Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = nanosized spinel ferrites

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 4108 KB  
Article
Polymer Nanocomposites Based on Nanosized Substituted Ferrites (NiZn)1−xMnxFe2O4 on the Surface of Carbon Nanotubes for Effective Interaction with High-Frequency EM Radiation
by Ruslana Mazurenko, Serhii Prokopenko, Marcin Godzierz, Anna Hercog, Anastasiia Kobyliukh, Grygorii Gunja, Stanislav Makhno, Urszula Szeluga, Petro Gorbyk and Barbara Trzebicka
Materials 2024, 17(5), 986; https://doi.org/10.3390/ma17050986 - 21 Feb 2024
Cited by 4 | Viewed by 1926
Abstract
To create materials that interact effectively with electromagnetic (EM) radiation, new nanosized substituted ferrites (NiZn)1−xMnxFe2O4 (x = 0, 0.5, and 1) anchored on the surface of multi-walled carbon nanotubes (CNTs) have been synthesized. The concentration of [...] Read more.
To create materials that interact effectively with electromagnetic (EM) radiation, new nanosized substituted ferrites (NiZn)1−xMnxFe2O4 (x = 0, 0.5, and 1) anchored on the surface of multi-walled carbon nanotubes (CNTs) have been synthesized. The concentration of CNTs in the (NiZn)1−xMnxFe2O4/CNT system was from 0.05 to 0.07 vol. fractions. The dielectric and magnetic characteristics of both pristine (NiZn)1−xMnxFe2O4 ferrites and (NiZn)1−xMnxFe2O4/CNT composite systems were studied. The introduction of (NiZn)1−xMnxFe2O4/CNT composites into the amorphous epoxy matrix allows to tailor absorbing properties at the high-frequency by effectively shifting the maximum peak values of the absorption and reflection coefficient to a region of lower frequencies (20–30 GHz). The microwave adsorption properties of (NiZn)1−xMnxFe2O4/0.07CNT–ER (x = 0.5) systems showed that the maximum absorption bandwidth with reflection loss below −10 dB is about 11 GHz. Full article
(This article belongs to the Special Issue Advanced Polymer Matrix Nanocomposite Materials)
Show Figures

Figure 1

18 pages, 18147 KB  
Article
Green Synthesis of Nanomagnetic Copper and Cobalt Ferrites Using Corchorus Olitorius
by Nada S. Al-Kadhi, Ghadah M. Al-Senani, Rasmiah S. Almufarij, Omar H. Abd-Elkader and Nasrallah M. Deraz
Crystals 2023, 13(5), 758; https://doi.org/10.3390/cryst13050758 - 3 May 2023
Cited by 9 | Viewed by 2499
Abstract
This study aims to develop a self-combustion method for use in the preparation of copper and cobalt ferrites. This development was based on the full use of dry leaves of Corchorus olitorius plant in order to stimulate the preparation of the studied ferrites [...] Read more.
This study aims to develop a self-combustion method for use in the preparation of copper and cobalt ferrites. This development was based on the full use of dry leaves of Corchorus olitorius plant in order to stimulate the preparation of the studied ferrites by making full use of the small amount of carbon produced from the combustion process. The fabrication of CuFe2O4 and CoFe2O4 with spinel-type structures and the Fd3m space group is confirmed by XRD and FTIR investigations. Two major vibration bands occur laterally at 400 cm−1 and 600 cm−1. We were able to understand the existence of two stages through the thermal behavior based on TG-DTG analysis for the materials under investigation. The first is from room temperature to 600 °C, which indicates the formation of reacting oxides with Co or Cu ferrites, while the second is from 600–1000 °C, which indicates the growth in the ferrite fabrication. The surface morphological analyses (SEM/EDS and TEM) display formation of homogeneous and nanosized particles. The surface properties of the samples containing CoFe2O4 are superior compared to those of the samples not containing CuFe2O4. Every sample under investigation displays type-IV-based isotherms with a type-H3 hysteresis loop. The VSM approach was used to evaluate the magnetic characteristics of Cu and Co ferrites. Copper ferrites have a magnetization of 15.77 emu/g, and cobalt ferrites have a magnetization of 19.14 emu/g. Moreover, the squareness (0.263) and coercivity (716.15 G) of cobalt ferrite are higher than those of copper ferrite. Full article
(This article belongs to the Special Issue Crystalline Magnetic Compounds)
Show Figures

Figure 1

38 pages, 14464 KB  
Review
Hematite: A Good Catalyst for the Thermal Decomposition of Energetic Materials and the Application in Nano-Thermite
by Yu Li, Jia Dang, Yuqiang Ma and Haixia Ma
Molecules 2023, 28(5), 2035; https://doi.org/10.3390/molecules28052035 - 21 Feb 2023
Cited by 21 | Viewed by 4627
Abstract
Metal oxides (MOs) are of great importance in catalysts, sensor, capacitor and water treatment. Nano-sized MOs have attracted much more attention because of the unique properties, such as surface effect, small size effect and quantum size effect, etc. Hematite, an especially important additive [...] Read more.
Metal oxides (MOs) are of great importance in catalysts, sensor, capacitor and water treatment. Nano-sized MOs have attracted much more attention because of the unique properties, such as surface effect, small size effect and quantum size effect, etc. Hematite, an especially important additive as combustion catalysts, can greatly speed up the thermal decomposition process of energetic materials (EMs) and enhance the combustion performance of propellants. This review concludes the catalytic effect of hematite with different morphology on some EMs such as ammonium perchlorate (AP), cyclotrimethylenetrinitramine (RDX), cyclotetramethylenete-tranitramine (HMX), etc. The method for enhancing the catalytic effect on EMs using hematite-based materials such as perovskite and spinel ferrite materials, making composites with different carbon materials and assembling super-thermite is concluded and their catalytic effects on EMs is also discussed. Therefore, the provided information is helpful for the design, preparation and application of catalysts for EMs. Full article
(This article belongs to the Special Issue Research and Application of Nanoenergetic Materials)
Show Figures

Figure 1

8 pages, 6509 KB  
Communication
Evolution of the Morphology and Magnetic Properties of Flaky FeSiAl/MFe2O4 (M = Mn, Co, Ni, Cu, Zn) Composites
by Chuannan Ge, Chenglong Lei, Bo Wang, Yakun Wang, Zhouhao Peng, Zhitong Wang and Yunjun Guo
Nanomaterials 2023, 13(4), 712; https://doi.org/10.3390/nano13040712 - 13 Feb 2023
Cited by 2 | Viewed by 1919
Abstract
Nanosized spinel ferrites MFe2O4 (M = Mn, Co, Ni, Cu, Zn)-coated flaky FeSiAl alloy composites were synthesized successfully. Nano-ferrites preferentially grow into nanoplatelets due to induced or restricted growth on the flaky surface of FeSiAl. With annealing temperature increasing, the [...] Read more.
Nanosized spinel ferrites MFe2O4 (M = Mn, Co, Ni, Cu, Zn)-coated flaky FeSiAl alloy composites were synthesized successfully. Nano-ferrites preferentially grow into nanoplatelets due to induced or restricted growth on the flaky surface of FeSiAl. With annealing temperature increasing, the ferrites’ nanosheets thicken gradually and then grow into irregular particles. The annealing temperature not only affects the nanosized morphology and coating but also the magnetic properties of flaky FeSiAl composites. The saturation magnetization of CuFe2O4- or NiFe2O4-coated FeSiAl is approximate 69 emu/g, where the value of MnFe2O4-, CoFe2O4- and ZnFe2O4-coated FeSiAl show a decreasing trend generally from 64 emu/g to 55.7 emu/g annealing at 800 °C, respectively. The saturation magnetization of flaky FeSiAl composites was improved with the increased annealing temperature, except for those coated with ZnFe2O4 and NiFe2O4. These results are useful for improving the comprehensive properties of ferrite-coated flaky FeSiAl alloy composites. Full article
(This article belongs to the Special Issue Functional Electromagnetic Materials)
Show Figures

Figure 1

20 pages, 8504 KB  
Article
Humidity and Temperature Sensing of Mixed Nickel–Magnesium Spinel Ferrites
by Milena P. Dojcinovic, Zorka Z. Vasiljevic, Lazar Rakocevic, Vera P. Pavlovic, Souad Ammar-Merah, Jelena D. Vujancevic and Maria Vesna Nikolic
Chemosensors 2023, 11(1), 34; https://doi.org/10.3390/chemosensors11010034 - 2 Jan 2023
Cited by 10 | Viewed by 3100
Abstract
Temperature- and humidity-sensing properties were evaluated of NixMg1-x spinel ferrites (0 ≤ x ≤ 1) synthesized by a sol-gel combustion method using citric acid as fuel and nitrate ions as oxidizing agents. After the exothermic reaction, amorphous powders were calcined [...] Read more.
Temperature- and humidity-sensing properties were evaluated of NixMg1-x spinel ferrites (0 ≤ x ≤ 1) synthesized by a sol-gel combustion method using citric acid as fuel and nitrate ions as oxidizing agents. After the exothermic reaction, amorphous powders were calcined at 700 °C followed by characterization with XRD, FTIR, XPS, EDS and Raman spectroscopy and FESEM microscopy. Synthesized powders were tested as humidity- and temperature-sensing materials in the form of thick films on interdigitated electrodes on alumina substrate in a climatic chamber. The physicochemical investigation of synthesized materials revealed a cubic spinel Fd3¯m phase, nanosized but agglomerated particles with a partially to completely inverse spinel structure with increasing Ni content. Ni0.1Mg0.9Fe2O4 showed the highest material constant (B30,90) value of 3747 K and temperature sensitivity (α) of −4.08%/K compared to pure magnesium ferrite (B30,90 value of 3426 K and α of −3.73%/K) and the highest average sensitivity towards humidity of 922 kΩ/%RH in the relative humidity (RH) range of 40–90% at the working temperature of 25 °C. Full article
(This article belongs to the Special Issue Gas Sensors for Monitoring Environmental Changes)
Show Figures

Figure 1

16 pages, 5484 KB  
Article
Magnetic Nanosorbents Based on Bentonite and CoFe2O4 Spinel
by Nataliya Khodosova, Lyudmila Novikova, Elena Tomina, Larisa Belchinskaya, Alexander Zhabin, Nikolay Kurkin, Victoria Krupskaya, Olga Zakusina, Tatiana Koroleva, Ekaterina Tyupina, Alexander Vasiliev and Pavel Kazin
Minerals 2022, 12(11), 1474; https://doi.org/10.3390/min12111474 - 21 Nov 2022
Cited by 6 | Viewed by 2798
Abstract
New magnetic nanocomposite sorbents were obtained by doping natural bentonite with nanosized CoFe2O4 spinel (10 and 20 wt.%). Nanocrystals of cobalt ferrite were synthesized by a citrate burning method. The structure and physical-chemical properties of the composites were characterized by [...] Read more.
New magnetic nanocomposite sorbents were obtained by doping natural bentonite with nanosized CoFe2O4 spinel (10 and 20 wt.%). Nanocrystals of cobalt ferrite were synthesized by a citrate burning method. The structure and physical-chemical properties of the composites were characterized by XRD, XRF, TEM, BET, FTIR and Faraday balance magnetometry. During the formation of nanocomposites, 10–30 nm particles of cobalt ferrite occupied mainly the interparticle space of Fe-aluminosilicate that significantly changed the particle morphology and composite porosity, but at the same time retained the structure of the 2:1 smectite layer. A combination of two functional properties of composites, adsorption and magnetism has been found. The adsorption capacity of magnetic nanosorbents exceeded this parameter for bentonite and spinel. Despite the decrease in the adsorption volume, pore size and specific surface area of the composite material relative to bentonite, the sorption activity of the composite increases by 12%, which indicated the influence of the magnetic component on the sorption process. FTIR data confirmed the mechanism of formaldehyde sorption by the composite sorbent. The production of a magnetic nanosorbent opens up new possibilities for controlling the sorption processes and makes it possible to selectively separate the sorbent from the adsorption medium by the action of a magnetic field. Full article
Show Figures

Graphical abstract

13 pages, 3181 KB  
Article
Biosynthesis, Physicochemical and Magnetic Properties of Inverse Spinel Nickel Ferrite System
by Ghadah M. Al-Senani, Foziah F. Al-Fawzan, Rasmiah S. Almufarij, Omar H. Abd-Elkader and Nasrallah M. Deraz
Crystals 2022, 12(11), 1542; https://doi.org/10.3390/cryst12111542 - 28 Oct 2022
Cited by 14 | Viewed by 2599
Abstract
Nanosized Ni ferrite has been prepared by an ecofriendly green synthesis approach based on the self-combustion method. In this route, the egg white as a green fuel was employed with two different amounts (3 and 10 mL). The XRD results display the formation [...] Read more.
Nanosized Ni ferrite has been prepared by an ecofriendly green synthesis approach based on the self-combustion method. In this route, the egg white as a green fuel was employed with two different amounts (3 and 10 mL). The XRD results display the formation of a stoichiometric NiFe2O4-type inverse spinel structure with a lattice parameter located at 0.8284 nm and 0.8322 nm. Additionally, the nickel ferrites’ typical crystallite size, as synthesized, ranged between 4 and 18 nm. Indicating the development of ferrite material, FTIR analysis shows two distinctive vibrational modes around 600 cm−1 and 400 cm−1. TEM measurements show the formation of nanosized particles with semispherical-type structure and some agglomerations. As the egg white concentration rises, the surface area, total pore volume, and mean pore radius of the material, as prepared, all decrease, and according to the surface area parameters discovered using BET analysis. Based on VSM analysis, the values of saturation magnetization are 6.6589 emu/g and 37.727 emu/g, whereas the coercivity are 159.15 G and 113.74 G. The as-synthesized Ni ferrites fit into the pseudo-single domain predicated by the squareness values (0.1526 and 0.1824). It is mentioned that increasing the egg white content would promote the magnetization of NiFe2O4. Full article
(This article belongs to the Special Issue Crystalline Magnetic Compounds)
Show Figures

Figure 1

15 pages, 2389 KB  
Article
Soft Chemistry Synthesis and Characterization of CoFe1.8RE0.2O4 (RE3+ = Tb3+, Er3+) Ferrite
by Dana Gingasu, Ioana Mindru, Adelina-Carmen Ianculescu, Lucian Diamandescu, Vasile-Adrian Surdu, Gabriela Marinescu, Cristina Bartha, Silviu Preda, Marcela Popa and Mariana Carmen Chifiriuc
Magnetochemistry 2022, 8(2), 12; https://doi.org/10.3390/magnetochemistry8020012 - 19 Jan 2022
Cited by 7 | Viewed by 3218
Abstract
Nanosized CoFe1.8RE0.2O4 (RE3+ = Tb3+, Er3+) ferrites were obtained through wet ferritization method. These ferrites were characterized by X-ray diffraction (XRD), scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM/HR-TEM), Fourier transform infrared spectroscopy [...] Read more.
Nanosized CoFe1.8RE0.2O4 (RE3+ = Tb3+, Er3+) ferrites were obtained through wet ferritization method. These ferrites were characterized by X-ray diffraction (XRD), scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM/HR-TEM), Fourier transform infrared spectroscopy (FTIR), Mössbauer spectroscopy and magnetic measurements. The XRD results revealed that the average crystallite size is 5.77 nm for CoFe1.8Tb0.2O4 and 6.42 nm for CoFe1.8Er0.2O4. Distribution of metal cations in the spinel structure estimated from X-ray diffraction data showed that the Tb3+ and Er3+ ions occupy the octahedral sites. TEM images indicated the presence of polyhedral particles with average size 5.91 nm for CoFe1.8Tb0.2O4 and 6.80 nm for CoFe1.8Er0.2O4. Room temperature Mössbauer spectra exhibit typical nanoscaled cobalt ferrite spectra in good agreement with XRD and TEM data. The saturation magnetization value (Ms) is 60 emu/g for CoFe1.8Tb0.2O4 and 80 emu/g for CoFe1.8Er0.2O4. CoFe1.8RE0.2O4 nanoparticles showed similar antimicrobial efficacy against the five tested microbial strains, both in planktonic and biofilm state. The results highlight the promising potential of these types of nanoparticles for the development of novel anti-biofilm agents and materials. Full article
(This article belongs to the Special Issue Magnetic Materials and Their Electronic and Thermokinetic Properties)
Show Figures

Figure 1

2 pages, 182 KB  
Editorial
Characterization and Applications of Metal Ferrite Nanocomposites
by Thomas Dippong
Nanomaterials 2022, 12(1), 107; https://doi.org/10.3390/nano12010107 - 30 Dec 2021
Cited by 9 | Viewed by 2565
Abstract
In recent years, nanosized spinel-type ferrites emerged as an important class of nanomaterials due to their high electrical resistivity, low eddy current loss, structural stability, large permeability at high frequency, high coercivity, high cubic magnetocrystalline anisotropy, good mechanical hardness, and chemical stability [...] [...] Read more.
In recent years, nanosized spinel-type ferrites emerged as an important class of nanomaterials due to their high electrical resistivity, low eddy current loss, structural stability, large permeability at high frequency, high coercivity, high cubic magnetocrystalline anisotropy, good mechanical hardness, and chemical stability [...] Full article
(This article belongs to the Special Issue Characterization and Applications of Metal Ferrite Nanocomposites)
15 pages, 3178 KB  
Article
Nanostructured LiFe5O8 by a Biogenic Method for Applications from Electronics to Medicine
by Silvia Soreto Teixeira, Manuel P. F. Graça, José Lucas, Manuel Almeida Valente, Paula I. P. Soares, Maria Carmo Lança, Tânia Vieira, Jorge Carvalho Silva, João Paulo Borges, Luiza-Izabela Jinga, Gabriel Socol, Cristiane Mello Salgueiro, José Nunes and Luís C. Costa
Nanomaterials 2021, 11(1), 193; https://doi.org/10.3390/nano11010193 - 14 Jan 2021
Cited by 21 | Viewed by 3622
Abstract
The physical properties of the cubic and ferrimagnetic spinel ferrite LiFe5O8 has made it an attractive material for electronic and medical applications. In this work, LiFe5O8 nanosized crystallites were synthesized by a novel and eco-friendly sol-gel process, [...] Read more.
The physical properties of the cubic and ferrimagnetic spinel ferrite LiFe5O8 has made it an attractive material for electronic and medical applications. In this work, LiFe5O8 nanosized crystallites were synthesized by a novel and eco-friendly sol-gel process, by using powder coconut water as a mediated reaction medium. The dried powders were heat-treated (HT) at temperatures between 400 and 1000 °C, and their structure, morphology, electrical and magnetic characteristics, cytotoxicity, and magnetic hyperthermia assays were performed. The heat treatment of the LiFe5O8 powder tunes the crystallite sizes between 50 nm and 200 nm. When increasing the temperature of the HT, secondary phases start to form. The dielectric analysis revealed, at 300 K and 10 kHz, an increase of ε (≈10 up to ≈14) with a tanδ almost constant (≈0.3) with the increase of the HT temperature. The cytotoxicity results reveal, for concentrations below 2.5 mg/mL, that all samples have a non-cytotoxicity property. The sample heat-treated at 1000 °C, which revealed hysteresis and magnetic saturation of 73 emu g−1 at 300 K, showed a heating profile adequate for magnetic hyperthermia applications, showing the potential for biomedical applications. Full article
Show Figures

Figure 1

6 pages, 2467 KB  
Proceeding Paper
Microwave Assisted Synthesis of CoFe2O4 Nanoparticles by Utilizing Organic Promoters and Evaluation of Its Properties
by Rahil Ahmadi, Mina Imani and Azadeh Tadjarodi
Chem. Proc. 2021, 3(1), 52; https://doi.org/10.3390/ecsoc-24-08351 - 14 Nov 2020
Cited by 7 | Viewed by 2622
Abstract
Nano-sized spinel ferrites are highly regarded owing to their special optical, electrical, and magnetic properties. Cobalt ferrite (CoFe2O4) is a nominee of particular interest due to its high saturation magnetization, high coercivity, strong anisotropy, and excellent chemical stability. The [...] Read more.
Nano-sized spinel ferrites are highly regarded owing to their special optical, electrical, and magnetic properties. Cobalt ferrite (CoFe2O4) is a nominee of particular interest due to its high saturation magnetization, high coercivity, strong anisotropy, and excellent chemical stability. The synthesis of these materials with a pure crystalline phase is sometimes limited due to the required high temperatures for their calcination. In this work, we report a one-pot simple synthesis procedure of cobalt ferrite by the auto-combustion under microwave irradiation into a domestic microwave oven with a power of 900 W for 30 min. Glycine and ammonium nitrate were used as organic promoters and metal nitrates as precursors. The synthesized nanoparticles were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersion of X-ray spectrometry (EDX) techniques. The electrochemical properties and capability of the prepared product as a pseudocapacitive material were evaluated using cyclic voltammetry (CV) tests in details. Full article
Show Figures

Figure 1

13 pages, 5174 KB  
Article
Correlation Between Composition and Electrodynamics Properties in Nanocomposites Based on Hard/Soft Ferrimagnetics with Strong Exchange Coupling
by Munirah Abdullah Almessiere, Alex V. Trukhanov, Yassine Slimani, K.Y. You, Sergei V. Trukhanov, Ekaterina L. Trukhanova, F. Esa, A. Sadaqat, K. Chaudhary, Maxim Zdorovets and Abdulhadi Baykal
Nanomaterials 2019, 9(2), 202; https://doi.org/10.3390/nano9020202 - 4 Feb 2019
Cited by 242 | Viewed by 7330
Abstract
In this work, Sr0.3Ba0.4Pb0.3Fe12O19/(CuFe2O4)x (x = 2, 3, 4, and 5) as strongly exchange-coupled nanosized ferrites were fabricated using a one-pot sol–gel combustion method (citrate sol-gel method). The [...] Read more.
In this work, Sr0.3Ba0.4Pb0.3Fe12O19/(CuFe2O4)x (x = 2, 3, 4, and 5) as strongly exchange-coupled nanosized ferrites were fabricated using a one-pot sol–gel combustion method (citrate sol-gel method). The X-ray diffraction (XRD) powder patterns of the products confirmed the occurrence of pure, exchange-coupled ferrites. Frequency dependencies of the microwave characteristics (MW) were investigated using a co-axial method. The non-linear behavior of the MW with the composition transformation may be due to different degrees of Fe ion oxidation on the spinel/hexaferrite grain boundaries and strong exchange coupling during the hard and soft phases. Full article
(This article belongs to the Collection Applications of Magnetic Nanomaterials)
Show Figures

Figure 1

11 pages, 5000 KB  
Article
Synthesis and Properties of Nanosized Stoichiometric Cobalt Ferrite Spinel
by Vilém Bartůněk, David Sedmidubský, Štěpán Huber, Marie Švecová, Pavel Ulbrich and Ondřej Jankovský
Materials 2018, 11(7), 1241; https://doi.org/10.3390/ma11071241 - 19 Jul 2018
Cited by 47 | Viewed by 6243
Abstract
Nanoparticles with controllable sizes of ferrite spinel CoFe2O4 were formed by thermal treatment of cobalt-iron glycerolate. Thermal behavior during the heating was studied by differential thermal analysis combined with thermogravimetry. The precursor, as well as the prepared nanoparticles, were analyzed [...] Read more.
Nanoparticles with controllable sizes of ferrite spinel CoFe2O4 were formed by thermal treatment of cobalt-iron glycerolate. Thermal behavior during the heating was studied by differential thermal analysis combined with thermogravimetry. The precursor, as well as the prepared nanoparticles, were analyzed by a broad spectrum of analytic techniques (X-Ray photoelectron spectroscopy (XPS), X-Ray diffraction (XRD), Energy dispersive spectroscopy (EDS), Atomic absorption spectroscopy (AAS), Scanning electron microscopy (SEM), and Raman spectroscopy). The particle size of nanoparticles was obtained from Transmission electron microscopy and also calculated using Scherrer formula. A vibrating sample magnetometer (VSM) in a Physical Property Measurement System was used to analyze the magnetic properties of nanoparticles. Full article
Show Figures

Graphical abstract

Back to TopTop