Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,602)

Search Parameters:
Keywords = natural fermentation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 6060 KB  
Article
High-Mountain Tuber Products Improve Selectively the Development and Detoxifying Capacity of Lactobacilli Strains as an Innovative Culture Strategy
by Cecilia Hebe Orphèe, María Inés Mercado, Fernando Eloy Argañaraz Martínez, Mario Eduardo Arena and Elena Cartagena
Fermentation 2025, 11(10), 576; https://doi.org/10.3390/fermentation11100576 - 6 Oct 2025
Abstract
The study provides valuable insights into the sustainable utilization of edible tuber peels from the high mountains of the Argentinian Puna, which constitutes promising reserves of bioactive phenolic compounds with the potential to enhance the biofunctional properties of lactic acid bacteria. Thirty-two extracts [...] Read more.
The study provides valuable insights into the sustainable utilization of edible tuber peels from the high mountains of the Argentinian Puna, which constitutes promising reserves of bioactive phenolic compounds with the potential to enhance the biofunctional properties of lactic acid bacteria. Thirty-two extracts derived from peels of different varieties of tubers, such as Oxalis tuberosa Mol., Ullucus tuberosus Caldas, and Solanum tuberosum L. were incorporated into lactobacilli cultures and individually evaluated. These selectively enhance the development of the probiotic strain Lactiplantibacillus plantarum ATCC 10241 and of Lacticaseibacillus paracasei CO1-LVP105 from ovine origin, without promoting the growth of a pathogenic bacteria set (Escherichia coli O157:H12 and ATCC 35218, Salmonella enterica serovar Typhimurium ATCC 14028, and S. corvalis SF2 and S. cerro SF16), in small amounts. To determine the main phenolic group concentrated in the phytoextracts, a bio-guided study was conducted. The most significant results were obtained by O. tuberosa phytochemicals added to the culture medium at 50 µg/mL, yielding promising increases in biofilm formation (78% for Lp. plantarum and 43% for L. paracasei) and biosurfactant activity (112% for CO1-LVP105 strain). These adaptive strategies developed by bacteria possess key biotechnological significance. Furthermore, the bio-detoxification capacity of phenol and o-phenyl phenol, particularly of the novel strain CO1-LVP105, along with its mode of action and genetic identification, is described for the first time to our knowledge. In conclusion, lactobacilli strains have potential as fermentation starters and natural products, recovered from O. tuberosa peels, and added into culture media contribute to multiple bacterial biotechnological applications in both health and the environment. Full article
26 pages, 802 KB  
Review
Gluten Proteins: Beneficial Factors and Toxic Triggers in Human Health
by Luigia Di Stasio and Gianfranco Mamone
Foods 2025, 14(19), 3403; https://doi.org/10.3390/foods14193403 - 1 Oct 2025
Abstract
The impact of gluten on human health has been the subject of intense study. Gluten proteins are implicated in a range of adverse health effects, such as allergy, celiac disease, and non-celiac gluten sensitivity in predisposed individuals. However, beyond their potential to trigger [...] Read more.
The impact of gluten on human health has been the subject of intense study. Gluten proteins are implicated in a range of adverse health effects, such as allergy, celiac disease, and non-celiac gluten sensitivity in predisposed individuals. However, beyond their potential to trigger adverse reactions, gluten proteins also harbor sequences that, upon digestion or fermentation, can release bioactive peptides with health-promoting properties. These peptides have been reported to exhibit antioxidant, antihypertensive, and immunomodulatory activities, suggesting that gluten-derived products may contribute positively to human health. This review aims to explore the dual nature of gluten proteins, examining their role as both potential health hazards and sources of beneficial molecules. By dissecting the molecular mechanisms underlying gluten-related disorders and the functional properties of gluten-derived peptides, we seek to provide a balanced view of gluten’s complex role in nutrition and health. Full article
Show Figures

Graphical abstract

23 pages, 1644 KB  
Article
Characteristics of Novel Fermented Cloudy Fruit Juices Produced Using Lactiplantibacillus plantarum and Lactic Acid-Producing Lachancea spp. Yeasts
by Paweł Satora, Magdalena Skotniczny and Martyna Maziarek
Molecules 2025, 30(19), 3928; https://doi.org/10.3390/molecules30193928 - 30 Sep 2025
Abstract
Fermented fruit juices are considered functional beverages because they contain bioactive compounds derived from plant materials and produced by the microorganisms involved in fermentation. The composition of these beverages can vary depending on the strain used. This study aimed to determine the effect [...] Read more.
Fermented fruit juices are considered functional beverages because they contain bioactive compounds derived from plant materials and produced by the microorganisms involved in fermentation. The composition of these beverages can vary depending on the strain used. This study aimed to determine the effect of different microorganisms conducting lactic acid fermentation on the chemical composition and bioactive component content of naturally cloudy fermented pear and plum juices. The process used Lactiplantibacillus plantarum K7 bacteria, which were isolated during sauerkraut fermentation, as well as Lachancea thermotolerans PYCC6375 and Lachancea fermentati PYCC5883 yeast cultures, which have poor ethanol fermentation capabilities. The pH, acidity, sugars (HPLC), free amino nitrogen, selected organic acids (HPLC), color (CIELAB), polyphenols (HPLC), volatiles (GC-MS), aroma-active volatiles (GC-MS-O), and sensory characteristics were analyzed. The fermented juices obtained were rich in organic acids (of plant and microbial origin), polyphenols, and had a reduced sugar content (with polyols replacing glucose and fructose), as well as a low alcohol content (<0.2%). At the same time, all three microorganisms significantly enhanced the fruity aroma of the juices. Lachancea yeasts proved to be a viable alternative to lactic acid bacteria for producing fermented juices and were significantly better suited to fermenting plum juices. The highest polyphenol content and highest consumer preference rating were obtained with plum juices fermented with L. fermentati yeast. Full article
(This article belongs to the Special Issue Bioactive Compounds in Foods and Their By-Products)
Show Figures

Figure 1

16 pages, 3481 KB  
Article
Encapsulation of Acid Whey in Alginate Microspheres for Application in Skin Microbiome-Friendly Topical Formulations: Optimization Through a Design of Experiments Approach
by Elżbieta Sikora, Anna Łętocha, Alicja Michalczyk and Agnieszka Kozik
Molecules 2025, 30(19), 3907; https://doi.org/10.3390/molecules30193907 - 28 Sep 2025
Abstract
Skin microbiome-friendly preparations are gaining increasing popularity in the cosmetics and pharmaceutical industries. Fermented plants, lysates, and heat-treated products are used as probiotic ingredients in cosmetics. This is due to the presence of Lactobacillus bacteria, such as acid or acid-rennet whey, which are [...] Read more.
Skin microbiome-friendly preparations are gaining increasing popularity in the cosmetics and pharmaceutical industries. Fermented plants, lysates, and heat-treated products are used as probiotic ingredients in cosmetics. This is due to the presence of Lactobacillus bacteria, such as acid or acid-rennet whey, which are natural probiotics that can positively impact the skin microbiome. However, due to technological difficulties, the direct use of whey as a cosmetic ingredient is limited. An optimized emulsification method was used to obtain alginate microspheres as carriers of whey. The process parameters were optimized using the Design of Experiments (DoEs) methodology. The effect of three key variables, including the type of probiotic raw material (whey from 1—cows, 2—goats, and 3—mixed), the alginate-to-raw material ratio (1–3%), and sonication time (0.5–1.5 min), on parameters such as encapsulation efficiency, bacterial survival, viscosity, and microspheres size was analyzed. The results obtained demonstrated that the optimal process parameters were the sonication time of 0.5 min and the alginate-to-whey mass ratio of 1.5% for all types of whey material studied. However, the most important factor influencing the properties and functionality of the microspheres was sonication time. The optimized whey-loaded microspheres were incorporated into a preservative-containing emulsion system, in which the viability of whey-derived bacteria was monitored over time. The whey encapsulation process effectively maintained the bacteria’s probiotic properties, protecting their viability despite the presence of preservatives (at a level of 4.92 ± 0.9 log CFU/g after 30 days of formulation storage), thus confirming the feasibility of incorporating liquid whey into skincare formulations. Full article
(This article belongs to the Special Issue Bioactive Compounds from Foods for Health Benefits)
Show Figures

Figure 1

18 pages, 3840 KB  
Article
Screening of a Gossypol-Removing Yeast Strain and Characterization of Its Removal Mechanism
by Yushuo Zhang, Tingyao Lv, Qiuyang Jiang, Xiaotong Zeng, Feng Li and Dayong Xu
Microorganisms 2025, 13(10), 2251; https://doi.org/10.3390/microorganisms13102251 - 25 Sep 2025
Abstract
Gossypol, a polyphenolic naphthalene derivative and yellow polyphenolic pigment found in cotton seed glands, presents notable environmental, animal, and human health hazards. To screen for yeast strains capable of utilizing gossypol and to investigate their removal efficiency and mechanisms. Yeast strains capable of [...] Read more.
Gossypol, a polyphenolic naphthalene derivative and yellow polyphenolic pigment found in cotton seed glands, presents notable environmental, animal, and human health hazards. To screen for yeast strains capable of utilizing gossypol and to investigate their removal efficiency and mechanisms. Yeast strains capable of utilizing gossypol as the exclusive carbon source were isolated from cotton field soil. The identification of these strains involved assessment of colony morphology, physiological and biochemical characteristics, and phylogenetic analysis utilizing 26S rDNA gene sequences. Safety evaluations included hemolytic and antibiotic susceptibility tests. The growth responses of the selected strains to varying temperatures and pH levels were determined. Using cotton meal as the solid fermentation substrate, the effects of single factors on gossypol removal by the strains were determined. The intracellular and extracellular localization as well as the nature of the gossypol-removing active components in the strains were characterized, followed by an investigation into the molecular mechanism of gossypol removal using LC-MS analysis. A total of 17 gossypol-utilizing strains were isolated from cotton field soil samples, with strain ZYS-3 demonstrating superior removal capability. Strain ZYS-3 was identified as Meyerozyma guilliermondii, exhibiting no hemolytic activity and susceptibility to nine commonly used antifungal agents. The optimal growth parameters for this strain were determined to be a temperature of 30 °C and a pH of 5.0. In solid-state fermentation using cotton meal at 30 °C with initial fermentation conditions (10% corn flour added as an external carbon source, 40% moisture content, and 6% inoculum concentration) for 3 days, strain ZYS-3 achieved a gossypol removal rate of 73.57%. Subsequent optimization of the fermentation process, including the addition of 10% corn flour as an external carbon source, adjustment of moisture content to 55%, and inoculum concentration to 10%, resulted in an increased gossypol removal rate of 89.77% after 3 days of fermentation, representing a 16.2% enhancement over the initial conditions. Assessment of gossypol removal activity revealed that strain ZYS-3 predominantly removes gossypol through the secretion of extracellular enzymes targeting specific active groups (phenolic hydroxyl groups and aldehyde groups) within the gossypol molecule. These enzymes facilitate oxidation and elimination reactions, leading to the opening of the naphthalene ring and subsequent removal of gossypol. Full article
(This article belongs to the Section Microbial Biotechnology)
Show Figures

Figure 1

16 pages, 3730 KB  
Article
Enhanced Nutritional Composition of Steam-Exploded Cotton Stalk Through Microbial-Enzyme Synergism Solid-State Fermentation
by Deli Dong, Huaibing Yao, Maierhaba Aihemaiti, Gulinigeer Ainizirehong, Yang Li, Yuanyuan Yan, Xin Huang, Min Hou and Weidong Cui
Fermentation 2025, 11(10), 551; https://doi.org/10.3390/fermentation11100551 - 24 Sep 2025
Viewed by 69
Abstract
Due to its high content of lignocellulose, cotton stalk is difficult to degrade naturally and utilize effectively, so it is often regarded as waste. In this study, the effects of Pleurotus ostreatus XH005, Lactiplantibacillus plantarum LP-2, and cellulase enzyme on the cotton stalk [...] Read more.
Due to its high content of lignocellulose, cotton stalk is difficult to degrade naturally and utilize effectively, so it is often regarded as waste. In this study, the effects of Pleurotus ostreatus XH005, Lactiplantibacillus plantarum LP-2, and cellulase enzyme on the cotton stalk substrate under aerobic solid-state fermentation (SSF) conditions were investigated, and the metabolites were analyzed to identify potential functional compounds in the cotton-stalk-fermented feed. Preliminary optimization results obtained through single-factor experiments were as follows: fermentation time 14 days, XH005 inoculum size 8.00% (v/m), material-to-water ratio 1:0.50 (v/m), LP-2 inoculum size 2.00% (v/m), and cellulase addition 0.60% (m/m). Based on these single-factor experimental results, XH005 inoculum size, LP-2 inoculum size, material-to-water ratio, and cellulase addition were selected as independent variables. Through response surface methodology (RSM) optimization experiments, 29 experimental groups were designed. Subsequently, based on Box–Behnken analysis of variance (ANOVA) of lignin and cellulose content, along with contour and response surface plots, the optimal aerobic solid-state fermentation parameters were determined as follows: fermentation time 14 days, XH005 inoculum: 7.00% (v/m), material-to-water ratio: 1:0.55 (v/m), LP-2 inoculum: 2.00% (v/m), and cellulase enzyme addition: 0.65% (m/m). Results showed that compared with the control group (CK), the optimized group exhibited a 27.65% increase in lignin degradation rate and a 47.14% increase in cellulose degradation rate. Crude protein (CP) content increased significantly, while crude fiber (CF), detergent fiber and mycotoxin contents decreased significantly. Non-targeted metabolic analysis indicated that adding cellulase and inoculating Pleurotus ostreatus XH005 and Lactiplantibacillus plantarum LP-2 in aerobic SSF of cotton straw feed produced functionally active substances such as kaempferol (C343), carvone (C709) and trilobatin (C604). Therefore, this study demonstrates that microbial-enzyme co-action SSF significantly enhances the nutritional composition of cotton stalk hydrolysate. Furthermore, this hydrolysate is suitable for the production of functional compounds, endowing the fermented feed with health-promoting properties and enhancing the utilization of cotton processing byproducts in the feed industry. Full article
(This article belongs to the Section Industrial Fermentation)
Show Figures

Figure 1

18 pages, 1145 KB  
Review
Studies on the Ethyl Carbamate Content of Fermented Beverages and Foods: A Review
by Valentina Simion, Valerica Luminiţa Vişan, Ricuţa Vasilica Dobrinoiu and Silvana Mihaela Dănăilă-Guidea
Foods 2025, 14(19), 3292; https://doi.org/10.3390/foods14193292 - 23 Sep 2025
Viewed by 225
Abstract
Ethyl carbamate, a genotoxic chemical contaminant present in fermented alcoholic beverages and foods, is formed from naturally occurring substances in these beverages and foods. Studies have shown that the content of ethyl carbamate can increase significantly during product storage and maturation, especially if [...] Read more.
Ethyl carbamate, a genotoxic chemical contaminant present in fermented alcoholic beverages and foods, is formed from naturally occurring substances in these beverages and foods. Studies have shown that the content of ethyl carbamate can increase significantly during product storage and maturation, especially if favorable conditions are present. Higher levels of ethyl carbamate have been associated with distilled alcoholic beverages, mainly obtained from stone fruits. Ethyl carbamate content is lower in fermented foods, such as bread, yogurt, and fermented sauces. EC formation occurs through several different pathways in food systems. A primary pathway involves select compounds reacting with ethanol (EtOH); therefore, the majority of the research has focused on the occurrence of EC in alcoholic beverages Due to health risks, some countries have imposed legal limits on carbamate content in alcoholic beverages. Full article
Show Figures

Figure 1

22 pages, 2864 KB  
Review
Selective Inactivation Strategies for Vegetable Raw Materials: Regulating Microbial Communities to Ensure the Safety and Quality of Fermented Vegetables
by Lin Zhu, Mengke Cheng, Cuicui Xu, Rong Wang, Meng Zhang, Yufei Tao, Shanshan Qi and Wei Wei
Foods 2025, 14(19), 3291; https://doi.org/10.3390/foods14193291 - 23 Sep 2025
Viewed by 203
Abstract
Fermented vegetables, which are valued for their distinctive organoleptic properties and nutritional profile, are susceptible to quality deterioration during processing and storage because microorganisms inhabit vegetable raw materials. The metabolic processes of these microorganisms may induce texture degradation, chromatic alterations, flavor diminution, and [...] Read more.
Fermented vegetables, which are valued for their distinctive organoleptic properties and nutritional profile, are susceptible to quality deterioration during processing and storage because microorganisms inhabit vegetable raw materials. The metabolic processes of these microorganisms may induce texture degradation, chromatic alterations, flavor diminution, and spoilage. Conventional inactivation methods employing thermal sterilization or chemical preservatives achieve microbial control through nonselective inactivation, inevitably compromising the regional sensory characteristics conferred by indigenous fermentative microbiota. Recent advances in existing antimicrobial technologies offer promising alternatives for selective microbial management in fermented vegetable matrices. Existing modalities, including cold plasma, electromagnetic wave-based inactivation (e.g., photodynamic inactivation, pulsed light, catalytic infrared radiation, microwave, and radio frequency), natural essential oils, and lactic acid bacterial metabolites, demonstrate targeted pathogen inactivation while maintaining beneficial microbial consortia essential for quality preservation when properly optimized. This paper explores the applications, mechanisms, and targeted microbes of these technologies in fermented vegetable ingredients, aiming to provide a robust theoretical and practical framework for the use of selective inactivation strategies to manage the fermentation process. By assessing their impact on the initial microbial community, this review aims to guide the development of methods that ensure product safety while safeguarding the characteristic flavor and quality of fermented vegetables. Full article
Show Figures

Figure 1

56 pages, 1658 KB  
Review
The Potential of CFD in Sustainable Microbial Fermenter Design: A Review
by Fatima Imran, Markus Bösenhofer, Christian Jordan and Michael Harasek
Processes 2025, 13(9), 3005; https://doi.org/10.3390/pr13093005 - 20 Sep 2025
Viewed by 206
Abstract
Due to the regulated nature and purity standards of the bioprocess and biotechnology industries, the sector has seen comparatively less sustainable practices than other chemical industries have. The achievement of sustainability in microbial fermenter design requires that quantitative tools with links between process [...] Read more.
Due to the regulated nature and purity standards of the bioprocess and biotechnology industries, the sector has seen comparatively less sustainable practices than other chemical industries have. The achievement of sustainability in microbial fermenter design requires that quantitative tools with links between process parameters and end-environmental outcomes are employed. This review begins with environmentally friendly metrics such as process mass intensity, water and energy intensity, and related indicators that act as a template for resource usage and waste generation assessment. The objective of this paper is to highlight the primary focus on computational fluid dynamics (CFD) applied to bioprocesses in aerated stirred bioreactors using Escherichia coli (E. coli). Second, the objective of this paper is to explore state-of-the-art CFD models and methods documented in the existing literature, providing a fundamental foundation for researchers to incorporate CFD modelling into biotechnological process development, while making these concepts accessible to non-specialists and addressing the research gap of linking CFD outputs with sustainability metrics and life cycle assessment techniques. Impeller rotational models such as sliding mesh are an accurate and commonly used method of modelling the rotation of stirring. Multiple different turbulence models are applied for the purpose of stirred bioreactors, with the family of k-ε models being the most used. Multiphase models such as Euler-Euler models in combination with population balance models and gas dispersion models to model bubble size distribution and bubble characteristics are typically used. Full article
(This article belongs to the Special Issue Bioreactor Design and Optimization Process)
Show Figures

Graphical abstract

21 pages, 3200 KB  
Article
Probiotic Potential of Lactic Acid Bacteria Isolated from Moroccan Traditional Food Products
by Ange Olivier Parfait Yao, Majid Mounir, Hary Razafindralambo and Philippe Jacques
Microorganisms 2025, 13(9), 2201; https://doi.org/10.3390/microorganisms13092201 - 19 Sep 2025
Viewed by 310
Abstract
This study assessed the performance and potential use of lactic acid bacteria (LAB) from Moroccan traditional foods as probiotics in animal feed. Five LAB strains Lactiplantibacillus plantarum from whey sourdough, Leuconostoc pseudomesenteroides and Leuconostoc mesenteroides from goat cheese, Enterococcus durans and Lacticaseibacillus casei [...] Read more.
This study assessed the performance and potential use of lactic acid bacteria (LAB) from Moroccan traditional foods as probiotics in animal feed. Five LAB strains Lactiplantibacillus plantarum from whey sourdough, Leuconostoc pseudomesenteroides and Leuconostoc mesenteroides from goat cheese, Enterococcus durans and Lacticaseibacillus casei from fermented milk were isolated and identified by 16S rRNA gene sequencing and MALDI-TOF mass spectrometry. Probiotic traits were evaluated by measuring acid/bile tolerance, cell surface hydrophobicity, emulsifying properties, antimicrobial activity and organic acid production, and safety checked through hemolysis and antibiotic sensitivity tests. L. plantarum, L. casei, and E. durans showed high survival rates after 24 h of culture under acid/bile stress conditions. The surface hydrophobicity of all strains ranged from 14.4 to 39.2%. L. plantarum showed the highest emulsifying capacity (81.4%) and stability (20%) after 24 h. Most strains inhibited pathogenic Staphylococcus epidermidis, Bacillus cereus, and Escherichia coli. Metabolite profiling revealed L. pseudomesenteroides as an interesting butyric acid-producing bacterium and L. plantarum as a remarkable strain releasing high content of organic acids. Their antibiotic susceptibility and non-hemolytic nature support their safety and potential use as feed additives. Full article
(This article belongs to the Section Microbial Biotechnology)
Show Figures

Figure 1

19 pages, 1945 KB  
Systematic Review
Effect of Apple Cider Vinegar Intake on Body Composition in Humans with Type 2 Diabetes and/or Overweight: A Systematic Review and Meta-Analysis of Randomized Controlled Trials
by Alberto Castagna, Yvelise Ferro, Francesca Rita Noto, Rossella Bruno, Analucia Aragao Guimaraes, Carmelo Pujia, Elisa Mazza, Samantha Maurotti, Tiziana Montalcini and Arturo Pujia
Nutrients 2025, 17(18), 3000; https://doi.org/10.3390/nu17183000 - 19 Sep 2025
Viewed by 1271
Abstract
Background: Apple cider vinegar (ACV) is a naturally fermented beverage with potential metabolic health benefits; however, its effects on weight loss remain controversial. This systematic review and meta-analysis of randomized controlled trials (RCTs) was conducted to assess the effect of ACV on anthropometric [...] Read more.
Background: Apple cider vinegar (ACV) is a naturally fermented beverage with potential metabolic health benefits; however, its effects on weight loss remain controversial. This systematic review and meta-analysis of randomized controlled trials (RCTs) was conducted to assess the effect of ACV on anthropometric measurements in adults. Methods: We performed a systematic search of PubMed, Web of Science, Scopus, and CENTRAL up to March 2025 for randomized controlled trials (RCTs) in adults (≥18 years) evaluating the effects of ACV for ≥4 weeks on body composition parameters. Primary outcomes included changes in body weight, BMI, waist circumference, and other anthropometric measures. Risk of bias was assessed using the Revised Cochrane Risk-of-bias tool. Results: Out of 2961 reports screened, 10 RCTs comprising a total of 789 participants were eligible for inclusion in this meta-analysis. The pooled results using a random-effects model showed that daily ACV intake significantly reduced body weight [SMD: −0.39; 95% CI: −0.63, −0.15; p = 0.001; I2 = 62%], BMI [SMD: −0.65; 95% CI: −1.05, −0.26; p = 0.001; I2 = 83%], and WC [SMD: −0.34; 95% CI: −0.67, −0.02; p = 0.04; I2 = 61%]. However, no significant effects of ACV were observed on the other body composition parameters analyzed. Sensitivity analyses excluding high-risk-of-bias studies confirmed the robustness of ACV’s beneficial effects on body weight and BMI. Subgroup analyses suggested that ACV consumption significantly improved anthropometric parameters when administered for up to 12 weeks, at a dose of 30 mL/day, and in adults who were overweight, obese, or had type 2 diabetes. Conclusions: Overall, this meta-analysis suggests that ACV supplementation may be a promising and accessible adjunctive strategy for short-term weight management in adults with excess body weight or metabolic complications. Full article
(This article belongs to the Topic Functional Foods and Nutraceuticals in Health and Disease)
Show Figures

Figure 1

30 pages, 1009 KB  
Review
Advances in Genetic Transformation of Lactic Acid Bacteria: Overcoming Barriers and Enhancing Plasmid Tools
by Aleksei S. Rozanov, Leonid A. Shaposhnikov, Kseniya D. Bondarenko and Alexey E. Sazonov
Int. J. Mol. Sci. 2025, 26(18), 9146; https://doi.org/10.3390/ijms26189146 - 19 Sep 2025
Viewed by 351
Abstract
Lactic acid bacteria (LAB) are central to food fermentation, probiotic delivery, and emerging synthetic biology applications, yet their robust cell envelopes and restriction–modification systems complicate DNA uptake. This review synthesizes practical routes for introducing DNA into LAB—natural competence, electroporation, conjugation, phage-mediated transduction, and [...] Read more.
Lactic acid bacteria (LAB) are central to food fermentation, probiotic delivery, and emerging synthetic biology applications, yet their robust cell envelopes and restriction–modification systems complicate DNA uptake. This review synthesizes practical routes for introducing DNA into LAB—natural competence, electroporation, conjugation, phage-mediated transduction, and biolistics—and outlines vector systems for expression and chromosomal editing, including food-grade strategies. We highlight recent advances that broaden strain tractability while noting strain-to-strain variability and host-specific barriers that still require tailored solutions. These advances directly enable applications in food and probiotic biotechnology, including improving starter robustness, tailoring flavor and texture pathways, and installing food-grade traits without residual selection markers. We close with near-term priorities for standardizing protocols, widening replicon compatibility, and leveraging modern genome-editing platforms to accelerate safe, marker-free engineering of industrial and probiotic LAB. Full article
Show Figures

Figure 1

19 pages, 9263 KB  
Article
Unveiling Species Diversity Within Early-Diverging Fungi from China IX: Four New Species of Mucor (Mucoromycota)
by Zi-Ying Ding, Xin-Yu Ji, Fei Li, Wen-Xiu Liu, Shi Wang, Heng Zhao and Xiao-Yong Liu
J. Fungi 2025, 11(9), 682; https://doi.org/10.3390/jof11090682 - 19 Sep 2025
Viewed by 283
Abstract
Mucor species are fast-growing filamentous fungi, widespread in natural ecosystems. As opportunistic pathogens, some species can cause mucormycoses in humans and animals, while others hold significant economic value in food fermentation and bioengineering. In this study, four novel species were identified from soil [...] Read more.
Mucor species are fast-growing filamentous fungi, widespread in natural ecosystems. As opportunistic pathogens, some species can cause mucormycoses in humans and animals, while others hold significant economic value in food fermentation and bioengineering. In this study, four novel species were identified from soil samples collected in Xizang Autonomous Region and Yunnan Province, China, and their establishment as new species was supported by morphological characteristics and molecular data (ITS-LSU-RPB1), with phylogenetic analyses conducted using the Maximum Likelihood (ML) and Bayesian Inference (BI) methods. M. globosporus sp. nov. is characterized by producing globose chlamydospores. M. multimorphus sp. nov. is distinguished by swelling in the sporangiophores. M. polymorphus sp. nov. is differentiated by polymorphic chlamydospores. And M. xizangensis sp. nov. reflects its geographical origin in the Xizang Autonomous Region. Comprehensive descriptions of each novel taxon are presented herein. This study constitutes the ninth segment in an ongoing series elucidating early-diverging fungal diversity in China, expanding the understanding of the phylogeny of Mucor fungi and extending the worldwide number of known Mucor species to 137. Full article
Show Figures

Figure 1

14 pages, 4361 KB  
Article
Highly Efficient Production of Diacylglycerols via Enzymatic Glycerolysis Catalyzed by Immobilized MAS1-H108W Lipase
by Ling Zhou, Siqin Yu, Qingqing Xiao, Jun Cai and Zexin Zhao
Processes 2025, 13(9), 2937; https://doi.org/10.3390/pr13092937 - 15 Sep 2025
Viewed by 325
Abstract
Developing highly efficient and cost-effective immobilized biocatalysts is essential for optimizing diacylglycerol (DAG) production via biotransformation of natural oil. To address this, the 1,3-regiospecific MAS1-H108W lipase, derived from marine Streptomyces sp. strain W007, was produced through high-density fermentation (20 °C, pH 7.0, 132 [...] Read more.
Developing highly efficient and cost-effective immobilized biocatalysts is essential for optimizing diacylglycerol (DAG) production via biotransformation of natural oil. To address this, the 1,3-regiospecific MAS1-H108W lipase, derived from marine Streptomyces sp. strain W007, was produced through high-density fermentation (20 °C, pH 7.0, 132 h). This lipase was immobilized by XAD1180 resin adsorption, yielding an immobilized MAS1-H108W lipase with a lipase activity of 4943.5 U/g and a protein loading of 201.5 mg/g under selected conditions (lipase/support ratio 100 mg/g, initial buffer pH of 8.0). After immobilization, the lipase maintained its optimal temperature at 70 °C and shifted its optimal pH from 7.0 to 8.0, along with enhanced thermostability. The immobilized MAS1-H108W lipase demonstrated superior efficiency in DAG synthesis compared to non-regiospecific immobilized MAS1 lipase and commercial lipases (Novozym 435 and Lipozyme RM IM). Under the optimized reaction conditions (reaction temperature 60 °C, olive oil/glycerol molar ratio 1:2, adding amount of immobilized MAS1-H108W lipase 1.0 wt.%), a maximum DAG content of 49.3% was achieved within 4 h. The immobilized lipase also exhibited excellent operational stability, retaining 81.9% of its initial production capacity after 10 reuse cycles. Furthermore, in the glycerolysis of various vegetable oils (corn oil, rapeseed oil, peanut oil, sunflower oil, and soybean oil), the DAG content catalyzed by immobilized MAS1-H108W lipase consistently exceeded 48%. This work provides a highly efficient and economical immobilized biocatalyst for DAG production, and highlights the significant potential of regioselective lipases in promoting efficient DAG synthesis via glycerolysis. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

23 pages, 2293 KB  
Article
Bioconversion of a Dairy By-Product (Scotta) into Mannitol-Stabilized Violacein via Janthinobacterium lividum Fermentation
by Mario Trupo, Rosaria Alessandra Magarelli, Salvatore Palazzo, Vincenzo Larocca, Maria Martino, Anna Spagnoletta and Alfredo Ambrico
Microorganisms 2025, 13(9), 2125; https://doi.org/10.3390/microorganisms13092125 - 11 Sep 2025
Viewed by 508
Abstract
Violacein is a natural pigment with a wide range of biological activities, including antimicrobial, antitumor, and immunostimulatory properties. However, its industrial-scale production is hindered by low yields from microbial fermentation. This study investigated the use of scotta, a low-value by-product of the [...] Read more.
Violacein is a natural pigment with a wide range of biological activities, including antimicrobial, antitumor, and immunostimulatory properties. However, its industrial-scale production is hindered by low yields from microbial fermentation. This study investigated the use of scotta, a low-value by-product of the dairy industry, as an alternative and cost-effective substrate for violacein biosynthesis using Janthinobacterium lividum DSM1522. Different types of scotta, including one derived from lactose-free cheese production, were characterized and tested in flask cultures and a 2 L bioreactor. The results demonstrated that both medium dilution and increased oxygen-transfer coefficient (kLa) significantly enhanced violacein production. In the bioreactor, a final yield of 58.72 mg of violacein for each litre of diluted scotta was achieved. The pigment was then stabilized through a spray-drying process using mannitol as a carrier, resulting in a water-soluble powder that retained antibacterial activity against Bacillus subtilis. The drying process also improved pigment solubility in water, suggesting its potential application in formulations to control Gram-positive bacteria. Overall, this study highlights the potential of scotta as a sustainable fermentation substrate and presents a promising encapsulation approach for violacein stabilization. However, further investigations are needed to optimize the spray-drying process, specifically, to characterize the microgranules and to determine their storage stability. Full article
(This article belongs to the Special Issue Industrial Microbiology)
Show Figures

Graphical abstract

Back to TopTop