Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = net dust load

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1565 KB  
Article
Impact of High-Efficiency Filter Pressure Drop on the Energy Performance of Residential Energy Recovery Ventilators
by Suh-hyun Kwon, Beungyong Park and Byoungchull Oh
Energies 2025, 18(16), 4326; https://doi.org/10.3390/en18164326 - 14 Aug 2025
Viewed by 712
Abstract
As the importance of both indoor air quality (IAQ) and energy efficiency grows in residential buildings, the application of air filters in energy recovery ventilators has become essential. However, high-efficiency filters such as MERV 12 inevitably increase the pressure drop, adversely affecting the [...] Read more.
As the importance of both indoor air quality (IAQ) and energy efficiency grows in residential buildings, the application of air filters in energy recovery ventilators has become essential. However, high-efficiency filters such as MERV 12 inevitably increase the pressure drop, adversely affecting the airflow, fan energy use, and heat exchange balance. This study quantitatively investigates how different levels of filter resistance—from clean conditions to 200% dust loading—affect system airflow, static pressure, exhaust air transfer, and power consumption. A standardized dust loading procedure was adopted to simulate long-term use conditions. The results show a 37% reduction in net supply airflow under heavily clogged filters, while the unit exhaust air transfer ratio increased from 7.2% to 17.7%, exceeding compliance limits. Surprisingly, electrical energy consumption decreased as the fan load dropped with the airflow. Despite an increase in the apparent heat exchange efficiency, this gain was driven by return air recirculation rather than true thermal effectiveness. These findings highlight the need for filter performance-based ERV certification and operational strategies that balance IAQ, energy use, and system compliance. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

27 pages, 14789 KB  
Article
RTCA-Net: A New Framework for Monitoring the Wear Condition of Aero Bearing with a Residual Temporal Network under Special Working Conditions and Its Interpretability
by Tongguang Yang, Xingyuan Huang, Yongjian Zhang, Jinglan Li, Xianwen Zhou and Qingkai Han
Mathematics 2024, 12(17), 2687; https://doi.org/10.3390/math12172687 - 29 Aug 2024
Cited by 1 | Viewed by 930
Abstract
The inter-shaft bearing is the core component of a high-pressure rotor support system of a high-thrust aero engine. One of the most challenging tasks for a PHM is monitoring its working condition. However, considering that in the bearing rotor system of a high-thrust [...] Read more.
The inter-shaft bearing is the core component of a high-pressure rotor support system of a high-thrust aero engine. One of the most challenging tasks for a PHM is monitoring its working condition. However, considering that in the bearing rotor system of a high-thrust aero engine bearings are prone to wear failure due to unbalanced or misaligned faults of the rotor system, especially in harsh environments, such as those at high operating loads and high rotation speeds, bearing wear can easily evolve into serious faults. Compared with aero engine fault diagnosis and RUL prediction, relatively little research has been conducted on bearing condition monitoring. In addition, considering how to evaluate future performance states with limited time series data is a key problem. At the same time, the current deep neural network model has the technical challenge of poor interpretability. In order to fill the above gaps, we developed a new framework of a residual space–time feature fusion focusing module named RTCA-Net, which focuses on solving the key problem. It is difficult to accurately monitor the wear state of aero engine inter-shaft bearings under special working conditions in practical engineering. Specifically, firstly, a residual space–time structure module was innovatively designed to capture the characteristic information of the metal dust signal effectively. Secondly, a feature-focusing module was designed. By adjusting the change in the weight coefficient during training, the RTCA-Net framework can select the more useful information for monitoring the wear condition of inter-shaft bearings. Finally, the experimental dataset of metal debris was verified and compared with seven other methods, such as the RTC-Net. The results showed that the proposed RTCA-Net framework has good generalization, superiority, and credibility. Full article
Show Figures

Figure 1

30 pages, 13117 KB  
Article
Three-Dimensional Distributions of the Direct Effect of anExtended and Intense Dust Aerosol Episode (16–18 June 2016) over the Mediterranean Basin on Regional Shortwave Radiation, Atmospheric Thermal Structure, and Dynamics
by Maria Gavrouzou, Nikos Hatzianastassiou, Marios-Bruno Korras-Carraca, Michalis Stamatis, Christos Lolis, Christos Matsoukas, Nikos Michalopoulos and Ilias Vardavas
Appl. Sci. 2023, 13(12), 6878; https://doi.org/10.3390/app13126878 - 6 Jun 2023
Cited by 1 | Viewed by 1939
Abstract
In the present study, we used the FORTH deterministic spectral Radiation Transfer Model (RTM) to estimate detailed three-dimensional distributions of the Direct Radiative Effects (DREs) and their consequent modification of the thermal structure of the regional atmosphere during an intense dust episode that [...] Read more.
In the present study, we used the FORTH deterministic spectral Radiation Transfer Model (RTM) to estimate detailed three-dimensional distributions of the Direct Radiative Effects (DREs) and their consequent modification of the thermal structure of the regional atmosphere during an intense dust episode that took place from 16 to 18 June 2016 over the Mediterranean Basin (MB). The RTM operated on a 3-hourly temporal and 0.5 × 0.625° spatial resolution, using 3-D aerosol optical properties (i.e., aerosol optical depth, single scattering albedo, and asymmetry parameter) and other surface and atmospheric properties from the MERRA-2 reanalysis and cloud properties (i.e., cloud amount, cloud optical depth, and cloud top height) from the ISCCP-H dataset. The model ran with and without dust aerosols, yielding the upwelling and downwelling solar fluxes at the top of the atmosphere, in the atmosphere, and at the Earth’s surface as well as at 50 levels in the atmosphere. The dust direct radiative effect (DDRE) was estimated as the difference between the two (one taking into account all aerosol types and one taking into account all except for dust aerosols) flux outputs. The atmospheric heating rates and subsequent convection induced by dust radiative absorption were calculated at 50 levels to determine how the DDRE affects the thermal structure and dynamics of the atmosphere. The results showed that such a great and intense dust transport event significantly reduces the net surface solar radiation over the MB (by up to 62 W/m2 on a daily mean basis, and up to 200 W/m2 on an hourly basis, at 12:00 UTC) while increasing the atmospheric solar absorption (by up to 72 W/m2 daily and 187 W/m2 hourly, at 12:00 UTC). At the top of the atmosphere, both heating (over desert areas) and cooling (over oceanic and other continental areas) are observed due to the significantly different surface albedos. Transported dust causes considerable heating of the region’s atmosphere, which becomes maximum at altitudes where the dust loadings are highest (0.14 K/3 h on 17 June 2016, 12:00 UTC, at 3–5 km above sea level). The dust solar absorption and heating induce a buoyancy as strong as 0.014 m/s2, resulting in considerable changes in vertical air motions and possibly contributing to the formation of middle- and high-level clouds over the Mediterranean Basin. Full article
Show Figures

Figure 1

31 pages, 23306 KB  
Article
On the Interplay between Desert Dust and Meteorology Based on WRF-Chem Simulations and Remote Sensing Observations in the Mediterranean Basin
by Umberto Rizza, Elenio Avolio, Mauro Morichetti, Luca Di Liberto, Annachiara Bellini, Francesca Barnaba, Simone Virgili, Giorgio Passerini and Enrico Mancinelli
Remote Sens. 2023, 15(2), 435; https://doi.org/10.3390/rs15020435 - 11 Jan 2023
Cited by 15 | Viewed by 3846
Abstract
In this study, we investigate a series of Saharan dust outbreaks toward the Mediterranean basin that occurred in late June 2021. In particular, we analyze the effect of mineral dust aerosols on radiation and cloud properties (direct, semi-direct and indirect effects), and in [...] Read more.
In this study, we investigate a series of Saharan dust outbreaks toward the Mediterranean basin that occurred in late June 2021. In particular, we analyze the effect of mineral dust aerosols on radiation and cloud properties (direct, semi-direct and indirect effects), and in turn, on meteorological parameters. This is achieved by running the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) over a domain covering North Africa and the Central Mediterranean Basin. The simulations were configured using a gradual coupling strategy between the GOCART aerosol model and the Goddard radiation and microphysics schemes available in the WRF-Chem package. A preliminary evaluation of the model performances was conducted in order to verify its capability to correctly reproduce the amount of mineral dust loaded into the atmosphere within the spatial domain considered. To this purpose, we used a suite of experimental data from ground- and space-based remote sensing measurements. This comparison highlighted a model over-estimation of aerosol optical properties to the order of 20%. The evaluation of the desert dust impact on the radiation budget, achieved by comparing the uncoupled and the fully coupled (aerosol–radiation–clouds) simulation, shows that mineral dust induces a net (shortwave–longwave) cooling effect to the order of −10 W m−2. If we consider the net dust radiative forcing, the presence of dust particles induces a small cooling effect at the top of the atmosphere (−1.2 W m−2) and a stronger cooling at the surface (−14.2 W m−2). At the same time, analysis of the perturbation on the surface energy budget yields a reduction of −7 W m−2 when considering the FULL-coupled simulation, a positive perturbation of +3 W m−2 when only considering microphysics coupling and −10.4 W m−2 when only considering radiation coupling. This last result indicates a sort of “superposition” of direct, indirect and semi-direct effects of dust on the radiation budget. This study shows that the presence of dust aerosols significantly influences radiative and cloud properties and specifically the surface energy budget. This suggests (i) that dust effects should be considered in climate models in order to increase the accuracy of climate predictions over the Mediterranean region and (ii) the necessity of performing fully coupled simulations including aerosols and their effects on meteorology at a regional scale. Full article
Show Figures

Graphical abstract

19 pages, 6543 KB  
Article
Prediction of Solar Irradiance over the Arabian Peninsula: Satellite Data, Radiative Transfer Model, and Machine Learning Integration Approach
by Sahar Alwadei, Ashraf Farahat, Moataz Ahmed and Harry D. Kambezidis
Appl. Sci. 2022, 12(2), 717; https://doi.org/10.3390/app12020717 - 12 Jan 2022
Cited by 15 | Viewed by 4418
Abstract
Data from a moderate resolution imaging spectroradiometer instrument onboard the Terra satellite along with a radiative transfer model and a machine learning technique were integrated to predict direct solar irradiance on a horizontal surface over the Arabian Peninsula (AP). In preparation for building [...] Read more.
Data from a moderate resolution imaging spectroradiometer instrument onboard the Terra satellite along with a radiative transfer model and a machine learning technique were integrated to predict direct solar irradiance on a horizontal surface over the Arabian Peninsula (AP). In preparation for building appropriate residual network (ResNet) prediction models, we conducted some exploratory data analysis (EDA) and came to some conclusions. We noted that aerosols in the atmosphere correlate with solar irradiance in the eastern region of the AP, especially near the coastlines of the Arabian Gulf and the Sea of Oman. We also found low solar irradiance during March 2016 and March 2017 in the central (~20% less) and eastern regions (~15% less) of the AP, which could be attributed to the high frequency of dust events during those months. Compared to other locations in the AP, high solar irradiance was recorded in the Rub Al Khali desert during winter and spring. The effect of major dust outbreaks over the AP during March 2009 and March 2012 was also noted. The EDA indicated a correlation between high aerosol loading and a decrease in solar irradiance. The analysis showed that the Rub Al Khali desert is one of the best locations in the AP to harvest solar radiation. The analysis also showed the ResNet prediction model achieves high test accuracy scores, indicated by a mean absolute error of ~0.02, a mean squared error of ~0.005, and an R2 of 0.99. Full article
(This article belongs to the Section Energy Science and Technology)
Show Figures

Figure 1

14 pages, 3323 KB  
Article
Assessment of Recent Changes in Dust over South Asia Using RegCM4 Regional Climate Model
by Acharya Asutosh, S.K Pandey, V Vinoj, Ramakrishna Ramisetty and Nishant Mittal
Remote Sens. 2021, 13(21), 4309; https://doi.org/10.3390/rs13214309 - 26 Oct 2021
Cited by 10 | Viewed by 4256
Abstract
Pre-monsoon dust aerosols over Indian regions are closely linked to the monsoon dynamics and Indian summer monsoon rainfall. Past observational studies have shown a decline in dust loading over the Indian landmass potentially caused by changing rainfall patterns over the desert regions. Such [...] Read more.
Pre-monsoon dust aerosols over Indian regions are closely linked to the monsoon dynamics and Indian summer monsoon rainfall. Past observational studies have shown a decline in dust loading over the Indian landmass potentially caused by changing rainfall patterns over the desert regions. Such changes are expected to have a far-reaching impact on regional energy balance and monsoon rainfall. Using a regional climate-chemistry model, RegCM4.5, with an updated land module, we have simulated the long-term (2001–2015) changes in dust over the arid and semi-arid dust source regions of the North-Western part of the subcontinent. It is found that the area-averaged dust aerosol optical depth (AOD) over the arid and semi-arid desert regions has declined by 17% since the start of this millennium. The rainfall over these regions exhibits a positive trend of 0.1 mm day−1year−1 and a net increase of >50%. The wet deposition is found to be dominant and ~five-fold larger in magnitude over dry deposition and exhibits total changes of ~79 and 48% in the trends in atmospheric dust. As a response, a significant difference in the surface (11%), top of the atmosphere radiative forcing (7%), and widespread atmospheric cooling are observed in the short wave domain of radiation spectrum over the Northern part of the Indian landmass. Such quantification and long-term change studies are necessary for understanding regional climate change and the water cycle. Full article
Show Figures

Graphical abstract

13 pages, 1699 KB  
Article
Desert Dust Contribution to PM10 Loads in Styria (Southern Austria) and Impact on Exceedance of Limit Values from 2013–2018
by Marion Greilinger, Johannes Zbiral and Anne Kasper-Giebl
Appl. Sci. 2019, 9(11), 2265; https://doi.org/10.3390/app9112265 - 31 May 2019
Cited by 4 | Viewed by 2509
Abstract
From a legislators point of view, the contribution of natural sources to PM10 loads is relevant since their impact can be subtracted from the daily limit value of PM10 as regulated in a working staff paper by the European Commission (EC), [...] Read more.
From a legislators point of view, the contribution of natural sources to PM10 loads is relevant since their impact can be subtracted from the daily limit value of PM10 as regulated in a working staff paper by the European Commission (EC), supporting the European Air Quality Directive (2008/50/EC). This work investigates its applicability for two stations in Austria over a time period of six years (2013 to 2018), as the occurrence of long-range transport of desert dust is observed on a regular base. Different stations and different statistical parameters were evaluated to determine the regional background load and subsequently the net dust load (NDL). Results reveal an adapted approach of the methodology described by the EC, using the +/− 15-day mean average of the PM10 at the regional background station, together with threshold criteria to identify only desert dust affected days. The results of calculated NDLs were in good agreement with crustal loads determined on filter samples during two desert dust events in 2016. Thus, the application of the EC method for a region in Central Europe, which experiences a regular but less pronounced impact of desert dust than stations in the Mediterranean, is discussed. Full article
(This article belongs to the Special Issue Monitoring and Modeling: Air Quality Evaluation Studies)
Show Figures

Figure 1

18 pages, 2523 KB  
Article
Impact of Snow Darkening by Deposition of Light-Absorbing Aerosols on Snow Cover in the Himalayas–Tibetan Plateau and Influence on the Asian Summer Monsoon: A Possible Mechanism for the Blanford Hypothesis
by William K. M. Lau and Kyu-Myong Kim
Atmosphere 2018, 9(11), 438; https://doi.org/10.3390/atmos9110438 - 12 Nov 2018
Cited by 54 | Viewed by 8848
Abstract
The impact of snow darkening by deposition of light-absorbing aerosols (LAAs) on snow cover over the Himalayas–Tibetan Plateau (HTP) and the influence on the Asian summer monsoon were investigated using the NASA Goddard Earth Observing System Model Version 5 (GEOS-5). The authors found [...] Read more.
The impact of snow darkening by deposition of light-absorbing aerosols (LAAs) on snow cover over the Himalayas–Tibetan Plateau (HTP) and the influence on the Asian summer monsoon were investigated using the NASA Goddard Earth Observing System Model Version 5 (GEOS-5). The authors found that during April–May–June, the deposition of LAAs on snow led to a reduction in surface albedo, initiating a sequence of feedback processes, starting with increased net surface solar radiation, rapid snowmelt in the HTP and warming of the surface and upper troposphere, followed by enhanced low-level southwesterlies and increased dust loading over the Himalayas–Indo-Gangetic Plain. The warming was amplified by increased dust aerosol heating, and subsequently amplified by latent heating from enhanced precipitation over the Himalayan foothills and northern India, via the elevated heat pump (EHP) effect during June–July–August. The reduced snow cover in the HTP anchored the enhanced heating over the Tibetan Plateau and its southern slopes, in conjunction with an enhancement of the Tibetan Anticyclone, and the development of an anomalous Rossby wave train over East Asia, leading to a weakening of the subtropical westerly jet, and northward displacement and intensification of the Mei-Yu rain belt. The authors’ results suggest that the atmosphere-land heating induced by LAAs, particularly desert dust, plays a fundamental role in physical processes underpinning the snow–monsoon relationship proposed by Blanford more than a century ago. Full article
(This article belongs to the Special Issue Monsoons)
Show Figures

Figure 1

Back to TopTop