Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (299)

Search Parameters:
Keywords = nanostructured lipid carriers (NLC)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 2146 KB  
Review
Lipid-Based Drug Delivery Systems: Concepts and Recent Advances in Transdermal Applications
by Lefkothea Antonara, Efstathia Triantafyllopoulou, Maria Chountoulesi, Natassa Pippa, Paraskevas P. Dallas and Dimitrios M. Rekkas
Nanomaterials 2025, 15(17), 1326; https://doi.org/10.3390/nano15171326 - 28 Aug 2025
Viewed by 161
Abstract
Lipid-based nanocarriers are ideal drug delivery systems for transdermal administration due to their biocompatibility and biodegradability. Their lipophilicity and/or similarity to the natural lipids of the epidermis enable intermolecular interactions with the lipid membrane and therefore result in effective passage through the skin. [...] Read more.
Lipid-based nanocarriers are ideal drug delivery systems for transdermal administration due to their biocompatibility and biodegradability. Their lipophilicity and/or similarity to the natural lipids of the epidermis enable intermolecular interactions with the lipid membrane and therefore result in effective passage through the skin. The purpose of this review is to focus on lipid-based drug delivery nanoplatforms administered via the transdermal route by summarizing the most recent developments with the intention of fast clinical translation. Liposomes, solid lipid nanoparticles (SLNs), nanostructured lipid carriers (NLCs), ethosomes, and transfersomes exhibit ideal physicochemical characteristics and encapsulation efficiency to enhance the effectiveness of the incorporated Active Pharmaceutical Ingredients (APIs). The state of the art for fabricating transcutaneous lipid drug delivery nanoparticles and the strategies for overcoming the current obstacles, as well as the added value of novel formulations, will be discussed within the scope of Quality by Design applications. The limitations and challenges that still exist will also be considered. Full article
(This article belongs to the Special Issue Nanomaterials for Biomedical and Environmental Applications)
Show Figures

Figure 1

20 pages, 2887 KB  
Article
Jamamina: A Green Nanostructured Lipid Carrier with NaDES and Curcumin for Redox Modulation and Inflammatory Disorders
by Luís Felipe Romera, Luísa Schuh, Caio Leal, Leonardo Froes de Azevedo Chang, Brenda Martins dos Santos, Pedro Henrique Almeida de Jesus da Rocha, Marina Arantes Radicchi, Eliana Fortes Gris, Leila Falcao, Sônia Nair Báo and Victor Carlos Mello
Int. J. Mol. Sci. 2025, 26(17), 8373; https://doi.org/10.3390/ijms26178373 - 28 Aug 2025
Viewed by 342
Abstract
Plant-derived compounds offer immense therapeutic potential, yet many suffer from limited solubility, instability, and poor bioavailability, restricting their clinical application. Curcumin, a polyphenol extracted from Curcuma longa, is one such molecule, with proven antioxidant and anti-inflammatory properties. To overcome its pharmacokinetic limitations, [...] Read more.
Plant-derived compounds offer immense therapeutic potential, yet many suffer from limited solubility, instability, and poor bioavailability, restricting their clinical application. Curcumin, a polyphenol extracted from Curcuma longa, is one such molecule, with proven antioxidant and anti-inflammatory properties. To overcome its pharmacokinetic limitations, we developed Jamamina, a sustainable nanostructured lipid carrier (NLC) system incorporating curcumin and a Natural Deep Eutectic Solvent (NaDES) phase composed of malic acid and betaine. The bioinspired formulation, based on Amazonian tucumã butter and jambu oil, achieved high encapsulation efficiency (>80%) and curcumin amorphization, enhancing solubility and colloidal stability. In vitro assays with L132 demonstrated potent antioxidant activity (DPPH), a significant reduction in pro-inflammatory cytokines (TNF-α and IL-6), and upregulation of IL-10. The system also suppressed MMP-2/9 activity and preserved cytoskeletal integrity under oxidative stress. These findings highlight Jamamina as a multifunctional, eco-friendly nanoplatform that enables the pharmacological application of plant-derived curcumin, representing a promising platform for modulating redox balance and investigating inflammation in epithelial-like contexts. Full article
(This article belongs to the Special Issue Plant-Derived Bioactive Compounds for Pharmacological Applications)
Show Figures

Graphical abstract

22 pages, 2212 KB  
Article
Bemotrizinol-Loaded Lipid Nanoparticles for the Development of Sunscreen Emulsions
by Maria Grazia Sarpietro, Debora Santonocito, Giuliana Greco, Stefano Russo, Carmelo Puglia and Lucia Montenegro
Colloids Interfaces 2025, 9(5), 54; https://doi.org/10.3390/colloids9050054 - 26 Aug 2025
Viewed by 333
Abstract
In this work, bemotrizinol (BMTZ), a broad-spectrum UV-filter, was loaded into nanostructured lipid carriers (NLC) whose lipid matrix contained different oils (isopropyl myristate, decyl oleate, caprylic/capric triglyceride) to assess the effects of the lipid core composition on the properties of the resulting NLC. [...] Read more.
In this work, bemotrizinol (BMTZ), a broad-spectrum UV-filter, was loaded into nanostructured lipid carriers (NLC) whose lipid matrix contained different oils (isopropyl myristate, decyl oleate, caprylic/capric triglyceride) to assess the effects of the lipid core composition on the properties of the resulting NLC. Subsequently, the effects of incorporating different concentrations of optimized BMTZ-loaded NLC on the technological properties of O/W emulsions (pH, viscosity, spreadability, occlusion factor, in vitro BMTZ release, skin permeation, and in vitro sun protection factor) were assessed. The optimized BMTZ-loaded NLC contained 3.0% w/w of isopropyl myristate and showed mean size = 190.6 ± 9.8 nm, polydispersity index = 0.153 ± 0.013, ζ-potential = −10.6 ± 1.7 mV, and loading capacity = 8% w/w. The incorporation of increasing concentrations (5, 10, 20% w/w) of optimized BMTZ loaded into emulsions provided a slight increase in spreadability, lower viscosity, and no change in pH, occlusion factor, and BMTZ release compared to emulsions containing free BMTZ. No BMTZ skin permeation was observed from all formulations. About a 20% increase in sun protection factor values was obtained for vehicles containing BMTZ-loaded NLC compared with formulations incorporating the same amount of free BMTZ. Therefore, incorporating BMTZ-loaded NLC into emulsions could be a promising strategy to develop safer and more effective sunscreen formulations. Full article
(This article belongs to the Special Issue Recent Advances on Emulsions and Applications: 3rd Edition)
Show Figures

Figure 1

52 pages, 1938 KB  
Review
Solid Lipid Nanoparticles and Nanostructured Lipid Carriers for Anticancer Phytochemical Delivery: Advances, Challenges, and Future Prospects
by Shery Jacob, Rekha Rao, Bapi Gorain, Sai H. S. Boddu and Anroop B. Nair
Pharmaceutics 2025, 17(8), 1079; https://doi.org/10.3390/pharmaceutics17081079 - 21 Aug 2025
Viewed by 694
Abstract
Phytochemicals exhibit a broad spectrum of pharmacological activities, including significant anticancer potential. However, their clinical translation is often hampered by poor aqueous solubility, low bioavailability, and chemical instability. Lipid-based nanocarriers, especially solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs), have proven to [...] Read more.
Phytochemicals exhibit a broad spectrum of pharmacological activities, including significant anticancer potential. However, their clinical translation is often hampered by poor aqueous solubility, low bioavailability, and chemical instability. Lipid-based nanocarriers, especially solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs), have proven to be effective strategies for addressing these challenges. These nanocarriers improve the solubility, stability, and bioavailability of phytochemical-based anticancer agents, while enabling controlled and tumor-specific drug release. Encapsulation of anticancer phytochemicals such as curcumin, quercetin, resveratrol, silymarin, and naringenin in SLNs and NLCs has demonstrated improved therapeutic efficacy, cellular uptake, and reduced systemic toxicity. Co-delivery strategies, combining multiple phytochemicals or phytochemical–synthetic drug pairs, further contribute to synergistic anticancer effects, dose reduction, and minimized side effects, particularly important in complex cancers such as glioblastoma, breast, and colon cancers. This review presents a comparative overview of SLNs and NLCs in terms of formulation methods, in vitro characterization, and classification of key phytochemicals based on chemical structure and botanical sources. The roles of these lipidic carriers in enhancing anticancer activity, challenges in formulation, and recent patent filings are discussed to highlight ongoing innovations. Additionally, hybrid lipid–polymer nanoparticles are introduced as next-generation carriers combining the benefits of both systems. Future research should aim to develop scalable, biomimetic, and stimuli-responsive nanostructures through advanced surface engineering. Collaborative interdisciplinary efforts and regulatory harmonization are essential to translate these lipid-based carriers into clinically viable platforms for anticancer phytochemical delivery. Full article
(This article belongs to the Section Nanomedicine and Nanotechnology)
Show Figures

Graphical abstract

24 pages, 4059 KB  
Article
Nanostructured Lipid Carriers for Sustained Release and Enhanced Delivery of Vanda coerulea Protocorm Extract
by Piyatida Amnuaykan, Pimporn Anantaworasakul, Kodpaka Lueadnakrob, Pongsagon Kunkul, Wilasinee Chokrungsarid, Aiya Thummanuwong, Saranya Juntrapirom, Watchara Kanjanakawinkul and Wantida Chaiyana
Pharmaceutics 2025, 17(8), 1076; https://doi.org/10.3390/pharmaceutics17081076 - 20 Aug 2025
Viewed by 398
Abstract
Background/Objectives: This study aimed to develop a nanostructured lipid carrier (NLC) system incorporating a catechin-rich Vanda coerulea extract for topical cosmetic applications and to evaluate its physicochemical properties, release behavior, and skin retention performance. Methods: Blank NLCs were prepared using hot emulsification followed [...] Read more.
Background/Objectives: This study aimed to develop a nanostructured lipid carrier (NLC) system incorporating a catechin-rich Vanda coerulea extract for topical cosmetic applications and to evaluate its physicochemical properties, release behavior, and skin retention performance. Methods: Blank NLCs were prepared using hot emulsification followed by sonication, with glyceryl monostearate, caprylic triglyceride, Poloxamer® 188, and Tween® 80 as the formulation components. NLCs with varying solid-to-liquid lipid ratios were developed while maintaining a constant total lipid content of 5% w/w. The formulations were characterized based on their particle size, polydispersity index (PDI), zeta potential, and physical stability, including stability after a heating–cooling cycle test. The effect of ultrasonication duration was also evaluated. The optimized NLC was then loaded with a V. coerulea extract and evaluated for in vitro release and skin retention using catechin as a marker. Results: The NLC with a particle size of 235.5 ± 29.8 nm, a narrow PDI range of 0.382 ± 0.090, and a strong zeta potential of −29.8 ± 0.3 mV was selected for the incorporation of the V. coerulea extract. The extract-loaded NLC exhibited a sustained release over 24 h, significantly different from the V. coerulea extract solution (p < 0.05). Skin retention studies revealed that the NLC achieved approximately twice the catechin retention compared to the solution at the 1 h time point (1.30 ± 0.01% vs. 0.68 ± 0.03% w/w). Conclusions: The V. coerulea-extract-loaded NLC demonstrated favorable physicochemical properties, sustained release behavior, and enhanced skin retention. These findings support its potential as a promising topical delivery system for antioxidant-rich botanical extracts in cosmetic applications. Full article
(This article belongs to the Section Drug Delivery and Controlled Release)
Show Figures

Figure 1

28 pages, 3665 KB  
Article
Evaluation of the Cytotoxic Activity of Nanostructured Lipid Carrier Systems for Fatty Acid Amides and Silk Fibroins in Breast Cancer Cell Lines
by Sandro da Silva Borges, Sued Eustáquio Mendes Miranda, Victor Hugo de Souza Marinho, André Luís Branco de Barros, Sergio Yoshioka, Lorane Izabel da Silva Hage-Melim, Ana Carolina de Jesus Silva, Irlon Maciel Ferreira and Anna Eliza Maciel de Faria Mota Oliveira
Molecules 2025, 30(16), 3337; https://doi.org/10.3390/molecules30163337 - 11 Aug 2025
Viewed by 517
Abstract
Breast cancer, a highly prevalent malignancy among women, continues to pose a significant global health challenge, as conventional therapies are often limited by adverse effects. This study developed and evaluated nanostructured lipid carriers (NLCs) encapsulating fatty acid amides (FAAs) semi-synthesized from andiroba oil [...] Read more.
Breast cancer, a highly prevalent malignancy among women, continues to pose a significant global health challenge, as conventional therapies are often limited by adverse effects. This study developed and evaluated nanostructured lipid carriers (NLCs) encapsulating fatty acid amides (FAAs) semi-synthesized from andiroba oil and combined with silk fibroin (SF) as a novel therapeutic strategy. Methods: FAAs were synthesized via direct amidation and characterized by GC-MS, FT-IR, and 13C NMR. These fatty acid amides were then incorporated into NLCs containing SF. The formulation was evaluated for its physicochemical stability, cell selectivity, and cytotoxicity against 4T1 murine breast cancer cells and healthy human fibroblasts. Results: The NLC-FAA/SF formulation exhibited physicochemical stability (average particle size: 136.9 ± 23.6 nm; zeta potential: −8.3 ± 12.0 mV; polydispersity index: 0.19 ± 0.04), indicating a monodisperse and stable system. In vitro cytotoxicity assays demonstrated high selective activity against 4T1 murine breast cancer cells (IC50 = 0.18 ± 0.06 μg/mL) and negligible toxicity to healthy human fibroblasts. Molecular docking studies revealed favorable interactions between the FAAs and cannabinoid receptors CB1 and CB2, with unsaturated FAAs showing higher binding scores and stability, suggesting their potential as cannabinoid receptor ligands. These findings highlight NLC-FAA/SF as a promising, selective, and effective nanoplatform for breast cancer treatment, warranting further investigation into its mechanism of action and in vivo efficacy. Full article
Show Figures

Figure 1

18 pages, 3002 KB  
Article
Smart-AMPs: Decorated Nanostructured Lipid Carriers for Improved Efficacy of Antimicrobial Peptides in Chronically Infected Burn Wounds
by Daniela Müller, Laura Nallbati and Cornelia M. Keck
Pharmaceutics 2025, 17(8), 1039; https://doi.org/10.3390/pharmaceutics17081039 - 10 Aug 2025
Viewed by 633
Abstract
Background/Objectives: Burn wound infections present significant clinical challenges due to multidrug-resistant pathogens and the limitations of traditional antimicrobials. While antimicrobial peptides (AMPs) have broad-spectrum effectiveness, their instability in wound environments limits their use. This study compares properties of AMP-decorated nanostructured lipid carriers [...] Read more.
Background/Objectives: Burn wound infections present significant clinical challenges due to multidrug-resistant pathogens and the limitations of traditional antimicrobials. While antimicrobial peptides (AMPs) have broad-spectrum effectiveness, their instability in wound environments limits their use. This study compares properties of AMP-decorated nanostructured lipid carriers (NLCs) to free AMPs, focusing on their dermal penetration, retention, and antimicrobial efficacy in simulated ex vivo burn wound models. Methods: AMP-decorated NLCs (smart-AMPs) were produced by electrostatic and hydrophobic surface adsorption and characterized regarding their size, zeta potential, and physical short-term stability. The distribution of AMPs within the wounds was evaluated using an ex vivo porcine ear model with various wound types. The antimicrobial efficacy was assessed by monitoring the bioluminescence of Aliivibrio fischeri as a live bacterial marker for 24 h. Results: The size and zeta potential measurements confirmed the successful formation of smart-AMPs. The dermal penetration of AMPs was influenced by the type of wound and the type of AMP formulation (free AMPs vs. smart-AMPs). In the chronically infected burn wounds, which were characterized by the formation of a biofilm in a protein-rich wound fluid, the smart-AMPs resulted in a 1.5-fold higher and deeper penetration of the AMPs, and the antimicrobial activity was 6-fold higher compared to the free AMPs. Conclusions: smart-AMPs present an innovative approach for treating chronic, biofilm-associated wounds more efficiently than the current treatment options. Full article
(This article belongs to the Special Issue Advances in Delivery of Peptides and Proteins)
Show Figures

Figure 1

23 pages, 3128 KB  
Review
Advances in Transdermal Delivery Systems for Treating Androgenetic Alopecia
by Shilong Xu, Lian Zhou, Haodong Zhao and Siwen Li
Pharmaceutics 2025, 17(8), 984; https://doi.org/10.3390/pharmaceutics17080984 - 30 Jul 2025
Viewed by 1034
Abstract
Androgenetic alopecia (AGA) is the most prevalent form of alopecia areata. Traditional treatment options, including minoxidil, finasteride, and hair transplantation, have their limitations, such as skin irritation, systemic side effects, invasiveness, and high costs. The transdermal drug delivery system (TDDS) offers an innovative [...] Read more.
Androgenetic alopecia (AGA) is the most prevalent form of alopecia areata. Traditional treatment options, including minoxidil, finasteride, and hair transplantation, have their limitations, such as skin irritation, systemic side effects, invasiveness, and high costs. The transdermal drug delivery system (TDDS) offers an innovative approach for treating AGA by administering medications through the skin to achieve localized and efficient delivery while overcoming the skin barrier. This review systematically explores the application of TDDS in AGA treatment, highlighting emerging technologies such as microneedles (MNs), liposomes, ionic liquids (ILs), nanostructured lipid carriers (NLCs), and transporters (TFs). It analyzes the underlying mechanisms that enhance drug penetration through hair follicles. Finally, this review presents a forward-looking perspective on the future use of TDDS in the management of AGA, aiming to provide insights and references for designing effective transdermal drug delivery systems for this condition. Full article
(This article belongs to the Section Drug Delivery and Controlled Release)
Show Figures

Graphical abstract

23 pages, 2625 KB  
Article
Effects of Andrographolide-Loaded Nanostructured Lipid Carriers on Growth, Feed Efficiency, and Resistance to Streptococcus agalactiae in Nile Tilapia (Oreochromis niloticus)
by Warut Kengkittipat, Manoj Tukaram Kamble, Sirikorn Kitiyodom, Jakarwan Yostawonkul, Gotchagorn Sawatphakdee, Kim D. Thompson, Seema Vijay Medhe and Nopadon Pirarat
Animals 2025, 15(14), 2117; https://doi.org/10.3390/ani15142117 - 17 Jul 2025
Viewed by 613
Abstract
The increasing demand for sustainable disease management in aquaculture has intensified interest in plant-based therapeutics. This study evaluated the formulation and efficacy of andrographolide-loaded nanostructured lipid carriers (AND-NLCs) in Nile tilapia (Oreochromis niloticus) challenged with Streptococcus agalactiae ENC06. AND-NLCs were prepared [...] Read more.
The increasing demand for sustainable disease management in aquaculture has intensified interest in plant-based therapeutics. This study evaluated the formulation and efficacy of andrographolide-loaded nanostructured lipid carriers (AND-NLCs) in Nile tilapia (Oreochromis niloticus) challenged with Streptococcus agalactiae ENC06. AND-NLCs were prepared by the phase-inversion technique and characterized by dynamic light scattering, transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR), and in vitro release profiling. Antibacterial activity was assessed by measuring inhibition zone diameters, minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC). Growth performance, feed utilization, hepatosomatic index (HSI), and disease resistance were evaluated over a 60-day feeding trial. The AND-NLCs exhibited an optimal particle size (189.6 nm), high encapsulation efficiency (90.58%), sustained release, and structural stability. Compared to the free AND and control group, AND-NLC supplementation significantly improved growth, feed efficiency, HSI, and positive allometric growth. It also enhanced survival (73.3%) and relative percent survival (RPS = 65.6%) following S. agalactiae ENC06 infection. Antibacterial efficacy and physiological responses showed positive correlations with nanoparticle characteristics. These findings suggest that AND-NLCs enhance bioavailability and therapeutic efficacy, supporting their potential as a functional dietary additive to promote growth and improve disease resistance in tilapia aquaculture. Full article
(This article belongs to the Special Issue Lipid-Based Nanoparticles for Sustainable Aquaculture)
Show Figures

Figure 1

17 pages, 3193 KB  
Article
Distinct In Vitro Effects of Liposomal and Nanostructured Lipid Nanoformulations with Entrapped Acidic and Neutral Doxorubicin on B16-F10 Melanoma and Walker 256 Carcinoma Cells
by Roxana Pop, Mădălina Nistor, Carmen Socaciu, Mihai Cenariu, Flaviu Tăbăran, Dumitriţa Rugină, Adela Pintea and Mihai Adrian Socaciu
Pharmaceutics 2025, 17(7), 904; https://doi.org/10.3390/pharmaceutics17070904 - 12 Jul 2025
Viewed by 879
Abstract
Background: Liposomes and, more recently, structured nanolipid particles have demonstrated effectiveness as carriers for delivering hydrophilic or lipophilic anticancer agents, enhancing their biocompatibility, bioavailability, and sustained release to target cells. Objective: Herein, four doxorubicin formulations—comprising either the acidic or neutral form—were encapsulated into [...] Read more.
Background: Liposomes and, more recently, structured nanolipid particles have demonstrated effectiveness as carriers for delivering hydrophilic or lipophilic anticancer agents, enhancing their biocompatibility, bioavailability, and sustained release to target cells. Objective: Herein, four doxorubicin formulations—comprising either the acidic or neutral form—were encapsulated into liposomes (Lipo) or nanostructured lipid carriers (NLCs) and characterized in terms of size, entrapment efficiency, morphology, and effects on two cancer cell lines (melanoma B16-F10 and breast carcinoma Walker 256 cells). Methods and Results: While liposomal formulations containing acidic doxorubicin displayed IC50 values ranging from 1.33 to 0.37 µM, NLC-based formulations, particularly NLC-Doxo@Ac, demonstrated enhanced cytotoxicity with IC50 values as low as 0.58 µM. Neutral Doxorubicin demonstrated lower cytotoxicity in both the nanoformulations and cell lines. Differences were also observed in their internalization patterns, cell-cycle impact, and apoptotic/necrotic effects. Compared to liposomes, NLCs exhibited distinct internalization patterns and induced stronger cell-cycle arrest and necrosis, especially in melanoma cells. Notably, NLC-Doxo@Ac outperformed liposomal counterparts in melanoma cells, while liposomal formulations showed slightly higher efficacy in Walker cells. Early and late apoptosis were more pronounced in Walker cells, whereas necrosis was more prominent in melanoma B16-F10 cells, particularly with the nanolipid formulations. Conclusions: These results correlated positively with cell-cycle measurements, highlighting the potential of NLCs as an alternative to liposomes for the delivery of neutral or acidic doxorubicin, particularly in tumor types that respond poorly to conventional formulations. Full article
Show Figures

Figure 1

26 pages, 808 KB  
Review
A Review of Formulation Strategies for Cyclodextrin-Enhanced Solid Lipid Nanoparticles (SLNs) and Nanostructured Lipid Carriers (NLCs)
by Tarek Alloush and Burcu Demiralp
Int. J. Mol. Sci. 2025, 26(13), 6509; https://doi.org/10.3390/ijms26136509 - 6 Jul 2025
Viewed by 1288
Abstract
The advancement of efficient drug delivery systems continues to pose a significant problem in pharmaceutical sciences, especially for compounds with limited water solubility. Lipid-based systems, including solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs), have emerged as viable options owing to their [...] Read more.
The advancement of efficient drug delivery systems continues to pose a significant problem in pharmaceutical sciences, especially for compounds with limited water solubility. Lipid-based systems, including solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs), have emerged as viable options owing to their biocompatibility, capability to safeguard labile chemicals, and potential for prolonged release. Nonetheless, the encapsulation efficiency (EE) and release dynamics of these carriers can be enhanced by including cyclodextrins (CDs)—cyclic oligosaccharides recognized for their ability to form inclusion complexes with hydrophobic compounds. This article offers an extensive analysis of CD-modified SLNs and NLCs as multifunctional drug delivery systems. The article analyses the fundamental principles of these systems, highlighting the pre-complexation of the drug with cyclodextrins before lipid incorporation, co-encapsulation techniques, and surface adsorption after formulation. Attention is concentrated on the physicochemical interactions between cyclodextrins and lipid matrices, which influence essential factors such as particle size, encapsulation efficiency, and colloidal stability. The review includes characterization techniques, such as particle size analysis, zeta potential measurement, drug release studies, and Fourier-transform infrared spectroscopy (FT-IR)/Nuclear Magnetic Resonance (NMR) analyses. The study highlights the application of these systems across many routes of administration, including oral, topical, and mucosal, illustrating their adaptability and potential for targeted delivery. The review outlines current formulation challenges, including stability issues, drug leakage, and scalability concerns, and proposes solutions through advanced approaches, such as stimuli-responsive release mechanisms and computer modeling for system optimization. The study emphasizes the importance of regulatory aspects and outlines future directions in the development of CD-lipid hybrid nanocarriers, showcasing its potential to revolutionize the delivery of poorly soluble drugs. Full article
(This article belongs to the Special Issue Research on Cyclodextrin)
Show Figures

Graphical abstract

18 pages, 1061 KB  
Article
Design of Clofazimine-Loaded Lipid Nanoparticles Using Smart Pharmaceutical Technology Approaches
by Helena Rouco, Nicola Filippo Virzì, Carolina Menéndez-Rodríguez, Carmen Potel, Patricia Diaz-Rodriguez and Mariana Landin
Pharmaceutics 2025, 17(7), 873; https://doi.org/10.3390/pharmaceutics17070873 - 2 Jul 2025
Viewed by 562
Abstract
Background/Objectives: Clofazimine (CFZ) is a versatile antimicrobial active against several bacterial species, although its reduced aqueous solubility and the occurrence of side effects limit its use. Nanostructured lipid carriers (NLCs) constitute an interesting approach to increase drug bioavailability and safety. However, the [...] Read more.
Background/Objectives: Clofazimine (CFZ) is a versatile antimicrobial active against several bacterial species, although its reduced aqueous solubility and the occurrence of side effects limit its use. Nanostructured lipid carriers (NLCs) constitute an interesting approach to increase drug bioavailability and safety. However, the development of nanoparticle-based formulations is challenging. In the present work, a combination of smart pharmaceutical technology approaches was proposed to develop CFZ-loaded NLCs, taking advantage of previous knowledge on NLCs screening. Methods: A design space previously established using Artificial Intelligence (AI) tools was applied to develop CFZ-loaded NLC formulations. After formulation characterization, Neurofuzzy Logic (NFL) and in silico docking simulations were employed to enhance the understanding of lipid nanocarriers. Then, the performance of formulations designed following NFL guidelines was characterized in terms of biocompatibility, using murine fibroblasts, and antimicrobial activity against several strains of Staphylococcus aureus. Results: The followed approach enabled CFZ-loaded NLC formulations with optimal properties, including small size and high antimicrobial payload. NFL was useful to investigate the existing interactions between NLC components and homogenization conditions, that influence CFZ-loaded NLCs’ final properties. Also, in silico docking simulations were successfully applied to examine interactions and affinity between the drug and the lipid matrix components. Finally, the designed CFZ-loaded formulations demonstrated suitable biocompatibility, together with antimicrobial activity. Conclusions: The implementation of smart strategies during nanoparticle-based therapeutics development, such as those described in this manuscript, would enable the more efficient design of new systems for suitable antimicrobial delivery. Full article
Show Figures

Figure 1

16 pages, 1258 KB  
Article
NLC-Based Rifampicin Delivery System: Development and Characterization for Improved Drug Performance Against Staphylococcus aureus
by Javiera Carrasco-Rojas, Felipe I. Sandoval, Christina M. A. P. Schuh, Carlos F. Lagos, Javier O. Morales, Francisco Arriagada and Andrea C. Ortiz
Pharmaceutics 2025, 17(6), 799; https://doi.org/10.3390/pharmaceutics17060799 - 19 Jun 2025
Cited by 1 | Viewed by 735
Abstract
Background/Objectives: Rifampicin is a typical antibiotic used for the treatment of Staphylococcus aureus (S. aureus) infections; however, its clinical utility is limited by poor aqueous solubility, chemical instability, and increasing bacterial resistance. Nanostructured lipid carriers (NLCs) offer a promising strategy [...] Read more.
Background/Objectives: Rifampicin is a typical antibiotic used for the treatment of Staphylococcus aureus (S. aureus) infections; however, its clinical utility is limited by poor aqueous solubility, chemical instability, and increasing bacterial resistance. Nanostructured lipid carriers (NLCs) offer a promising strategy to improve drug solubility, stability, and antimicrobial performance. Methods: In this study, rifampicin-loaded NLC (NLC-RIF) was developed using a hot homogenization with a low energy method and characterized in terms of particle size, polydispersity index, zeta potential, encapsulation efficiency, colloidal stability, and drug loading. Results: In vitro release studies under sink conditions demonstrated a biphasic release pattern, best described by the Korsmeyer–Peppas model, suggesting a combination of diffusion and matrix erosion mechanisms. Antimicrobial activity against S. aureus revealed a substantial increase in potency for NLC-RIF, with an IC50 of 0.46 ng/mL, approximately threefold lower than that of free rifampicin. Cytotoxicity assays in HepG2 cells confirmed over 90% cell viability across all tested concentrations. Conclusions: These findings highlight the potential of NLC-RIF as a biocompatible and effective nanocarrier system for enhancing rifampicin delivery and antibacterial activity. Full article
(This article belongs to the Special Issue Nanoparticle-Mediated Targeted Drug Delivery Systems)
Show Figures

Figure 1

17 pages, 1804 KB  
Article
Difenoconazole-Loaded Nanostructured Lipid Carriers: Preparation, Characterization, and Evaluation
by Yinghong Li, Hu Zhang, Tingting Meng, Yuqin Zhou, Beilei Zhou, Shihan Du, Hong Yuan and Fuqiang Hu
Pharmaceuticals 2025, 18(6), 780; https://doi.org/10.3390/ph18060780 - 23 May 2025
Cited by 1 | Viewed by 618
Abstract
Background/Objectives: Difenoconazole (DFC) is a broad-spectrum fungicide. However, its application is limited due to poor aqueous solubility. Drugs with low solubility can be better absorbed using nanostructured lipid carriers (NLCs). Hence, the application of DFC in an NLC delivery system is proposed. [...] Read more.
Background/Objectives: Difenoconazole (DFC) is a broad-spectrum fungicide. However, its application is limited due to poor aqueous solubility. Drugs with low solubility can be better absorbed using nanostructured lipid carriers (NLCs). Hence, the application of DFC in an NLC delivery system is proposed. Methods: Difenoconazole-loaded nanostructured lipid carriers (DFC-NLCs) with different solid–liquid lipid ratios were prepared by solvent diffusion method. Key physicochemical parameters, including particle diameter, surface charge (zeta potential), drug encapsulation efficiency, and morphological characteristics, were systematically characterized. Using Rhizoctonia solani (R. solani) as the model strain, inhibitory efficiency of DFC-NLC dispersion was compared with that of commercial dosage forms, such as 25% DFC emulsifiable concentrate (DFC-EC) and 40% DFC suspension concentrate (DFC-SC). Additionally, uptakes of DFC-NLC dispersions in R. solani were further observed by fluorescence probe technology. The safety profiles of DFC-NLCs and commercial dosage forms were evaluated using zebrafish as the model organism. Acute toxicity studies were conducted to determine the maximum non-lethal concentration (MNLC) and 10% lethal concentration (LC10). Developmental toxicity studies were performed to observe toxic phenotypes. Results: DFC-NLC dispersions were in the nanometer range (≈200 nm) with high zeta potential, spherical in shape with encapsulation efficiency 69.1 ± 1.8%~95.0 ± 2.6%, and drug loading 7.1 ± 0.3%~9.7 ± 0.6% determined by high-performance liquid chromatography coupled with tandem mass spectrometry (HPLC-MS/MS). Compared with commercial dosage forms, the antifungal effect of the DFC-NLC on R. solani was significantly improved in in vitro antibacterial experiments (p < 0.05). The 50% effective concentration (EC50) values were 0.107 mg·L−1 (DFC-NLC), 0.211 mg·L−1 (DFC-EC), and 0.321 mg·L−1 (DFC-SC), respectively. The uptakes of FITC-labeled DFC-NLC demonstrated that an NLC was appropriate to deliver DFC into pathogen to enhance the target effect. In safety assessment studies, DFC-NLCs exhibited a superior safety profile compared with commercial formulations (p < 0.05). Conclusions: This study investigates the feasibility of NLCs as delivery systems for poorly water-soluble fungicides, demonstrating their ability to enhance antifungal efficacy and reduce environmental risks. Full article
(This article belongs to the Section Pharmaceutical Technology)
Show Figures

Figure 1

26 pages, 3983 KB  
Article
Process Analytical Strategies for Size Monitoring: Offline, At-Line, Online, and Inline Methods in a Top-Down Nano-Manufacturing Line
by Christina Glader, Ramona Jeitler, Yan Wang, Remy van Tuijn, Albert Grau-Carbonell, Carolin Tetyczka, Steve Mesite, Philippe Caisse, Johannes Khinast and Eva Roblegg
Pharmaceutics 2025, 17(6), 684; https://doi.org/10.3390/pharmaceutics17060684 - 22 May 2025
Viewed by 913
Abstract
Background/Objectives: Continuous manufacturing is gaining importance in the nanopharmaceutical field, offering improved process efficiency and product consistency. To fully leverage its potential, the integration of Process Analytical Technology (PAT) tools is essential for real-time quality control and robust process monitoring. Among the [...] Read more.
Background/Objectives: Continuous manufacturing is gaining importance in the nanopharmaceutical field, offering improved process efficiency and product consistency. To fully leverage its potential, the integration of Process Analytical Technology (PAT) tools is essential for real-time quality control and robust process monitoring. Among the critical quality attributes (CQAs) of nanosystems, particle size plays a key role in ensuring product consistency and performance. However, real-time size monitoring remains challenging due to complex process dynamics and nanosystem heterogeneity. Methods: This study evaluates the applicability of conventional Dynamic Light Scattering (DLS) and spatially resolved DLS (SR-DLS) using the NanoFlowSizer (NFS) as PAT tools in a temperature-regulated top-down nano-production line. Various lipid-based nanosystems, including solid lipid nanoparticles (SLN), nanostructured lipid carriers (NLC), and nanoemulsions (NEs), were investigated. To ensure reliable implementation, key factors such as sample dilution, viscosity, focus position, measurement angle and temperature effects were systematically assessed for offline and at-line DLS using the Litesizer 500, as well as for offline, inline, and online SR-DLS using the NFS. Results: Offline screening confirmed that selecting the appropriate dilution medium and rate ensures measurement reliability. At-line methods provided an efficient alternative by enabling rapid final product control with minimal manual intervention. Inline and online monitoring further enhanced process efficiency by enabling real-time tracking of size, reducing waste, and allowing immediate process adjustments. Conclusions: This study demonstrates that integrating offline, at-line, in-line, and online DLS techniques allows for comprehensive product monitoring throughout the entire production line. This approach ensures a streamlined process, enables real-time adjustments, and facilitates reliable quality control after production and during storage. Full article
(This article belongs to the Section Pharmaceutical Technology, Manufacturing and Devices)
Show Figures

Graphical abstract

Back to TopTop