (p < 0.05) by multivariate analysis. In MDS/MPN-U, CBL mutations (p < 0.05) were the sole negative prognostic factors identified in our study by multivariate analysis (p < 0.05). Overall, our study provides genetic insights into various MDS/MPN subtypes, which may aid in diagnosis and clinical decision-making for patients with MDS/MPN. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

17 pages, 7943 KB  
Article
Multi-Walled Carbon Nanotubes Accelerate Leukaemia Development in a Mouse Model
by Qingqing Wang, Jingdan Han, Mujia Wei, Huikai Miao, Min Zhang, Biao Wu, Yao Chen, Yanwen Zheng, Robert Peter Gale and Bin Yin
Toxics 2024, 12(9), 646; https://doi.org/10.3390/toxics12090646 - 2 Sep 2024
Cited by 4 | Viewed by 2257 | Correction
Abstract
Inflammation is associated with an increased risk of developing various cancers in both animals and humans, primarily solid tumors but also myeloproliferative neoplasms (MPNs), myelodysplastic syndromes (MDS), and acute myeloid leukemia (AML). Multi-walled carbon nanotubes (MWCNTs), a type of carbon nanotubes (CNTs) increasingly [...] Read more.
Inflammation is associated with an increased risk of developing various cancers in both animals and humans, primarily solid tumors but also myeloproliferative neoplasms (MPNs), myelodysplastic syndromes (MDS), and acute myeloid leukemia (AML). Multi-walled carbon nanotubes (MWCNTs), a type of carbon nanotubes (CNTs) increasingly used in medical research and other fields, are leading to a rising human exposure. Our study demonstrated that exposing mice to MWCNTs accelerated the progression of spontaneous MOL4070LTR virus-induced leukemia. Additionally, similar exposures elevated pro-inflammatory cytokines such as interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α and induced reactive oxygen species (ROS) in a murine macrophage cell line. These effects were significantly reduced in immunodeficient mice and when mice were treated with methoxypolyethylene glycol amine (PEG)-modified MWCNTs. These findings underscore the necessity of evaluating the safety of MWCNTs, particularly for those with hematologic cancers. Full article
Show Figures

Figure 1

21 pages, 7006 KB  
Review
Myelodysplastic/Myeloproliferative Neoplasms with Features Intermediate between Primary Myelofibrosis and Chronic Myelomonocytic Leukemia: Case Series and Review of the Entity
by Arturo Bonometti, Simone Zanella, Daoud Rahal, Chiara Milanesi, Rossella Caselli, Matteo Giovanni Della Porta, Silvia Uccella and Sara Fraticelli
Hemato 2024, 5(3), 230-250; https://doi.org/10.3390/hemato5030019 - 7 Jul 2024
Viewed by 2326
Abstract
Diagnosis of myeloid neoplasm is currently performed according to the presence of a predetermined set of clinical, morphological, and molecular diagnostic criteria agreed upon by a consensus of experts. Even strictly adhering to these criteria, it is possible to encounter patients who present [...] Read more.
Diagnosis of myeloid neoplasm is currently performed according to the presence of a predetermined set of clinical, morphological, and molecular diagnostic criteria agreed upon by a consensus of experts. Even strictly adhering to these criteria, it is possible to encounter patients who present features that are not easily ascribable to a single disease category. This is the case, e.g., of patients with de novo myeloid neoplasms with features intermediate between primary myelofibrosis (PMF) and chronic myelomonocytic leukemia (CMML). In this study, we retrospectively searched the pathological database of IRCCS Humanitas Research Hospital to identify cases of chronic myeloid neoplasm with monocytosis with a driver mutation of classic myeloproliferative neoplasms (MPN) and showing morphological MPN features. For each case, we assessed all epidemiological, clinical, histopathological, and molecular data. Then, we carried out a literature review, searching for cases with features similar to those of our patients. We retrieved a total of 13 cases presenting such criteria (9 from the literature review and 4 from our institution); in all of them, there was a coexistence of clinical, histopathological, and molecular myelodysplastic and myeloproliferative features. To date, according to current classifications (World Health Organization and International Consensus Classification), given the presence/absence of essential features for PMF or CMML, these patients should be formally diagnosed as myelodysplastic/myeloproliferative neoplasm unclassified/not otherwise specified (U/NOS). This review aims to summarize the features of these difficult cases and discuss their differential diagnosis and their classification according to the novel classifications and the existing literature on overlapping myeloid neoplasms. Full article
(This article belongs to the Section Chronic Myeloid Disease)
Show Figures

Figure 1

21 pages, 5573 KB  
Article
Overlapping Stromal Alterations in Myeloid and Lymphoid Neoplasms
by Lucienne Bogun, Annemarie Koch, Bo Scherer, Ulrich Germing, Roland Fenk, Uwe Maus, Felix Bormann, Karl Köhrer, Patrick Petzsch, Thorsten Wachtmeister, Guido Kobbe, Sascha Dietrich, Rainer Haas, Thomas Schroeder, Stefanie Geyh and Paul Jäger
Cancers 2024, 16(11), 2071; https://doi.org/10.3390/cancers16112071 - 30 May 2024
Cited by 2 | Viewed by 1790
Abstract
Myeloid and lymphoid neoplasms share the characteristics of potential bone marrow infiltration as a primary or secondary effect, which readily leads to hematopoietic insufficiency. The mechanisms by which clonal malignant cells inhibit normal hematopoietic stem and progenitor cells (HSPCs) in the bone marrow [...] Read more.
Myeloid and lymphoid neoplasms share the characteristics of potential bone marrow infiltration as a primary or secondary effect, which readily leads to hematopoietic insufficiency. The mechanisms by which clonal malignant cells inhibit normal hematopoietic stem and progenitor cells (HSPCs) in the bone marrow (BM) have not been unraveled so far. Given the pivotal role of mesenchymal stromal cells (MSCs) in the regulation of hematopoiesis in the BM niche it is assumed that MSCs also play a relevant role in the pathogenesis of hematological neoplasms. We aimed to identify overlapping mechanisms in MSCs derived from myeloid and lymphoid neoplasms contributing to disease progression and suppression of HSPCs to develop interventions that target these mechanisms. MSCs derived from healthy donors (n = 44) and patients diagnosed with myeloproliferative neoplasia (n = 11), myelodysplastic syndromes (n = 16), or acute myeloid leukemia (n = 25) and B-Non-Hodgkin lymphoma (n = 9) with BM infiltration and acute lymphoblastic leukemia (n = 9) were analyzed for their functionality and by RNA sequencing. A reduced growth and differentiation capacity of MSCs was found in all entities. RNA sequencing distinguished both groups but clearly showed overlapping differentially expressed genes, including major players in the BMP/TGF and WNT-signaling pathway which are crucial for growth, osteogenesis, and hematopoiesis. Functional alterations in healthy MSCs were inducible by exposure to supernatants from malignant cells, implicating the involvement of these factors in disease progression. Overall, we were able to identify overlapping factors that pose potential future therapeutic targets. Full article
(This article belongs to the Collection Oncology: State-of-the-Art Research in Germany)
Show Figures

Graphical abstract

20 pages, 5285 KB  
Article
Neuropilin2 in Mesenchymal Stromal Cells as a Potential Novel Therapeutic Target in Myelofibrosis
by Karla Vosbeck, Sarah Förster, Thomas Mayr, Anshupa Sahu, El-Mustapha Haddouti, Osamah Al-Adilee, Ruth-Miriam Körber, Savita Bisht, Michael H. Muders, Svetozar Nesic, Andreas Buness, Glen Kristiansen, Frank A. Schildberg and Ines Gütgemann
Cancers 2024, 16(10), 1924; https://doi.org/10.3390/cancers16101924 - 18 May 2024
Cited by 1 | Viewed by 2555
Abstract
Bone marrow fibrosis in myeloproliferative neoplasm (MPN), myelodysplastic syndromes (MDS), MPN/MDS overlap syndromes and acute myeloid leukemia (AML) is associated with poor prognosis and early treatment failure. Myelofibrosis (MF) is accompanied by reprogramming of multipotent bone marrow mesenchymal stromal cells (MSC) into osteoid [...] Read more.
Bone marrow fibrosis in myeloproliferative neoplasm (MPN), myelodysplastic syndromes (MDS), MPN/MDS overlap syndromes and acute myeloid leukemia (AML) is associated with poor prognosis and early treatment failure. Myelofibrosis (MF) is accompanied by reprogramming of multipotent bone marrow mesenchymal stromal cells (MSC) into osteoid and fiber-producing stromal cells. We demonstrate NRP2 and osteolineage marker NCAM1 (neural cell adhesion molecule 1) expression within the endosteal niche in normal bone marrow and aberrantly in MPN, MDS MPN/MDS overlap syndromes and AML (n = 99), as assessed by immunohistochemistry. Increased and diffuse expression in mesenchymal stromal cells and osteoblasts correlates with high MF grade in MPN (p < 0.05 for NRP2 and NCAM1). Single cell RNA sequencing (scRNAseq) re-analysis demonstrated NRP2 expression in endothelial cells and partial co-expression of NRP2 and NCAM1 in normal MSC and osteoblasts. Potential ligands included transforming growth factor β1 (TGFB1) from osteoblasts and megakaryocytes. Murine ThPO and JAK2V617F myelofibrosis models showed co-expression of Nrp2 and Ncam1 in osteolineage cells, while fibrosis-promoting MSC only express Nrp2. In vitro experiments with MC3T3-E1 pre-osteoblasts and analysis of Nrp2/ mouse femurs suggest that Nrp2 is functionally involved in osteogenesis. In summary, NRP2 represents a potential novel druggable target in patients with myelofibrosis. Full article
Show Figures

Figure 1

18 pages, 1726 KB  
Review
Recent Advances towards the Understanding of Secondary Acute Myeloid Leukemia Progression
by Scott Auerbach, Beana Puka, Upendarrao Golla and Ilyas Chachoua
Life 2024, 14(3), 309; https://doi.org/10.3390/life14030309 - 27 Feb 2024
Cited by 7 | Viewed by 6707
Abstract
Secondary acute myeloid leukemia (sAML) is a heterogeneous malignant hematopoietic disease that arises either from an antecedent hematologic disorder (AHD) including myelodysplastic syndromes (MDS), myeloproliferative neoplasms (MPN), aplastic anemia (AA), or as a result of exposure to genotoxic chemotherapeutic agents or radiotherapy (therapy [...] Read more.
Secondary acute myeloid leukemia (sAML) is a heterogeneous malignant hematopoietic disease that arises either from an antecedent hematologic disorder (AHD) including myelodysplastic syndromes (MDS), myeloproliferative neoplasms (MPN), aplastic anemia (AA), or as a result of exposure to genotoxic chemotherapeutic agents or radiotherapy (therapy related AML, tAML). sAML is diagnosed when the number of blasts is ≥20% in the bone marrow or peripheral blood, and it is characterized by poor prognosis, resistance to therapy and low overall survival rate. With the recent advances in next generation sequencing technologies, our understanding of the molecular events associated with sAML evolution has significantly increased and opened new perspectives for the development of novel therapies. The genetic aberrations that are associated with sAML affect genes involved in processes such as splicing, chromatin modification and genome integrity. Moreover, non-coding RNAs’ emerged as an important contributing factor to leukemogenesis. For decades, the standard treatment for secondary AML has been the 7 + 3 regimen of cytarabine and daunorubicin which prolongs survival for several months, but modifications in either dosage or delivery has significantly extended that time. Apart from traditional chemotherapy, hematopoietic stem cell transplantation, CAR-T cell therapy and small molecule inhibitors have also emerged to treat sAML. Full article
(This article belongs to the Special Issue Current Advances in Hematologic Malignancies)
Show Figures

Figure 1

Back to TopTop