Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (815)

Search Parameters:
Keywords = naive Bayes classifier

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 4638 KB  
Article
Beyond Radiomics Alone: Enhancing Prostate Cancer Classification with ADC Ratio in a Multicenter Benchmarking Study
by Dimitrios Samaras, Georgios Agrotis, Alexandros Vamvakas, Maria Vakalopoulou, Marianna Vlychou, Katerina Vassiou, Vasileios Tzortzis and Ioannis Tsougos
Diagnostics 2025, 15(19), 2546; https://doi.org/10.3390/diagnostics15192546 - 9 Oct 2025
Abstract
Background/Objectives: Radiomics enables extraction of quantitative imaging features to support non-invasive classification of prostate cancer (PCa). Accurate detection of clinically significant PCa (csPCa; Gleason score ≥ 3 + 4) is crucial for guiding treatment decisions. However, many studies explore limited feature selection, classifier, [...] Read more.
Background/Objectives: Radiomics enables extraction of quantitative imaging features to support non-invasive classification of prostate cancer (PCa). Accurate detection of clinically significant PCa (csPCa; Gleason score ≥ 3 + 4) is crucial for guiding treatment decisions. However, many studies explore limited feature selection, classifier, and harmonization combinations, and lack external validation. We aimed to systematically benchmark modeling pipelines and evaluate whether combining radiomics with the lesion-to-normal ADC ratio improves classification robustness and generalizability in multicenter datasets. Methods: Radiomic features were extracted from ADC maps using IBSI-compliant pipelines. Over 100 model configurations were tested, combining eight feature selection methods, fifteen classifiers, and two harmonization strategies across two scenarios: (1) repeated cross-validation on a multicenter dataset and (2) nested cross-validation with external testing on the PROSTATEx dataset. The ADC ratio was defined as the mean lesion ADC divided by contralateral normal tissue ADC, by placing two identical ROIs in each side, enabling patient-specific normalization. Results: In Scenario 1, the best model combined radiomics, ADC ratio, LASSO, and Naïve Bayes (AUC-PR = 0.844 ± 0.040). In Scenario 2, the top-performing configuration used Recursive Feature Elimination (RFE) and Boosted GLM (a generalized linear model trained with boosting), generalizing well to the external set (AUC-PR = 0.722; F1 = 0.741). ComBat harmonization improved calibration but not external discrimination. Frequently selected features were texture-based (GLCM, GLSZM) from wavelet- and LoG-filtered ADC maps. Conclusions: Integrating radiomics with the ADC ratio improves csPCa classification and enhances generalizability, supporting its potential role as a robust, clinically interpretable imaging biomarker in multicenter MRI studies. Full article
(This article belongs to the Special Issue AI in Radiology and Nuclear Medicine: Challenges and Opportunities)
17 pages, 1112 KB  
Article
Management of Severe COVID-19 Diagnosis Using Machine Learning
by Larysa Sydorchuk, Maksym Sokolenko, Miroslav Škoda, Daniel Lajcin, Yaroslav Vyklyuk, Ruslan Sydorchuk, Alina Sokolenko and Dmytro Martjanov
Computation 2025, 13(10), 238; https://doi.org/10.3390/computation13100238 - 9 Oct 2025
Abstract
COVID-19 remains a global health challenge, with severe cases often leading to complications and fatalities. The objective of this study was to assess supervised machine learning algorithms for predicting severe COVID-19 based on demographic, clinical, biochemical, and genetic variables, with the aim of [...] Read more.
COVID-19 remains a global health challenge, with severe cases often leading to complications and fatalities. The objective of this study was to assess supervised machine learning algorithms for predicting severe COVID-19 based on demographic, clinical, biochemical, and genetic variables, with the aim of identifying the most informative prognostic markers. For Machine Learning (ML) analysis, we utilized a dataset comprising 226 observations with 68 clinical, biochemical, and genetic features collected from 226 patients with confirmed COVID-19 (54—moderate, 142—severe and 30 with mild disease). The target variable was disease severity (mild, moderate, severe). The feature set included demographic variables (age, sex), genetic markers (single-nucleotide polymorphisms (SNPs) in FGB (rs1800790), NOS3 (rs2070744), and TMPRSS2 (rs12329760)), biochemical indicators (IL-6, endothelin-1, D-dimer, fibrinogen, among others), and clinical parameters (blood pressure, body mass index, comorbidities). The target variable was disease severity. To identify the most effective predictive models for COVID-19 severity, we systematically evaluated multiple supervised learning algorithms, including logistic regression, k-nearest neighbors, decision trees, random forest, gradient boosting, bagging, naïve Bayes, and support vector machines. Model performance was assessed using accuracy and the area under the receiver operating characteristic curve (AUC-ROC). Among the predictors, IL-6, presence of depression/pneumonia, LDL cholesterol, AST, platelet count, lymphocyte count, and ALT showed the strongest correlations with severity. The highest predictive accuracy, with negligible error rates, was achieved by ensemble-based models such as ExtraTreesClassifier, HistGradientBoostingClassifier, BaggingClassifier, and GradientBoostingClassifier. Notably, decision tree models demonstrated high classification precision at terminal nodes, many of which yielded a 100% probability for a specific severity class. Full article
(This article belongs to the Special Issue Artificial Intelligence Applications in Public Health: 2nd Edition)
Show Figures

Figure 1

21 pages, 722 KB  
Article
Detecting the File Encryption Algorithms Using Artificial Intelligence
by Jakub Kowalewski and Tomasz Grześ
Appl. Sci. 2025, 15(19), 10831; https://doi.org/10.3390/app151910831 - 9 Oct 2025
Abstract
In this paper, the authors analyze the applicability of artificial intelligence algorithms for classifying file encryption methods based on statistical features extracted from the binary content of files. The prepared datasets included both unencrypted files and files encrypted using selected cryptographic algorithms in [...] Read more.
In this paper, the authors analyze the applicability of artificial intelligence algorithms for classifying file encryption methods based on statistical features extracted from the binary content of files. The prepared datasets included both unencrypted files and files encrypted using selected cryptographic algorithms in Electronic Codebook (ECB) and Cipher Block Chaining (CBC) modes. These datasets were further diversified by varying the number of encryption keys and the sample sizes. Feature extraction focused solely on basic statistical parameters, excluding an analysis of file headers, keys, or internal structures. The study evaluated the performance of several models, including Random Forest, Bagging, Support Vector Machine, Naive Bayes, K-Nearest Neighbors, and AdaBoost. Among these, Random Forest and Bagging achieved the highest accuracy and demonstrated the most stable results. The classification performance was notably better in ECB mode, where no random initialization vector was used. In contrast, the increased randomness of data in CBC mode resulted in lower classification effectiveness, particularly as the number of encryption keys increased. This paper provides a comprehensive analysis of the classifiers’ performance across various encryption configurations and suggests potential directions for further experiments. Full article
(This article belongs to the Section Computing and Artificial Intelligence)
Show Figures

Figure 1

20 pages, 4005 KB  
Article
EEG Complexity Analysis of Psychogenic Non-Epileptic and Epileptic Seizures Using Entropy and Machine Learning
by Hesam Shokouh Alaei, Samaneh Kouchaki, Mahinda Yogarajah and Daniel Abasolo
Entropy 2025, 27(10), 1044; https://doi.org/10.3390/e27101044 - 7 Oct 2025
Abstract
Psychogenic non-epileptic seizures (PNES) are often misdiagnosed as epileptic seizures (ES), leading to inappropriate treatment and delayed psychological care. To address this challenge, we analysed electroencephalogram (EEG) data from 74 patients (46 PNES, 28 ES) using one-minute preictal and interictal recordings per subject. [...] Read more.
Psychogenic non-epileptic seizures (PNES) are often misdiagnosed as epileptic seizures (ES), leading to inappropriate treatment and delayed psychological care. To address this challenge, we analysed electroencephalogram (EEG) data from 74 patients (46 PNES, 28 ES) using one-minute preictal and interictal recordings per subject. Nine entropy measures (Sample, Fuzzy, Permutation, Dispersion, Conditional, Phase, Spectral, Rényi, and Wavelet entropy) were evaluated individually to classify PNES from ES using k-nearest neighbours, Naïve Bayes, linear discriminant analysis, logistic regression, support vector machine, random forest, multilayer perceptron, and XGBoost within a leave-one-subject-out cross-validation framework. In addition, a dynamic state, defined as the entropy difference between interictal and preictal periods, was examined. Sample, Fuzzy, Conditional, and Dispersion entropy were higher in PNES than in ES during interictal recordings (not significant), but significantly lower in the preictal (p < 0.05) and dynamic states (p < 0.01). Spatial mapping and permutation-based importance analyses highlighted O1, O2, T5, F7, and Pz as key discriminative channels. Classification performance peaked in the dynamic state, with Fuzzy entropy and support vector machine achieving the best results (balanced accuracy = 72.4%, F1 score = 77.8%, sensitivity = 74.5%, specificity = 70.4%). These results demonstrate the potential of entropy features for differentiating PNES from ES. Full article
(This article belongs to the Special Issue Entropy Analysis of ECG and EEG Signals)
Show Figures

Figure 1

22 pages, 2526 KB  
Article
An Explainable Deep Learning Framework with Adaptive Feature Selection for Smart Lemon Disease Classification in Agriculture
by Naeem Ullah, Michelina Ruocco, Antonio Della Cioppa, Ivanoe De Falco and Giovanna Sannino
Electronics 2025, 14(19), 3928; https://doi.org/10.3390/electronics14193928 - 2 Oct 2025
Viewed by 265
Abstract
Early and accurate detection of lemon disease is necessary for effective citrus crop management. Traditional approaches often lack refined diagnosis, necessitating more powerful solutions. The article introduces adaptive PSO-LemonNetX, a novel framework integrating a novel deep learning model, adaptive Particle Swarm Optimization (PSO)-based [...] Read more.
Early and accurate detection of lemon disease is necessary for effective citrus crop management. Traditional approaches often lack refined diagnosis, necessitating more powerful solutions. The article introduces adaptive PSO-LemonNetX, a novel framework integrating a novel deep learning model, adaptive Particle Swarm Optimization (PSO)-based feature selection, and explainable AI (XAI) using LIME. The approach improves the accuracy of classification while also enhancing the explainability of the model. Our end-to-end model obtained 97.01% testing and 98.55% validation accuracy. Performance was enhanced further with adaptive PSO and conventional classifiers—100% validation accuracy using Naive Bayes and 98.8% testing accuracy using Naive Bayes and an SVM. The suggested PSO-based feature selection performed better than ReliefF, Kruskal–Wallis, and Chi-squared approaches. Due to its lightweight design and good performance, this approach can be adapted for edge devices in IoT-enabled smart farms, contributing to sustainable and automated disease detection systems. These results show the potential of integrating deep learning, PSO, grid search, and XAI into smart agriculture workflows for enhancing agricultural disease detection and decision-making. Full article
(This article belongs to the Special Issue Image Processing and Pattern Recognition)
Show Figures

Figure 1

31 pages, 3644 KB  
Article
Machine Learning for Basketball Game Outcomes: NBA and WNBA Leagues
by João M. Alves and Ramiro S. Barbosa
Computation 2025, 13(10), 230; https://doi.org/10.3390/computation13100230 - 1 Oct 2025
Viewed by 200
Abstract
Artificial intelligence has become crucial in sports, leveraging its analytical capabilities to enhance the understanding and prediction of complex events. Machine learning algorithms in sports, especially basketball, are transforming performance analysis by identifying patterns and trends invisible to traditional methods. This technology provides [...] Read more.
Artificial intelligence has become crucial in sports, leveraging its analytical capabilities to enhance the understanding and prediction of complex events. Machine learning algorithms in sports, especially basketball, are transforming performance analysis by identifying patterns and trends invisible to traditional methods. This technology provides in-depth insights into individual and team performance, enabling precise evaluation of strategies and tactics. Consequently, the detailed analysis of every aspect of a team’s routine can significantly elevate the level of competition in the sport. This study investigates a range of machine learning models, including Logistic Regression (LR), Ridge Regression Classifier (RR), Random Forest (RF), Naive Bayes (NB), K-Nearest Neighbors (KNNs), Support Vector Machine (SVM), Stacking Classifier (STACK), Bagging Classifier (BAG), Multi-Layer Perceptron (MLP), AdaBoost (AB), and XGBoost (XGB), as well as deep learning architectures such as Long Short-Term Memory (LSTM) networks and Convolutional Neural Networks (CNNs), to compare their effectiveness in predicting game outcomes in the NBA and WNBA leagues. The results show highly acceptable prediction accuracies of 65.50% for the NBA and 67.48% for the WNBA. This study allows us to understand the impact that artificial intelligence can have on the world of basketball and its current state in relation to previous studies. It can provide valuable insights for coaches, performance analysts, team managers, and sports strategists by using machine learning and deep learning models to predict NBA and WNBA outcomes, enabling informed decisions and enhancing competitive performance. Full article
(This article belongs to the Section Computational Engineering)
Show Figures

Figure 1

32 pages, 5909 KB  
Article
Machine Learning Approaches for Classification of Composite Materials
by Dmytro Tymoshchuk, Iryna Didych, Pavlo Maruschak, Oleh Yasniy, Andrii Mykytyshyn and Mykola Mytnyk
Modelling 2025, 6(4), 118; https://doi.org/10.3390/modelling6040118 - 1 Oct 2025
Viewed by 147
Abstract
The paper presents a comparative analysis of various machine learning algorithms for the classification of epoxy composites reinforced with basalt fiber and modified with inorganic fillers. The classification is based on key thermophysical characteristics, in particular, the mass fraction of the filler, temperature, [...] Read more.
The paper presents a comparative analysis of various machine learning algorithms for the classification of epoxy composites reinforced with basalt fiber and modified with inorganic fillers. The classification is based on key thermophysical characteristics, in particular, the mass fraction of the filler, temperature, and thermal conductivity coefficient. A dataset of 16,056 interpolated samples was used to train and evaluate more than a dozen models. Among the tested algorithms, the MLP neural network model showed the highest accuracy of 99.7% and balanced classification metrics F1-measure and G-Mean. Ensemble methods, including XGBoost, CatBoost, ExtraTrees, and HistGradientBoosting, also showed high classification accuracy. To interpret the results of the MLP model, SHAP analysis was applied, which confirmed the predominant influence of the mass fraction of the filler on decision-making for all classes. The results of the study confirm the high effectiveness of machine learning methods for recognizing filler type in composite materials, as well as the potential of interpretable AI in materials science tasks. Full article
(This article belongs to the Special Issue Machine Learning and Artificial Intelligence in Modelling)
Show Figures

Figure 1

43 pages, 3034 KB  
Article
Real-Time Recognition of NZ Sign Language Alphabets by Optimal Use of Machine Learning
by Seyed Ebrahim Hosseini, Mubashir Ali, Shahbaz Pervez and Muneer Ahmad
Bioengineering 2025, 12(10), 1068; https://doi.org/10.3390/bioengineering12101068 - 30 Sep 2025
Viewed by 241
Abstract
The acquisition of a person’s first language is one of their greatest accomplishments. Nevertheless, being fluent in sign language presents challenges for many deaf students who rely on it for communication. Effective communication is essential for both personal and professional interactions and is [...] Read more.
The acquisition of a person’s first language is one of their greatest accomplishments. Nevertheless, being fluent in sign language presents challenges for many deaf students who rely on it for communication. Effective communication is essential for both personal and professional interactions and is critical for community engagement. However, the lack of a mutually understood language can be a significant barrier. Estimates indicate that a large portion of New Zealand’s disability population is deaf, with an educational approach predominantly focused on oralism, emphasizing spoken language. This makes it essential to bridge the communication gap between the general public and individuals with speech difficulties. The aim of this project is to develop an application that systematically cycles through each letter and number in New Zealand Sign Language (NZSL), assessing the user’s proficiency. This research investigates various machine learning methods for hand gesture recognition, with a focus on landmark detection. In computer vision, identifying specific points on an object—such as distinct hand landmarks—is a standard approach for feature extraction. Evaluation of this system has been performed using machine learning techniques, including Random Forest (RF) Classifier, k-Nearest Neighbours (KNN), AdaBoost (AB), Naïve Bayes (NB), Support Vector Machine (SVM), Decision Trees (DT), and Logistic Regression (LR). The dataset used for model training and testing consists of approximately 100,000 hand gesture expressions, formatted into a CSV dataset for model training. Full article
(This article belongs to the Special Issue AI and Data Science in Bioengineering: Innovations and Applications)
Show Figures

Figure 1

27 pages, 4168 KB  
Article
Electromyographic Diaphragm and Electrocardiographic Signal Analysis for Weaning Outcome Classification in Mechanically Ventilated Patients
by Alejandro Arboleda, Manuel Franco, Francisco Naranjo and Beatriz Fabiola Giraldo
Sensors 2025, 25(19), 6000; https://doi.org/10.3390/s25196000 - 29 Sep 2025
Viewed by 385
Abstract
Early prediction of weaning outcomes in mechanically ventilated patients has significant potential to influence the duration of treatment as well as associated morbidity and mortality. This study aimed to investigate the utility of signal analysis using electromyographic diaphragm (EMG) and electrocardiography (ECG) signals [...] Read more.
Early prediction of weaning outcomes in mechanically ventilated patients has significant potential to influence the duration of treatment as well as associated morbidity and mortality. This study aimed to investigate the utility of signal analysis using electromyographic diaphragm (EMG) and electrocardiography (ECG) signals to classify the success or failure of weaning in mechanically ventilated patients. Electromyographic signals of 40 subjects were recorded using 5-channel surface electrodes placed around the diaphragm muscle, along with an ECG recording through a 3-lead Holter system during extubation. EMG and ECG signals were recorded from mechanically ventilated patients undergoing weaning trials. Linear and nonlinear signal analysis techniques were used to assess the interaction between diaphragm muscle activity and cardiac activity. Supervised machine learning algorithms were then used to classify the weaning outcomes. The study revealed clear differences in diaphragmatic and cardiac patterns between patients who succeeded and failed in the weaning trials. Successful weaning was characterised by a higher ECG-derived respiration amplitude, whereas failed weaning was characterised by an elevated EMG amplitude. Furthermore, successful weaning exhibited greater oscillations in diaphragmatic muscle activity. Spectral analysis and parameter extraction identified 320 parameters, of which 43 were significant predictors of weaning outcomes. Using seven of these parameters, the Naive Bayes classifier demonstrated high accuracy in classifying weaning outcomes. Surface electromyographic and electrocardiographic signal analyses can predict weaning outcomes in mechanically ventilated patients. This approach could facilitate the early identification of patients at risk of weaning failure, allowing for improved clinical management. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

7 pages, 333 KB  
Proceeding Paper
Predictive Analysis of Chronic Kidney Disease in Machine Learning
by Husnain Ali Haider, Manzoor Hussain and Ivana Lucia Kharisma
Eng. Proc. 2025, 107(1), 118; https://doi.org/10.3390/engproc2025107118 - 29 Sep 2025
Viewed by 325
Abstract
Chronic kidney disease is a systemic disease of multiple factors and slow progression, and is now becoming a rapidly changing global pathological problem affecting healthcare systems. Anyone who can go through diagnosis before getting to stage 5 Chronic Kidney Disease (CKD) or end [...] Read more.
Chronic kidney disease is a systemic disease of multiple factors and slow progression, and is now becoming a rapidly changing global pathological problem affecting healthcare systems. Anyone who can go through diagnosis before getting to stage 5 Chronic Kidney Disease (CKD) or end stage renal failure has a better shot at the result. This work involves 1659 patient records and dependent variables include demographics, lifestyle, and clinical biochemistry of CKD. Based on the supervised techniques of machine learning which are Random Forest, K Nearest Neighbors (KNN), Logistic Regression, and Naïve Bayes, it was agreed that the performance of the model metrics such as accuracy, precision and recall would need to be used. These models were applied, evaluated by means of more or less simple effectiveness parameters including, for instance, accuracy, precision, or recall. Out of these [best algorithm] achieved [accuracy value] % of predictive accuracy in CKD, and so can be used for diagnosis of CKD in its early stage. This work offers the Framework and results in the development of data-integrated approaches in healthcare and improves the disease control and management. Full article
Show Figures

Figure 1

7 pages, 459 KB  
Proceeding Paper
Machine Learning Approaches for Real-Time Traffic Density Estimation and Public Transport Optimization
by Ahmad Usman, Tahir Mohammad Ali and Carti Irawan
Eng. Proc. 2025, 107(1), 117; https://doi.org/10.3390/engproc2025107117 - 28 Sep 2025
Viewed by 200
Abstract
One of the most common problems in modern urban environments is traffic congestion, which leads to unreliable bus arrival times and passenger delays. In this study, we apply various machine learning models to predict traffic density with the aim of improving the accuracy [...] Read more.
One of the most common problems in modern urban environments is traffic congestion, which leads to unreliable bus arrival times and passenger delays. In this study, we apply various machine learning models to predict traffic density with the aim of improving the accuracy of bus arrival time estimations. A large dataset comprising over 100,000 instances containing attributes such as date and time, maximum, minimum, and average speed, longitude, latitude, and geohash is utilized to classify traffic density as either “1 (High)” or “0 (Low).” We implement and compare five machine learning models: Logistic Regression, Gradient Boosting, Support Vector Machine (SVM), K-Nearest Neighbors (K-NN), and Naïve Bayes. The results demonstrate the potential of machine learning in reducing unnecessary delays and enhancing the accuracy of bus arrival predictions. This research contributes to improving the efficiency of public transportation systems in the future. Full article
Show Figures

Figure 1

7 pages, 496 KB  
Proceeding Paper
Non-Destructive Mango Quality Prediction Using Machine Learning Algorithms
by Muhmmad Muzamal, Manzoor Hussain and Aryo De Wibowo
Eng. Proc. 2025, 107(1), 116; https://doi.org/10.3390/engproc2025107116 - 26 Sep 2025
Viewed by 199
Abstract
The quality of mangoes is a crucial factor in both domestic and commercial markets that directly influences consumer satisfaction and economic value. Traditional methods of checking mango quality often involve destructive techniques, which lead to the loss of the fruit in the testing [...] Read more.
The quality of mangoes is a crucial factor in both domestic and commercial markets that directly influences consumer satisfaction and economic value. Traditional methods of checking mango quality often involve destructive techniques, which lead to the loss of the fruit in the testing process. This study presents an advanced approach that could predict the quality of mangoes using advance non-destructive methods leveraging machine learning algorithms to predict quality parameters such as ripeness, sweetness and overall freshness without damaging the fruit. In this research, a dataset consisting of various mango samples was collected, with attributes including color, texture, size, weight and acidity levels. Sensors, such as pH sensors (for acidity) and e-nose sensors (for aroma and sweetness detection), were used to gather data, while a combination of machine learning models such as Decision Tree, K-Nearest Neighbors (KNN), and Automated Machine Learning (AutoMLP), Naive Bayes were applied to predict the mangoes’ quality. The accuracy of each model was measured based on its ability to classify mangoes as fresh, ripe, or rotten. The results determine that the AutoMLP model performs the best out of the traditional models, achieving an accuracy of 98.46%, making it the most suitable model for mango quality prediction. The research explains the significance of feature extraction methods, model optimization, and sensor data pretreatment in reaching a high prediction accuracy. Full article
Show Figures

Figure 1

21 pages, 2807 KB  
Article
Discrimination of Multiple Foliar Diseases in Wheat Using Novel Feature Selection and Machine Learning
by Sen Zhuang, Yujuan Huang, Jie Zhu, Qingluo Yang, Wei Li, Yangyang Gu, Tongjie Li, Hengbiao Zheng, Chongya Jiang, Tao Cheng, Yongchao Tian, Yan Zhu, Weixing Cao and Xia Yao
Remote Sens. 2025, 17(19), 3304; https://doi.org/10.3390/rs17193304 - 26 Sep 2025
Viewed by 276
Abstract
Wheat, a globally vital food crop, faces severe threats from numerous foliar diseases, which often infect agricultural fields, significantly compromising yield and quality. Rapid and accurate identification of the specific disease is crucial for ensuring food security. Although progress has been made in [...] Read more.
Wheat, a globally vital food crop, faces severe threats from numerous foliar diseases, which often infect agricultural fields, significantly compromising yield and quality. Rapid and accurate identification of the specific disease is crucial for ensuring food security. Although progress has been made in wheat foliar disease detection using RGB imaging and spectroscopy, most prior studies have focused on identifying the presence of a single disease, without considering the need to operationalize such methods, and it will be necessary to differentiate between multiple diseases. In this study, we systematically investigate the differentiation of three wheat foliar diseases (e.g., powdery mildew, stripe rust, and leaf rust) and evaluate feature selection strategies and machine learning models for disease identification. Based on field experiments conducted from 2017 to 2024 employing artificial inoculation, we established a standardized hyperspectral database of wheat foliar diseases classified by disease severity. Four feature selection methods were employed to extract spectral features prior to classification: continuous wavelet projection algorithm (CWPA), continuous wavelet analysis (CWA), successive projections algorithm (SPA), and Relief-F. The selected features (which are derived by CWPA, CWA, SPA, and Relief-F algorithm) were then used as predictors for three disease-identification machine learning models: random forest (RF), k-nearest neighbors (KNN), and naïve Bayes (BAYES). Results showed that CWPA outperformed other feature selection methods. The combination of CWPA and KNN for discriminating disease-infected (powdery mildew, stripe rust, leaf rust) and healthy leaves by using only two key features (i.e., 668 nm at wavelet scale 5 and 894 nm at wavelet scale 7), achieved an overall accuracy (OA) of 77% and a map-level image classification efficacy (MICE) of 0.63. This combination of feature selection and machine learning model provides an efficient and precise procedure for discriminating between multiple foliar diseases in agricultural fields, thus offering technical support for precision agriculture. Full article
Show Figures

Figure 1

11 pages, 849 KB  
Proceeding Paper
Real-Time Phishing URL Detection Using Machine Learning
by Atta Ur Rehman, Irsa Imtiaz, Sabeen Javaid and Muhamad Muslih
Eng. Proc. 2025, 107(1), 108; https://doi.org/10.3390/engproc2025107108 - 25 Sep 2025
Viewed by 646
Abstract
The study investigates the use of powerful machine learning approaches to the real-time detection of phishing URLs, addressing a critical cybersecurity concern. The dataset we utilized in this research work was collected from the University of California Irvine (UCI) Machine Learning Repository. It [...] Read more.
The study investigates the use of powerful machine learning approaches to the real-time detection of phishing URLs, addressing a critical cybersecurity concern. The dataset we utilized in this research work was collected from the University of California Irvine (UCI) Machine Learning Repository. It has 235,795 instances with fifty-four distinct parameters. The label class is of binomial type and has only two target classes. We used a range of complex algorithms, including k-nearest neighbor, naive Bayes, decision trees, random forests, and random tree, to assess the discriminative characteristics retrieved from URLs. The random forest classifier beat the other classifiers, reaching the greatest accuracy of 99.99%. The study demonstrates that these models achieve superior accuracy in identifying phishing attempts, significantly outperforming traditional detection methodologies. The findings underscore the potential of machine learning to provide a scalable, efficient, and robust solution for real-time phishing detection. Implementing these innovative platforms to existing security solutions is going to play a critical role in sustaining the protective line against continuously evolving and persistent phishing schemes. Full article
Show Figures

Figure 1

22 pages, 3646 KB  
Article
Machine Learning in the Classification of RGB Images of Maize (Zea mays L.) Using Texture Attributes and Different Doses of Nitrogen
by Thiago Lima da Silva, Fernanda de Fátima da Silva Devechio, Marcos Silva Tavares, Jamile Raquel Regazzo, Edson José de Souza Sardinha, Liliane Maria Romualdo Altão, Gabriel Pagin, Adriano Rogério Bruno Tech and Murilo Mesquita Baesso
AgriEngineering 2025, 7(10), 317; https://doi.org/10.3390/agriengineering7100317 - 23 Sep 2025
Viewed by 361
Abstract
Nitrogen fertilization is decisive for maize productivity, fertilizer use efficiency, and sustainability, which calls for fast and nondestructive nutritional diagnosis. This study evaluated the classification of maize plant nutritional status from red, green, and blue (RGB) leaf images using texture attributes. A greenhouse [...] Read more.
Nitrogen fertilization is decisive for maize productivity, fertilizer use efficiency, and sustainability, which calls for fast and nondestructive nutritional diagnosis. This study evaluated the classification of maize plant nutritional status from red, green, and blue (RGB) leaf images using texture attributes. A greenhouse experiment was conducted under a completely randomized factorial design with four nitrogen doses, one maize hybrid Pioneer 30F35, and four replicates, at two sampling times corresponding to distinct phenological stages, totaling thirty-two experimental units. Images were processed with the gray-level cooccurrence matrix computed at three distances 1, 3, and 5 pixels and four orientations 0°, 45°, 90°, and 135°, yielding eight texture descriptors that served as inputs to five supervised classifiers: an artificial neural network, a support vector machine, k nearest neighbors, a decision tree, and Naive Bayes. The results indicated that texture descriptors discriminated nitrogen doses with good performance and moderate computational cost, and that homogeneity, dissimilarity, and contrast were the most informative attributes. The artificial neural network showed the most stable performance at both stages, followed by the support vector machine and k nearest neighbors, whereas the decision tree and Naive Bayes were less suitable. Confusion matrices and receiver operating characteristic curves indicated greater separability for omission and excess classes, with D1 standing out, and the patterns were consistent with the chemical analysis. Future work should include field validation, multiple seasons and genotypes, integration with spectral indices and multisensor data, application of model explainability techniques, and assessment of latency and scalability in operational scenarios. Full article
Show Figures

Figure 1

Back to TopTop