Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,273)

Search Parameters:
Keywords = natural stands

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1244 KB  
Article
Fire Effects on Lichen Biodiversity in Longleaf Pine Habitat
by Roger Rosentreter, Ann DeBolt and Brecken Robb
Forests 2025, 16(9), 1385; https://doi.org/10.3390/f16091385 - 28 Aug 2025
Abstract
Longleaf pine forests are economically important habitats that stabilize and enrich the soil and store carbon over long periods. When mixed with oaks, these forests provide an abundance of lichen habitats. The tree canopy lichens promote greater moisture capture and retention and encourage [...] Read more.
Longleaf pine forests are economically important habitats that stabilize and enrich the soil and store carbon over long periods. When mixed with oaks, these forests provide an abundance of lichen habitats. The tree canopy lichens promote greater moisture capture and retention and encourage canopy insects. Ground lichens limit some vascular plant germination and growth, promoting a more open and healthy pine community. There is a longstanding mutualistic relationship between longleaf pine habitat and lichens. Longleaf pine habitat has a long history of natural summer burning, which promotes a diverse understory and limits tree densities. Lichen diversity exceeds vascular plant diversity in many mature longleaf pine habitats, yet information on the impacts of prescribed fire on lichen species in these habitats is limited. We assessed lichen diversity and abundance before and after a prescribed ground fire in a longleaf pine/wiregrass habitat near Ocala, Florida. Pre-burn, we found greater lichen abundance and diversity on hardwoods, primarily oak species, than on pines. Post-burn, lichen abundance on hardwoods dropped overall by 28%. Lichen abundance on conifers dropped overall by 94%. Ground lichen species were basically eliminated, with a 99.5% loss. Our study provides insights into retaining lichen diversity after a prescribed burn. Hardwood trees, whether alive or standing dead, help retain lichen biodiversity after burning, whereas conifer trees do not support as many species. Landscapes may need to be actively managed by raking pine needle litter away from ground lichen beds, moistening the ground, or removing some lichen material before the burn and returning it to the site post-fire. Based on these results, we suggest retaining some oaks and conducting burns in a mosaic pattern that retains unburned areas. This will allow for lichens to recover between burns, significantly enhancing biodiversity and the ecological health of these longleaf pine communities. Full article
(This article belongs to the Special Issue The Role of Bryophytes and Lichens in Forest Ecosystem Dynamics)
42 pages, 1987 KB  
Review
Gas Plasma Combination Therapies—Promises from Preclinical Oncology Research
by Lingyun Yu, Julia Berner, Alice Martinet, Eric Freund, Debora Singer, Thomas von Woedtke, Klaus-Dieter Weltmann, Steffen Emmert, Ramona Clemen and Sander Bekeschus
Antioxidants 2025, 14(9), 1055; https://doi.org/10.3390/antiox14091055 - 27 Aug 2025
Abstract
The absent decline in cancer mortality rates is primarily due to moderate therapeutic efficacy and intrinsic or acquired tumor cell resistance toward treatments. Combining different oncology treatments increases therapy success and decreases the chance of refractory tumor cells. Therefore, combination cancer treatments are [...] Read more.
The absent decline in cancer mortality rates is primarily due to moderate therapeutic efficacy and intrinsic or acquired tumor cell resistance toward treatments. Combining different oncology treatments increases therapy success and decreases the chance of refractory tumor cells. Therefore, combination cancer treatments are the principal paradigm of 21st-century oncology. Physical modalities such as radiotherapy have a long-standing tradition in such combination treatments. In the last decade, another physical principle emerged as a promising anticancer agent: cold gas plasma. This partially ionized gas, operated at about body temperature, emits multiple bioactive components, including reactive oxygen and nitrogen species (ROS/RNS). This technology’s multi-ROS/RNS nature cannot be phenocopied by other means, and it capitalizes on the vulnerability of tumor cells within metabolic and redox signaling pathways. Many cancer models exposed to mono or combination gas plasma treatments have shown favorable results, and first cancer patients have benefited from cold gas plasma therapy. The main findings and proposed mechanisms of action are summarized. Considering the specific application modes, this review identifies promising gas plasma combination therapies within guideline-directed treatment schemes for several tumor entities. In conclusion, gas plasmas may become a potential (neo)adjuvant therapy to existing treatment modalities to help improve the efficacy of oncological treatments. Full article
Show Figures

Figure 1

25 pages, 7884 KB  
Article
Watershed-BIM Integration for Urban Flood Resilience: A Framework for Simulation, Assessment, and Planning
by Panagiotis Tsikas, Athanasios Chassiakos and Vasileios Papadimitropoulos
Sustainability 2025, 17(17), 7687; https://doi.org/10.3390/su17177687 - 26 Aug 2025
Abstract
Urban flooding represents a growing global concern, especially in areas with rapid urbanization, unregulated urban sprawl and climate change conditions. Conventional flood modeling approaches do not effectively capture the complex dynamics between natural watershed behavior and urban infrastructure; they typically simulate these domains [...] Read more.
Urban flooding represents a growing global concern, especially in areas with rapid urbanization, unregulated urban sprawl and climate change conditions. Conventional flood modeling approaches do not effectively capture the complex dynamics between natural watershed behavior and urban infrastructure; they typically simulate these domains in isolation. This study introduces the Watershed-BIM methodology, a three-dimensional simulation framework that integrates Building and City Information Modeling (BIM/CIM), Geographic Information Systems (GIS), Flood Risk Assessment (FRA), and Flood Risk Management (FRM) into a single framework. Autodesk InfraWorks 2024, Civil 3D 2024, and RiverFlow2D v8.14 software are incorporated in the development. The methodology enhances interoperability and prediction accuracy by bridging hydrological processes with detailed urban-scale data. The framework was tested on a real-world flash flood event in Mandra, Greece, an area frequently exposed to extreme rainfall and runoff events. A specific comparison with observed flood characteristics indicates improved accuracy in comparison to other hydrological analyses (e.g., by HEC-RAS simulation). Beyond flood depth, the model offers additional insights into flow direction, duration, and localized water accumulation around buildings and infrastructure. In this context, integrated tools such as Watershed-BIM stand out as essential instruments for translating complex flood dynamics into actionable, city-scale resilience planning. Full article
(This article belongs to the Special Issue Sustainable Project, Production and Service Operations Management)
Show Figures

Figure 1

18 pages, 3819 KB  
Article
Morpho-Physiological Traits and Flammability of Bark in a Post-Fire Black Pine Population
by Zorica Popović, Nikola Mišić, Milan Protić and Vera Vidaković
Fire 2025, 8(9), 342; https://doi.org/10.3390/fire8090342 - 26 Aug 2025
Abstract
Pinus nigra Arnold, which is naturally widespread in mountainous and Mediterranean ecosystems, is a key species for reforestation due to its ecological and economic value. As climate change and changing fire regimes increase the wildfire risk, understanding its fire resilience has become critical. [...] Read more.
Pinus nigra Arnold, which is naturally widespread in mountainous and Mediterranean ecosystems, is a key species for reforestation due to its ecological and economic value. As climate change and changing fire regimes increase the wildfire risk, understanding its fire resilience has become critical. In this study, the morpho-physiological traits (thickness, roughness, moisture content) and flammability characteristics (ignition, heat release, mass loss, as determined in laboratory flammability tests) of the bark of P. nigra were investigated. The trees were selected based on their age (young vs. old) and fire exposure (burned vs. unburned). The bark thickness was significantly greater in older trees, while the bark moisture content was significantly lower in previously burned trees (p ≤ 0.05). The bark thickness correlated strongly with the ignition time, heat release, and mass loss. These results indicate that the age of the tree primarily affects the bark thickness and time to cambium death, while fire exposure primarily affects the bark moisture content, regardless of age. Understanding that the bark thickness and flammability play a key role in tree survival may aid in the selection of individuals or stand structures better suited to survive in fire-prone conditions and in the strategic planning of burns to reduce fuel loads without exceeding the mortality risk of younger or thinner-barked individuals. Full article
Show Figures

Figure 1

11 pages, 1702 KB  
Article
Phenotypic and Genetic Stability of the Aldrovanda vesiculosa L. Plants Regenerated in Tissue Culture
by Marzena Parzymies, Katarzyna Głębocka, Magdalena Pogorzelec, Barbara Banach-Albińska, Alicja Świstowska and Michał Arciszewski
Genes 2025, 16(9), 1003; https://doi.org/10.3390/genes16091003 - 25 Aug 2025
Viewed by 135
Abstract
Background: Tissue culture might be a method supplementing traditional plant propagation in various fields, like agriculture, medicine, industry, and the active conservation of plant species. For the purpose of plant restoration, it is important that the obtained progenies are identical with the mother [...] Read more.
Background: Tissue culture might be a method supplementing traditional plant propagation in various fields, like agriculture, medicine, industry, and the active conservation of plant species. For the purpose of plant restoration, it is important that the obtained progenies are identical with the mother plants to ensure the true-to-typeness of the future population. Methods: In the present study, the stability of Aldrovanda vesiculosa regenerants obtained in vitro through phenotypic and genetic analysis was estimated. Clones of aldrovanda plants were cultivated in tissue culture in the 1/10 MS liquid medium under the same conditions for over a year, with five weeks of subculturing. Results: It was observed that two clones formed plants that displayed atypical growth structures, the shoots were shorter with many lateral shoots, and they had a lower fresh weight. They also formed fewer and smaller snap-traps, which, in the case of carnivorous plants, determines the capability of catching prey. The 35 in vitro regenerated plants and 5 specimens obtained from the natural habitat were subjected to genetic analyses with two molecular markers: start codon targeted (SCoT) polymorphism and sequence-related amplified polymorphism (SRAP). Despite the visible morphological variants, the genetic stability of all the regenerants with the individuals from natural stands was confirmed. All of them were monomorphic except three bands that were obtained for reference, where individuals were amplified with SCoT28 and me12-em13 SRAP primers. Conclusions: As shown in the presented research, it might be recommended to use different methods to evaluate the stability of in vitro cultivated plants. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

45 pages, 9717 KB  
Review
Nanoparticle-Enhanced Phase Change Materials (NPCMs) in Solar Thermal Energy Systems: A Review on Synthesis, Performance, and Future Prospects
by Wei Lu, Jay Wang, Meng Wang, Jian Yan, Ding Mao and Eric Hu
Energies 2025, 18(17), 4516; https://doi.org/10.3390/en18174516 - 25 Aug 2025
Viewed by 188
Abstract
The environmental challenges posed by global warming have significantly increased the global pursuit of renewable and clean energy sources. Among these, solar energy stands out due to its abundance, renewability, low environmental impact, and favorable long-term economic viability. However, its intermittent nature and [...] Read more.
The environmental challenges posed by global warming have significantly increased the global pursuit of renewable and clean energy sources. Among these, solar energy stands out due to its abundance, renewability, low environmental impact, and favorable long-term economic viability. However, its intermittent nature and dependence on weather conditions hinder consistent and efficient utilization. To address these limitations, nanoparticle-enhanced phase change materials (NPCMs) have emerged as a promising solution for enhancing thermal energy storage in solar thermal systems. NPCMs incorporate superior-performance nanoparticles within traditional phase change material matrices, resulting in improved thermal conductivity, energy storage density, and phase change efficiency. This review systematically examines the recent advances in NPCMs for solar energy applications, covering their classification, structural characteristics, advantages, and limitations. It also explores in-depth analytical approaches, including mechanism-oriented analysis, simulation-based modelling, and algorithm-driven optimization, that explain the behavior of NPCMs at micro and macro scales. Furthermore, the techno-economic implications of NPCM integration are evaluated, with particular attention to cost-benefit analysis, policy incentives, and market growth potential, which collectively support broader adoption. Overall, the findings highlight NPCMs as a frontier in materials innovation and enabling technology for achieving low-carbon, environmentally responsible energy solutions, contributing significantly to global sustainable development goals. Full article
Show Figures

Figure 1

18 pages, 12490 KB  
Article
Differences in Soil CO2 Emissions Between Managed and Unmanaged Stands of Quercus robur L. in the Republic of Serbia
by Velisav Karaklić, Miljan Samardžić, Saša Orlović, Igor Guzina, Milica Kovač, Zoran Novčić and Zoran Galić
Forests 2025, 16(9), 1369; https://doi.org/10.3390/f16091369 - 23 Aug 2025
Viewed by 208
Abstract
Soils act as sources or sinks for three major greenhouse gases (CO2, CH4, and N2O). Approximately 20% of global CO2 emissions are released from soils through the soil respiration process. Soil respiration (soil CO2 emission) [...] Read more.
Soils act as sources or sinks for three major greenhouse gases (CO2, CH4, and N2O). Approximately 20% of global CO2 emissions are released from soils through the soil respiration process. Soil respiration (soil CO2 emission) can account for over 85% of ecosystem respiration. The aim of this study was to compare managed and unmanaged stands of pedunculate oak (Quercus robur L.) in order to investigate the impact of forest management on soil CO2 emissions. We selected one managed and two unmanaged stands. The first stand (S1) represents a managed middle-aged stand, which is the optimal stage of development. The second stand (S2) belongs to the over-mature stage of development in an old-growth oak forest, while the third stand (S3) belongs to the decay stage of development in an old-growth oak forest. The closed chambers method was used for air sampling and the air samples were analyzed using gas chromatography (GC). Multiple regression models that include soil temperature (ST), soil moisture (SM), and their interaction provide a better explanation for variation in soil CO2 emission (SCDE) (higher R2 values) compared to regression models that only involve two variables (ST and SM). The study showed that SCDE in the decay stage of old-growth forest (S3) was significantly lower (p < 0.001) compared to the other two stands (S1 and S2). S3 is characterized by very low canopy cover and intensive natural regeneration, unlike S1 and S2. However, there were no significant differences in SCDE between the managed middle-aged stand (S1) and the over-mature (old-growth) stand (S2). Over a long-term rotation period in pedunculate oak forests, forest management practices that involve the periodic implementation of moderate silvicultural interventions can be deemed acceptable in terms of maintaining the carbon balance in the soil. Full article
Show Figures

Figure 1

18 pages, 294 KB  
Article
“The One Before the One” in Plato, Dionysius the Areopagite, and Damascius: The Journey to the Ineffable One
by Konstantinos Laparidis
Religions 2025, 16(8), 1084; https://doi.org/10.3390/rel16081084 - 21 Aug 2025
Viewed by 238
Abstract
The reason I chose this particular theme is because I considered that Plotinus’ One cannot fully satisfy the demand for an ultimate principle. This becomes evident when we study the Areopagite and even more so Damascius, whose notion of the ultimate principle refers [...] Read more.
The reason I chose this particular theme is because I considered that Plotinus’ One cannot fully satisfy the demand for an ultimate principle. This becomes evident when we study the Areopagite and even more so Damascius, whose notion of the ultimate principle refers to a metaphysical source that precedes the Neoplatonic One. The selection of these three philosophers was based on the following rationale: Firstly, Plato is the founder of the concept of the One. Then comes Dionysius, who speaks of the supra-essential One and connects it with God. Finally, I turn to Damascius, who almost explicitly states that there exists an ineffable reality that precedes the One and is the ineffable One. This endeavor unfolds through a reasoning process developed in three escalating stages, as follows: Initially, in Plato, we encounter the “One that is not one”, which corresponds to light. Next, in Dionysius the Areopagite, we encounter the “supra-essential One”, which corresponds to the invisible light (the place where we can only stand, but cannot see). Finally, in Damascius, we encounter the “ineffable, inexpressible One”, which is not even invisible. In Damascius, what makes this “One before the One” unique is not that we do not know it because, by nature, it is, e.g., invisible, but because it does not allow us to know the reason why we do not know it. Through the connection of these three philosophers, I will aim to demonstrate that this “one” possesses a self-referential existence, establishing its superiority in relation to the One of Plotinus. In the final analysis, the article aims to connect the concept of the supreme principle as God, in relation to this highly apophatic One. Therefore, I will develop the reasoning according to which this “One before the One” can exist. Full article
21 pages, 3804 KB  
Article
Diversity of RNA Viruses and Circular Viroid-like Elements in Heterobasidion spp. in Near-Natural Forests of Bosnia and Herzegovina
by László Benedek Dálya, Ondřej Hejna, Marcos de la Peña, Zoran Stanivuković, Tomáš Kudláček and Leticia Botella
Viruses 2025, 17(8), 1144; https://doi.org/10.3390/v17081144 - 20 Aug 2025
Viewed by 324
Abstract
Heterobasidion root rot fungi represent a major threat to conifer forest stands, and virocontrol (biocontrol) has been proposed as an alternative strategy of disease management in recent years. Here, we investigated the occurrence of RNA viruses and viroid-like genomes in Heterobasidion annosum sensu [...] Read more.
Heterobasidion root rot fungi represent a major threat to conifer forest stands, and virocontrol (biocontrol) has been proposed as an alternative strategy of disease management in recent years. Here, we investigated the occurrence of RNA viruses and viroid-like genomes in Heterobasidion annosum sensu lato in near-natural forests of Bosnia and Herzegovina (Dinaric Alps), a region previously unexplored in this regard. Seventeen H. annosum s.l. isolates were screened for virus presence by RNA Sequencing and bioinformatic analyses. In total, 32 distinct mycoviruses were discovered in the datasets, 26 of which were previously unknown. The detected viruses represent two dsRNA (Partitiviridae and Curvulaviridae), six linear ssRNA (Mitoviridae, Narnaviridae, Botourmiaviridae, Virgaviridae, Benyviridae, and Deltaflexiviridae) and three circular ssRNA (Dumbiviridae, Quambiviridae, and Trimbiviridae) virus families. In addition to the known circular ambiviruses with their hammerhead (HHRz) and hairpin (HPRz) ribozymes, two other smaller non-coding circular RNAs of ca. 910 bp each were identified encoding HHRz and deltavirus (DVRz) ribozymes in both polarities of their genomes. This study documents the first report of a putative viroid-like RNA agent in Heterobasidion, along with beny-like and deltaflexivirus-like viruses in Heterobasidion abietinum, and expands the known virosphere of Heterobasidion species in Southeastern European forests. Full article
(This article belongs to the Section Viruses of Plants, Fungi and Protozoa)
Show Figures

Figure 1

18 pages, 3916 KB  
Article
Mangrove Transplantation to the North: Carbon Sequestration Capacity—Drivers and Strategies
by Kewei Zhou, Yujuan Lv, Yang Gong, Jing Su, Lei Wang, Shengmin Wu, Xi Lin, Qiuying Lai, Yixin Xu and Xingyi Duan
J. Mar. Sci. Eng. 2025, 13(8), 1577; https://doi.org/10.3390/jmse13081577 - 17 Aug 2025
Viewed by 334
Abstract
Mangroves play a pivotal role in carbon sequestration. To investigate the characteristics and driving factors of carbon sequestration in planted mangrove forests, we focused on planted mangrove forests in Wenzhou City, Zhejiang Province, China. Through a statistical analysis of soil physicochemical properties and [...] Read more.
Mangroves play a pivotal role in carbon sequestration. To investigate the characteristics and driving factors of carbon sequestration in planted mangrove forests, we focused on planted mangrove forests in Wenzhou City, Zhejiang Province, China. Through a statistical analysis of soil physicochemical properties and plant morphological characteristics, we assessed carbon stock distribution patterns and identified key influencing factors, providing scientific support for the northward expansion of mangroves. The results demonstrated significant differences in soil properties and plant morphological characteristics among different stands (p < 0.05). The mean soil carbon stock of restored planted mangroves was 78.75 Mg C/ha (mature stands: 87.84 Mg C/ha; middle-aged stands: 74.09 Mg C/ha; young stands: 74.31 Mg C/ha), while the average plant carbon stock was 12.28 Mg C/ha, indicating that soil is the primary contributor to carbon sequestration in mangroves. Compared to natural mangroves, the restored planted mangroves still exhibited a lower carbon sequestration capacity. The variations in carbon sequestration levels among the planted mangrove forests were mainly attributed to differences in tree species and age composition, hydrothermal conditions, and biomass carbon quantification methods. Key drivers of soil carbon sequestration included total phosphorus content, bulk density, and clay content. Carbon storage in restored planted mangroves depends on short-term soil carbon accumulation and long-term biomass carbon accumulation. Ultimately, we recommend optimal species selection and planting design, improved soil carbon storage mechanisms, and integrated conservation monitoring systems to enhance carbon sequestration in mangrove plantations. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

30 pages, 3896 KB  
Article
Recovery Rates of Black Spruce and Tamarack on Lowland Seismic Lines in Alberta, Canada
by Dani Degenhardt, Angeline Van Dongen, Caitlin Mader, Brooke Bourbeau, Caren Jones and Aaron Petty
Forests 2025, 16(8), 1330; https://doi.org/10.3390/f16081330 - 15 Aug 2025
Viewed by 362
Abstract
The cumulative impact of decades of oil and gas exploration has left Alberta’s boreal forests densely fragmented by seismic lines, which are expected to naturally regenerate; however, recovery is often highly variable and generally poor in peatlands due to increased wetness and reduced [...] Read more.
The cumulative impact of decades of oil and gas exploration has left Alberta’s boreal forests densely fragmented by seismic lines, which are expected to naturally regenerate; however, recovery is often highly variable and generally poor in peatlands due to increased wetness and reduced microtopography. In this study, we evaluated seismic lines in lowland ecosites with some degree of successful natural regeneration to gain a better understanding of the natural recovery process in these areas. We compared stand characteristics between the seismic line (23 to 48 years post-disturbance) and the adjacent undisturbed forest. We found that soil properties were similar, but seedling (height < 1.3 m) density was significantly higher on the seismic line, with 252% more tamarack and 65% more black spruce than in the adjacent forest. Relative to the adjacent forest, there were significantly fewer trees (height > 1.3 m) on the seismic line, with an 84% and 50% reduction in black spruce and tamarack, respectively. By analyzing tree ring data from seismic lines, we found that the length of time before tree establishment was 10 years for black spruce and 8 years for tamarack. On average, it took 12 years for tree density to reach 2000 stems per hectare (sph). We modeled growth rates for black spruce and tamarack and found that they were growing faster than their adjacent forest counterparts, reaching 3 m after an average of 38 and 33 years, respectively. Stands on seismic lines were projected to a final stand age of 61 years using the Mixedwood Growth Model (MGM) to evaluate future stand characteristics. Full article
(This article belongs to the Special Issue Forest Growth and Regeneration Dynamics)
Show Figures

Figure 1

18 pages, 5781 KB  
Article
Effect of Various Factors on the Accuracy of Determining the Planck Constant in a Student Physics Laboratory
by Stanisław A. Różański
Physics 2025, 7(3), 37; https://doi.org/10.3390/physics7030037 - 15 Aug 2025
Viewed by 363
Abstract
The Planck constant is a fundamental parameter of nature that appears in the description of phenomena on a microscopic scale. Its origin is associated with an explanation of the distribution of the blackbody spectrum performed by Max Planck. This constant stands the basis [...] Read more.
The Planck constant is a fundamental parameter of nature that appears in the description of phenomena on a microscopic scale. Its origin is associated with an explanation of the distribution of the blackbody spectrum performed by Max Planck. This constant stands the basis for the definition of the International System of Units (SI), and, in particular, the new mass definition. This paper presents different methods for determining the Planck constant based on phenomena such as blackbody radiation, light diffraction through a single slit, the current–voltage characteristics of a light-emitting diode, the photoelectric phenomenon, and the hydrogen atom spectrum in the visible range. The Planck constant was measured using instruments in a stationary laboratory and via remote access. The influence of various factors on the accuracy of the measurements was determined, and the consistency of the obtained results with the accepted value of the Planck constant are examined and discussed. Full article
(This article belongs to the Section Physics Education)
Show Figures

Figure 1

32 pages, 502 KB  
Systematic Review
Juice-Based Supplementation Strategies for Athletic Performance and Recovery: A Systematic Review
by Biljana Vitošević, Milica Filipović, Ljiljana Popović, Katarzyna Sterkowicz-Przybycień and Tijana Purenović-Ivanović
Sports 2025, 13(8), 269; https://doi.org/10.3390/sports13080269 - 14 Aug 2025
Viewed by 443
Abstract
The application of natural juices in sports nutrition is attracting growing interest due to their potential antioxidant, anti-inflammatory, and ergogenic properties. Exercise, especially when prolonged or intense, increases oxidative stress and muscle damage, leading athletes to explore dietary strategies that support recovery and [...] Read more.
The application of natural juices in sports nutrition is attracting growing interest due to their potential antioxidant, anti-inflammatory, and ergogenic properties. Exercise, especially when prolonged or intense, increases oxidative stress and muscle damage, leading athletes to explore dietary strategies that support recovery and enhance performance. This systematic review investigates the effectiveness of five widely studied juices—beetroot, pomegranate, cherry, watermelon, and pickle juice—in the context of athletic supplementation and recovery. A thorough search of the PubMed, Scopus, and Web of Science databases was conducted to identify studies published between 2010 and 2025. Fifty peer-reviewed articles met the inclusion criteria, examining various physiological, biochemical, and performance-related outcomes linked to juice consumption. Given the methodological diversity among studies, a qualitative synthesis was employed. The juices were compared across four key outcomes—inflammation, oxidative stress, delayed onset of muscle soreness, and exercise performance—to determine their most consistent benefits. Beetroot juice, noted for its high nitrate content, consistently enhanced oxygen efficiency and submaximal endurance, although benefits in elite or sprint athletes were less evident. Both pomegranate and cherry juices were effective in reducing muscle soreness and inflammatory markers, particularly when consumed over several days surrounding exercise. Watermelon juice, primarily through its L-citrulline content, offered antioxidant and recovery support, although performance outcomes varied. Evidence for pickle juice was limited, with no notable ergogenic effects beyond anecdotal cramp relief. Overall, natural juices can support recovery and occasionally improve performance, depending on the specific juice, dosage, and athlete characteristics. Beetroot juice stands out as the most reliable in enhancing performance, while pomegranate and cherry juices are more beneficial for recovery. Future research with standardized protocols is essential to determine optimal application across diverse athletic contexts. Full article
Show Figures

Figure 1

35 pages, 2113 KB  
Review
A Review of the Characteristics of Recycled Aggregates and the Mechanical Properties of Concrete Produced by Replacing Natural Coarse Aggregates with Recycled Ones—Fostering Resilient and Sustainable Infrastructures
by Gerardo A. F. Junior, Juliana C. T. Leite, Gabriel de P. Mendez, Assed N. Haddad, José A. F. Silva and Bruno B. F. da Costa
Infrastructures 2025, 10(8), 213; https://doi.org/10.3390/infrastructures10080213 - 14 Aug 2025
Viewed by 536
Abstract
The construction industry is responsible for 50% of mineral resource extraction and 35% of greenhouse gas (GHG) emissions. In this context, concrete stands out as one of the most consumed materials in the world. More than 30 billion tons of this material are [...] Read more.
The construction industry is responsible for 50% of mineral resource extraction and 35% of greenhouse gas (GHG) emissions. In this context, concrete stands out as one of the most consumed materials in the world. More than 30 billion tons of this material are produced annually, resulting in the extraction of around 19.4 billion tons of aggregates (mainly sand and gravel) per year. Therefore, it is urgent to develop strategies that aim to minimize the environmental impacts arising from this production chain. Currently, one of the most widely adopted solutions is the production of concrete through the reuse of construction and demolition waste. Thus, the objective of this research is to conduct a systematic literature review (SLR) on the use of recycled aggregates in concrete production, aiming to increase urban resilience by reducing the consumption of natural aggregates. An extensive search was performed in one of the most respected scientific databases (Scopus), and after a careful selection process, the main articles related to the topic were considered eligible through the PRISMA protocol. The selected manuscripts were then subjected to bibliographic and bibliometric analyses, allowing us to reach the state-of-the-art on the subject. The results obtained on the replacement rates of natural aggregate by recycled aggregate indicate that the recommendations vary from 20 to 60%, and these rates may be higher as long as the recycled aggregate is characterized, and may reach up to 100% as long as the matric concrete has a minimum compressive strength of 60 MPa. The specific gravity of most recycled aggregates ranges from 1.91 to 2.70, maintaining an average density of 2.32 g/cm3. Residual mortar adhered to recycled aggregates ranges from 20 to 56%. The water absorption process of recycled aggregate can vary from 2 to 15%. The mechanical strength of mixtures with recycled aggregates is significantly reduced due to the amount of mortar adhered to the aggregates. The use of recycled aggregates results in a compressive strength approximately 2.6 to 43% lower than that of concrete with natural aggregates, depending on the replacement rate. The same behavior was identified in relation to tensile strength. The modulus of elasticity showed a reduction of 25%, and the flexural strength was reduced by up to 15%. Full article
(This article belongs to the Special Issue Smart, Sustainable and Resilient Infrastructures, 3rd Edition)
Show Figures

Figure 1

21 pages, 5062 KB  
Article
Experimental Evaluation of Rolling Resistance in Omnidirectional Wheels Under Quasi-Static Conditions
by Sławomir Duda, Grzegorz Gembalczyk, Tomasz Machoczek and Zygmunt Kowalik
Sensors 2025, 25(16), 5026; https://doi.org/10.3390/s25165026 - 13 Aug 2025
Viewed by 331
Abstract
This paper presents the results of experimental research on rolling resistance forces occurring during the motion of omnidirectional wheels equipped with dual rows of passive rollers. Due to the complexity of wheel–surface interactions and the stochastic nature of contact transitions, such wheels are [...] Read more.
This paper presents the results of experimental research on rolling resistance forces occurring during the motion of omnidirectional wheels equipped with dual rows of passive rollers. Due to the complexity of wheel–surface interactions and the stochastic nature of contact transitions, such wheels are often characterized experimentally rather than analytically. A custom-built test stand was used to measure resistance forces for different wheel orientations (0°, 30°, 45°, 60°, and 90°) and two vertical loads (117.7 N and 215.8 N) on two surface types: industrial concrete and anodized aluminum. The results demonstrated a strong influence of wheel orientation on resistance, with the highest mean force recorded at 60° for both loads. The results revealed an oscillatory pattern in the resistance force, strongly influenced by the angular position of the wheel. For concrete, mean forces ranged from 1.04 N to 10.34 N, while for aluminum, they ranged from 1.08 N to 10.11 N. Significant oscillations and occasional negative force values were observed, attributed to roller geometry and wheel irregularities. The data obtained are useful for validating numerical models and improving the design and control of mobile robots using omnidirectional wheels. Full article
(This article belongs to the Special Issue Feature Papers in Physical Sensors 2025)
Show Figures

Figure 1

Back to TopTop