Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = nano/microparticles uptake

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2952 KB  
Article
Mineral Particles in Foliar Fertilizer Formulations Can Improve the Rate of Foliar Uptake
by Carlos Pimentel, Carlos M. Pina, Nora Müller, Luis Adrián Lara, Gabriela Melo Rodriguez, Fabrizio Orlando, Joachim Schoelkopf and Victoria Fernández
Plants 2024, 13(1), 71; https://doi.org/10.3390/plants13010071 - 25 Dec 2023
Cited by 6 | Viewed by 4105
Abstract
The application of foliar sprays of suspensions of relatively insoluble essential element salts is gradually becoming common, chiefly with the introduction of nano-technology approaches in agriculture. However, there is controversy about the effectiveness of such sparingly soluble nutrient sources as foliar fertilizers. In [...] Read more.
The application of foliar sprays of suspensions of relatively insoluble essential element salts is gradually becoming common, chiefly with the introduction of nano-technology approaches in agriculture. However, there is controversy about the effectiveness of such sparingly soluble nutrient sources as foliar fertilizers. In this work, we focussed on analysing the effect of adding Ca-carbonate (calcite, CaCO3) micro- and nano-particles as model sparingly soluble mineral compounds to foliar fertilizer formulations in terms of increasing the rate of foliar absorption. For these purposes, we carried out short-term foliar application experiments by treating leaves of species with variable surface features and wettability rates. The leaf absorption efficacy of foliar formulations containing a surfactant and model soluble nutrient sources, namely Ca-chloride (CaCl2), magnesium sulphate (MgSO4), potassium nitrate (KNO3), or zinc sulphate (ZnSO4), was evaluated alone or after addition of calcite particles. In general, the combination of the Ca-carbonate particles with an essential element salt had a synergistic effect and improved the absorption of Ca and the nutrient element provided. In light of the positive effects of using calcite particles as foliar formulation adjuvants, dolomite nano- and micro-particles were also tested as foliar formulation additives, and the results were also positive in terms of increasing foliar uptake. The observed nutrient element foliar absorption efficacy can be partially explained by geochemical modelling, which enabled us to predict how these formulations will perform at least in chemical terms. Our results show the major potential of adding mineral particles as foliar formulation additives, but the associated mechanisms of action and possible additional benefits to plants should be characterised in future investigations. Full article
Show Figures

Figure 1

25 pages, 4949 KB  
Article
Assessing the Impact of Polyethylene Nano/Microplastic Exposure on Human Vaginal Keratinocytes
by Paola Pontecorvi, Simona Ceccarelli, Fabrizio Cece, Simona Camero, Lavinia Vittoria Lotti, Elena Niccolai, Giulia Nannini, Giulia Gerini, Eleni Anastasiadou, Elena Sofia Scialis, Enrico Romano, Mary Anna Venneri, Amedeo Amedei, Antonio Angeloni, Francesca Megiorni and Cinzia Marchese
Int. J. Mol. Sci. 2023, 24(14), 11379; https://doi.org/10.3390/ijms241411379 - 12 Jul 2023
Cited by 26 | Viewed by 4348
Abstract
The global rise of single-use throw-away plastic products has elicited a massive increase in the nano/microplastics (N/MPLs) exposure burden in humans. Recently, it has been demonstrated that disposable period products may release N/MPLs with usage, which represents a potential threat to women’s health [...] Read more.
The global rise of single-use throw-away plastic products has elicited a massive increase in the nano/microplastics (N/MPLs) exposure burden in humans. Recently, it has been demonstrated that disposable period products may release N/MPLs with usage, which represents a potential threat to women’s health which has not been scientifically addressed yet. By using polyethyl ene (PE) particles (200 nm to 9 μm), we showed that acute exposure to a high concentration of N/MPLs induced cell toxicity in vaginal keratinocytes after effective cellular uptake, as viability and apoptosis data suggest, along with transmission electron microscopy (TEM) observations. The internalised N/MPLs altered the expression of junctional and adherence proteins and the organisation of the actin cortex, influencing the level of genes involved in oxidative stress signalling pathways and that of miRNAs related to epithelial barrier function. When the exposure to PE N/MPLs was discontinued or became chronic, cells were able to recover from the negative effects on viability and differentiation/proliferation gene expression in a few days. However, in all cases, PE N/MPL exposure prompted a sustained alteration of DNA methyltransferase and DNA demethylase expression, which might impact epigenetic regulation processes, leading to accelerated cell ageing and inflammation, or the occurrence of malignant transformation. Full article
(This article belongs to the Special Issue Environmental and Human Adverse Effects of Micro and Nanoplastics)
Show Figures

Figure 1

13 pages, 18576 KB  
Article
Identification of Zirconia Particle Uptake in Human Osteoblasts by ToF-SIMS Analysis and Particle-Size Effects on Cell Metabolism
by Alexander Welle, Kerstin Rabel, Matthias Schwotzer, Ralf Joachim Kohal, Thorsten Steinberg and Brigitte Altmann
Nanomaterials 2022, 12(23), 4272; https://doi.org/10.3390/nano12234272 - 1 Dec 2022
Cited by 2 | Viewed by 2298
Abstract
As the use of zirconia-based nano-ceramics is rising in dentistry, the examination of possible biological effects caused by released nanoparticles on oral target tissues, such as bone, is gaining importance. The aim of this investigation was to identify a possible internalization of differently [...] Read more.
As the use of zirconia-based nano-ceramics is rising in dentistry, the examination of possible biological effects caused by released nanoparticles on oral target tissues, such as bone, is gaining importance. The aim of this investigation was to identify a possible internalization of differently sized zirconia nanoparticles (ZrNP) into human osteoblasts applying Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS), and to examine whether ZrNP exposure affected the metabolic activity of the cells. Since ToF-SIMS has a low probing depth (about 5 nm), visualizing the ZrNP required the controlled erosion of the sample by oxygen bombardment. This procedure removed organic matter, uncovering the internalized ZrNP and leaving the hard particles practically unaffected. It was demonstrated that osteoblasts internalized ZrNP within 24 h in a size-dependent manner. Regarding the cellular metabolic activity, metabolization of alamarBlue by osteoblasts revealed a size- and time-dependent unfavorable effect of ZrNP, with the smallest ZrNP exerting the most pronounced effect. These findings point to different uptake efficiencies of the differently sized ZrNP by human osteoblasts. Furthermore, it was proven that ToF-SIMS is a powerful technique for the detection of zirconia-based nano/microparticles that can be applied for the cell-based validation of clinically relevant materials at the nano/micro scale. Full article
Show Figures

Figure 1

15 pages, 5514 KB  
Article
Influence of Nano- and Small Microplastics on Ciliated Protozoan Spirostomum ambiguum (Müller, 1786) Ehrenberg, 1835
by Grzegorz Nałęcz-Jawecki, Justyna Chojnacka, Milena Wawryniuk and Agata Drobniewska
Water 2021, 13(20), 2857; https://doi.org/10.3390/w13202857 - 13 Oct 2021
Cited by 11 | Viewed by 3634
Abstract
This study evaluated the uptake of secondary nano- and small microparticles by the protozoan Spirostomum ambiguum, comparing edible (baker’s yeasts) and inedible (red latex) particles. Secondary nano- and microplastic particles were prepared from household materials made of four different polymers and served [...] Read more.
This study evaluated the uptake of secondary nano- and small microparticles by the protozoan Spirostomum ambiguum, comparing edible (baker’s yeasts) and inedible (red latex) particles. Secondary nano- and microplastic particles were prepared from household materials made of four different polymers and served to the protozoans separately and as two-component mixtures in different proportions. The number and content of food vacuoles formed by the protozoan were analyzed using a digital microscope. The microscopic results showed that the protozoans ingested the secondary microplastic particles to a similar degree as the latex microspheres but to a lesser extent compared to the nutritional food—baker’s yeasts. At the microplastic concentrations of 1000 and 10,000 particles mL−1, no food vacuoles were observed inside the cells, which may be a finding of great ecological importance. In the protozoans served two-component mixtures, both microplastics and yeasts were found in the vacuoles formed by the organisms. The egestion of two-component vacuoles by the protozoans was slower than that of vacuoles containing a single component. Full article
(This article belongs to the Special Issue Effects of Microplastics Pollution in the Aquatic Environment)
Show Figures

Figure 1

17 pages, 341 KB  
Review
Microplastics and Their Effect in Horticultural Crops: Food Safety and Plant Stress
by Gilda Carrasco Silva, Felipe M. Galleguillos Madrid, Diógenes Hernández, Gonzalo Pincheira, Ana Karina Peralta, Miguel Urrestarazu Gavilán, Victor Vergara-Carmona and Fernando Fuentes-Peñailillo
Agronomy 2021, 11(8), 1528; https://doi.org/10.3390/agronomy11081528 - 30 Jul 2021
Cited by 32 | Viewed by 9444
Abstract
The presence of micro and nanoplastics in the food chain constitutes an emergent multifactorial food safety and physiological stress problem, which must be approached with a strategic perspective since it affects public health when consuming products that have this pollutant, such as fish [...] Read more.
The presence of micro and nanoplastics in the food chain constitutes an emergent multifactorial food safety and physiological stress problem, which must be approached with a strategic perspective since it affects public health when consuming products that have this pollutant, such as fish and crustaceans, fruits, and vegetables. In this review, the authors present the results by scientists from different disciplines who are dedicated to discovering their chemical constitution and origin, the contents of these microparticles in edible plants, the contamination of water-irrigated soils, the mechanisms that concentrate microplastics in these soils, methods to determine them, contamination of freshwater sources of cities, and the negative effect of nano and microplastics on various food products and their detrimental impact on the environment. Recent findings of plant uptake mechanisms complement this, but more research is needed. Full article
(This article belongs to the Collection Crop Physiology and Stress)
17 pages, 3633 KB  
Article
Ionic Cross-Linking as a Strategy to Modulate the Properties of Oral Mucoadhesive Microparticles Based on Polysaccharide Blends
by Fernanda Isadora Boni, Beatriz S. F. Cury, Natália Noronha Ferreira and Maria Palmira Daflon Gremião
Pharmaceutics 2021, 13(3), 407; https://doi.org/10.3390/pharmaceutics13030407 - 19 Mar 2021
Cited by 8 | Viewed by 2795
Abstract
Polymer blends of gellan gum (GG)/retrograded starch(RS) and GG/pectin (P) were cross-linked with calcium, aluminum, or both to prepare mucoadhesive microparticles as oral carriers of drugs or nano systems. Cross-linking with different cations promoted different effects on each blend, which can potentially be [...] Read more.
Polymer blends of gellan gum (GG)/retrograded starch(RS) and GG/pectin (P) were cross-linked with calcium, aluminum, or both to prepare mucoadhesive microparticles as oral carriers of drugs or nano systems. Cross-linking with different cations promoted different effects on each blend, which can potentially be explored as novel strategies for modulating physical–chemical and mucoadhesive properties of microparticles. Particles exhibited spherical shapes, diameters from 888 to 1764 µm, and span index values lower than 0.5. Blends of GG:P cross-linked with aluminum resulted in smaller particles than those obtained by calcium cross-linking. GG:RS particles exhibited larger sizes, but cross-linking this blend with calcium promoted diameter reduction. The uptake rates of acid medium were lower than phosphate buffer (pH 6.8), especially GG:RS based particles cross-linked with calcium. On the other hand, particles based on GG:P cross-linked with calcium absorbed the highest volume of acid medium. The percentage of systems erosion was higher in acid medium, but apparently occurred in the outermost layer of the particle. In pH 6.8, erosion was lower, but caused expressive swelling of the matrixes. Calcium cross-linking of GG:RS promoted a significantly reduction on enzymatic degradation at both pH 1.2 and 6.8, which is a promising feature that can provide drug protection against premature degradation in the stomach. In contrast, GG:P microparticles cross-linked with calcium suffered high degradation at both pH values, an advantageous feature for quickly releasing drugs at different sites of the gastrointestinal tract. The high mucoadhesive ability of the microparticles was evidenced at both pH values, and the Freundlich parameters indicated stronger particle–mucin interactions at pH 6.8. Full article
Show Figures

Graphical abstract

Back to TopTop