Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (300)

Search Parameters:
Keywords = neural signal acquisition

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 2931 KB  
Review
Prospects of AI-Powered Bowel Sound Analytics for Diagnosis, Characterization, and Treatment Management of Inflammatory Bowel Disease
by Divyanshi Sood, Zenab Muhammad Riaz, Jahnavi Mikkilineni, Narendra Nath Ravi, Vineeta Chidipothu, Gayathri Yerrapragada, Poonguzhali Elangovan, Mohammed Naveed Shariff, Thangeswaran Natarajan, Jayarajasekaran Janarthanan, Naghmeh Asadimanesh, Shiva Sankari Karuppiah, Keerthy Gopalakrishnan and Shivaram P. Arunachalam
Med. Sci. 2025, 13(4), 230; https://doi.org/10.3390/medsci13040230 (registering DOI) - 13 Oct 2025
Abstract
Background: This narrative review examines the role of artificial intelligence (AI) in bowel sound analysis for the diagnosis and management of inflammatory bowel disease (IBD). Inflammatory bowel disease (IBD), encompassing Crohn’s disease and ulcerative colitis, presents a significant clinical burden due to its [...] Read more.
Background: This narrative review examines the role of artificial intelligence (AI) in bowel sound analysis for the diagnosis and management of inflammatory bowel disease (IBD). Inflammatory bowel disease (IBD), encompassing Crohn’s disease and ulcerative colitis, presents a significant clinical burden due to its unpredictable course, variable symptomatology, and reliance on invasive procedures for diagnosis and disease monitoring. Despite advances in imaging and biomarkers, tools such as colonoscopy and fecal calprotectin remain costly, uncomfortable, and impractical for frequent or real-time assessment. Meanwhile, bowel sounds—an overlooked physiologic signal—reflect underlying gastrointestinal motility and inflammation but have historically lacked objective quantification. With recent advances in artificial intelligence (AI) and acoustic signal processing, there is growing interest in leveraging bowel sound analysis as a novel, non-invasive biomarker for detecting IBD, monitoring disease activity, and predicting disease flares. This approach holds the promise of continuous, low-cost, and patient-friendly monitoring, which could transform IBD management. Objectives: This narrative review assesses the clinical utility, methodological rigor, and potential future integration of artificial intelligence (AI)-driven bowel sound analysis in inflammatory bowel disease (IBD), with a focus on its potential as a non-invasive biomarker for disease activity, flare prediction, and differential diagnosis. Methods: This manuscript reviews the potential of AI-powered bowel sound analysis as a non-invasive tool for diagnosing, monitoring, and managing inflammatory bowel disease (IBD), including Crohn’s disease and ulcerative colitis. Traditional diagnostic methods, such as colonoscopy and biomarkers, are often invasive, costly, and impractical for real-time monitoring. The manuscript explores bowel sounds, which reflect gastrointestinal motility and inflammation, as an alternative biomarker by utilizing AI techniques like convolutional neural networks (CNNs), transformers, and gradient boosting. We analyze data on acoustic signal acquisition (e.g., smart T-shirts, smartphones), signal processing methodologies (e.g., MFCCs, spectrograms, empirical mode decomposition), and validation metrics (e.g., accuracy, F1 scores, AUC). Studies were assessed for clinical relevance, methodological rigor, and translational potential. Results: Across studies enrolling 16–100 participants, AI models achieved diagnostic accuracies of 88–96%, with AUCs ≥ 0.83 and F1 scores ranging from 0.71 to 0.85 for differentiating IBD from healthy controls and IBS. Transformer-based approaches (e.g., HuBERT, Wav2Vec 2.0) consistently outperformed CNNs and tabular models, yielding F1 scores of 80–85%, while gradient boosting on wearable multi-microphone recordings demonstrated robustness to background noise. Distinct acoustic signatures were identified, including prolonged sound-to-sound intervals in Crohn’s disease (mean 1232 ms vs. 511 ms in IBS) and high-pitched tinkling in stricturing phenotypes. Despite promising performance, current models remain below established biomarkers such as fecal calprotectin (~90% sensitivity for active disease), and generalizability is limited by small, heterogeneous cohorts and the absence of prospective validation. Conclusions: AI-powered bowel sound analysis represents a promising, non-invasive tool for IBD monitoring. However, widespread clinical integration requires standardized data acquisition protocols, large multi-center datasets with clinical correlates, explainable AI frameworks, and ethical data governance. Future directions include wearable-enabled remote monitoring platforms and multi-modal decision support systems integrating bowel sounds with biomarker and symptom data. This manuscript emphasizes the need for large-scale, multi-center studies, the development of explainable AI frameworks, and the integration of these tools within clinical workflows. Future directions include remote monitoring using wearables and multi-modal systems that combine bowel sounds with biomarkers and patient symptoms, aiming to transform IBD care into a more personalized and proactive model. Full article
Show Figures

Figure 1

26 pages, 12809 KB  
Article
Coating Thickness Estimation Using a CNN-Enhanced Ultrasound Echo-Based Deconvolution
by Marina Perez-Diego, Upeksha Chathurani Thibbotuwa, Ainhoa Cortés and Andoni Irizar
Sensors 2025, 25(19), 6234; https://doi.org/10.3390/s25196234 - 8 Oct 2025
Viewed by 232
Abstract
Coating degradation monitoring is increasingly important in offshore industries, where protective layers ensure corrosion prevention and structural integrity. In this context, coating thickness estimation provides critical information. The ultrasound pulse-echo technique is widely used for non-destructive testing (NDT), but closely spaced acoustic interfaces [...] Read more.
Coating degradation monitoring is increasingly important in offshore industries, where protective layers ensure corrosion prevention and structural integrity. In this context, coating thickness estimation provides critical information. The ultrasound pulse-echo technique is widely used for non-destructive testing (NDT), but closely spaced acoustic interfaces often produce overlapping echoes, which complicates detection and accurate isolation of each layer’s thickness. In this study, analysis of the pulse-echo signal from a coated sample has shown that the front-coating reflection affects each main backwall echo differently; by comparing two consecutive backwall echoes, we can cancel the acquisition system’s impulse response and isolate the propagation path-related information between the echoes. This work introduces an ultrasound echo-based methodology for estimating coating thickness by first obtaining the impulse response of the test medium (reflectivity sequence) through a deconvolution model, developed using two consecutive backwall echoes. This is followed by an enhanced detection of coating layer thickness in the reflectivity function using a 1D convolutional neural network (1D-CNN) trained with synthetic signals obtained from finite-difference time-domain (FDTD) simulations with k-Wave MATLAB toolbox (v1.4.0). The proposed approach estimates the front-side coating thickness in steel samples coated on both sides, with coating layers ranging from 60μm to 740μm applied over 5 mm substrates and under varying coating and steel properties. The minimum detectable thickness corresponds to approximately λ/5 for an 8 MHz ultrasonic transducer. On synthetic signals, where the true coating thickness and speed of sound are known, the model achieves an accuracy of approximately 8μm. These findings highlight the strong potential of the model for reliably monitoring relative thickness changes across a wide range of coatings in real samples. Full article
(This article belongs to the Special Issue Nondestructive Sensing and Imaging in Ultrasound—Second Edition)
Show Figures

Figure 1

45 pages, 5814 KB  
Review
A Survey of EEG-Based Approaches to Classroom Attention Assessment in Education
by Lijun Wei, Yuanyu Yu, Yuping Qin and Shuang Zhang
Information 2025, 16(10), 860; https://doi.org/10.3390/info16100860 - 4 Oct 2025
Viewed by 201
Abstract
In evaluating classroom teaching quality, students’ attention assessment is a critical indicator in education management, as it holds significant practical value for improving teaching methods and instructional quality. Electroencephalogram (EEG) signals can monitor dynamic neural activity in the brain in real time. Their [...] Read more.
In evaluating classroom teaching quality, students’ attention assessment is a critical indicator in education management, as it holds significant practical value for improving teaching methods and instructional quality. Electroencephalogram (EEG) signals can monitor dynamic neural activity in the brain in real time. Their objectivity and non-invasive nature make them particularly suitable for attention assessment in classroom environments. This article first provides a brief overview of existing attention assessment methods, and then presents a comprehensive review of the current research status and methodologies in EEG-based attention assessment, including signal acquisition, preprocessing, feature extraction and selection, classification, and evaluation. Subsequently, the challenges in EEG-based teaching attention assessment are discussed, including the acquisition of high-quality signals, multimodal data fusion, complexity of data, and hardware setups for deep learning method implementation. Finally, a multimodal classroom attention assessment method, which integrates EEG and eye movement signals, is proposed to enhance teaching management. Full article
(This article belongs to the Special Issue Artificial Intelligence in the Era of Omni-Channel Media)
Show Figures

Figure 1

20 pages, 3921 KB  
Article
Design of an Experimental Teaching Platform for Flow-Around Structures and AI-Driven Modeling in Marine Engineering
by Hongyang Zhao, Bowen Zhao, Xu Liang and Qianbin Lin
J. Mar. Sci. Eng. 2025, 13(9), 1761; https://doi.org/10.3390/jmse13091761 - 11 Sep 2025
Viewed by 420
Abstract
Flow past bluff bodies (e.g., circular cylinders) forms a canonical context for teaching external flow separation, vortex shedding, and the coupling between surface pressure and hydrodynamic forces in offshore engineering. Conventional laboratory implementations, however, often fragment local and global measurements, delay data feedback, [...] Read more.
Flow past bluff bodies (e.g., circular cylinders) forms a canonical context for teaching external flow separation, vortex shedding, and the coupling between surface pressure and hydrodynamic forces in offshore engineering. Conventional laboratory implementations, however, often fragment local and global measurements, delay data feedback, and omit intelligent modeling components, thereby limiting the development of higher-order cognitive skills and data literacy. We present a low-cost, modular, data-enabled instructional hydrodynamics platform that integrates a transparent recirculating water channel, multi-point synchronous circumferential pressure measurements, global force acquisition, and an artificial neural network (ANN) surrogate. Using feature vectors composed of Reynolds number, angle of attack, and submergence depth, we train a lightweight AI model for rapid prediction of drag and lift coefficients, closing a loop of measurement, prediction, deviation diagnosis, and feature refinement. In the subcritical Reynolds regime, the measured circumferential pressure distribution for a circular cylinder and the drag and lift coefficients for a rectangular cylinder agree with empirical correlations and published benchmarks. The ANN surrogate attains a mean absolute percentage error of approximately 4% for both drag and lift coefficients, indicating stable, physically interpretable performance under limited feature inputs. This platform will facilitate students’ cross-domain transfer spanning flow physics mechanisms, signal processing, feature engineering, and model evaluation, thereby enhancing inquiry-driven and critical analytical competencies. Key contributions include the following: (i) a synchronized local pressure and global force dataset architecture; (ii) embedding a physics-interpretable lightweight ANN surrogate in a foundational hydrodynamics experiment; and (iii) an error-tracking, iteration-oriented instructional workflow. The platform provides a replicable pathway for transitioning offshore hydrodynamics laboratories toward an integrated intelligence-plus-data literacy paradigm and establishes a foundation for future extensions to higher Reynolds numbers, multiple body geometries, and physics-constrained neural networks. Full article
Show Figures

Figure 1

21 pages, 5459 KB  
Article
Research on Road Surface Recognition Algorithm Based on Vehicle Vibration Data
by Jianfeng Cui, Hengxu Zhang, Xiao Wang, Yu Jing and Xiujian Chou
Sensors 2025, 25(18), 5642; https://doi.org/10.3390/s25185642 - 10 Sep 2025
Viewed by 428
Abstract
Road surface conditions significantly impact driving safety and maintenance costs. Especially in connected and automated vehicles (CAVs), the road surface type recognition is critical for environmental perception. Traditional road surface recognition methods face limitations in feature extraction, so an improved one-dimensional convolutional neural [...] Read more.
Road surface conditions significantly impact driving safety and maintenance costs. Especially in connected and automated vehicles (CAVs), the road surface type recognition is critical for environmental perception. Traditional road surface recognition methods face limitations in feature extraction, so an improved one-dimensional convolutional neural network (1D-CNN) algorithm was proposed based on the VGG16 architecture. A vibration signal acquisition system was developed to efficiently acquire high-quality vehicle vibration signals. The optimized 1D-CNN algorithm model contains only 101.6 k parameters, significantly reducing computational cost and training time while maintaining high accuracy. Data augmentation, Adam optimization algorithm and L2 regularization were integrated to enhance generalization capabilities and suppress overfitting. On public datasets and actual vehicles tests, recognition accuracy rate reached 99.3% and 99.4%, respectively, substantially outperforming conventional methods. The algorithm also exhibited strong adaptability to different data sources. The research findings have implications for the accurate and efficient identification of road surfaces. Full article
(This article belongs to the Section Vehicular Sensing)
Show Figures

Figure 1

29 pages, 1761 KB  
Article
5G High-Precision Positioning in GNSS-Denied Environments Using a Positional Encoding-Enhanced Deep Residual Network
by Jin-Man Shen, Hua-Min Chen, Hui Li, Shaofu Lin and Shoufeng Wang
Sensors 2025, 25(17), 5578; https://doi.org/10.3390/s25175578 - 6 Sep 2025
Viewed by 1733
Abstract
With the widespread deployment of 5G technology, high-precision positioning in global navigation satellite system (GNSS)-denied environments is a critical yet challenging task for emerging 5G applications, enabling enhanced spatial resolution, real-time data acquisition, and more accurate geolocation services. Traditional methods relying on single-source [...] Read more.
With the widespread deployment of 5G technology, high-precision positioning in global navigation satellite system (GNSS)-denied environments is a critical yet challenging task for emerging 5G applications, enabling enhanced spatial resolution, real-time data acquisition, and more accurate geolocation services. Traditional methods relying on single-source measurements like received signal strength information (RSSI) or time of arrival (TOA) often fail in complex multipath conditions. To address this, the positional encoding multi-scale residual network (PE-MSRN) is proposed, a novel deep learning framework that enhances positioning accuracy by deeply mining spatial information from 5G channel state information (CSI). By designing spatial sampling with multigranular data and utilizing multi-source information in 5G CSI, a dataset covering a variety of positioning scenarios is proposed. The core of PE-MSRN is a multi-scale residual network (MSRN) augmented by a positional encoding (PE) mechanism. The positional encoding transforms raw angle of arrival (AOA) data into rich spatial features, which are then mapped into a 2D image, allowing the MSRN to effectively capture both fine-grained local patterns and large-scale spatial dependencies. Subsequently, the PE-MSRN algorithm that integrates ResNet residual networks and multi-scale feature extraction mechanisms is designed and compared with the baseline convolutional neural network (CNN) and other comparison methods. Extensive evaluations across various simulated scenarios, including indoor autonomous driving and smart factory tool tracking, demonstrate the superiority of our approach. Notably, PE-MSRN achieves a positioning accuracy of up to 20 cm, significantly outperforming baseline CNNs and other neural network algorithms in both accuracy and convergence speed, particularly under real measurement conditions with higher SNR and fine-grained grid division. Our work provides a robust and effective solution for developing high-fidelity 5G positioning systems. Full article
(This article belongs to the Section Navigation and Positioning)
Show Figures

Figure 1

34 pages, 999 KB  
Review
Robotic Prostheses and Neuromuscular Interfaces: A Review of Design and Technological Trends
by Pedro Garcia Batista, André Costa Vieira and Pedro Dinis Gaspar
Machines 2025, 13(9), 804; https://doi.org/10.3390/machines13090804 - 3 Sep 2025
Viewed by 1844
Abstract
Neuromuscular robotic prostheses have emerged as a critical convergence point between biomedical engineering, machine learning, and human–machine interfaces. This work provides a narrative state-of-the-art review regarding recent developments in robotic prosthetic technology, emphasizing sensor integration, actuator architectures, signal acquisition, and algorithmic strategies for [...] Read more.
Neuromuscular robotic prostheses have emerged as a critical convergence point between biomedical engineering, machine learning, and human–machine interfaces. This work provides a narrative state-of-the-art review regarding recent developments in robotic prosthetic technology, emphasizing sensor integration, actuator architectures, signal acquisition, and algorithmic strategies for intent decoding. Special focus is given to non-invasive biosignal modalities, particularly surface electromyography (sEMG), as well as invasive approaches involving direct neural interfacing. Recent developments in AI-driven signal processing, including deep learning and hybrid models for robust classification and regression of user intent, are also examined. Furthermore, the integration of real-time adaptive control systems with surgical techniques like Targeted Muscle Reinnervation (TMR) is evaluated for its role in enhancing proprioception and functional embodiment. Finally, this review highlights the growing importance of modular, open-source frameworks and additive manufacturing in accelerating prototyping and customization. Progress in this domain will depend on continued interdisciplinary research bridging artificial intelligence, neurophysiology, materials science, and real-time embedded systems to enable the next generation of intelligent prosthetic devices. Full article
Show Figures

Figure 1

27 pages, 7274 KB  
Article
Intelligent Identification of Internal Leakage of Spring Full-Lift Safety Valve Based on Improved Convolutional Neural Network
by Shuxun Li, Kang Yuan, Jianjun Hou and Xiaoqi Meng
Sensors 2025, 25(17), 5451; https://doi.org/10.3390/s25175451 - 3 Sep 2025
Viewed by 708
Abstract
In modern industry, the spring full-lift safety valve is a key device for safe pressure relief of pressure-bearing systems. Its valve seat sealing surface is easily damaged after long-term use, causing internal leakage, resulting in safety hazards and economic losses. Therefore, it is [...] Read more.
In modern industry, the spring full-lift safety valve is a key device for safe pressure relief of pressure-bearing systems. Its valve seat sealing surface is easily damaged after long-term use, causing internal leakage, resulting in safety hazards and economic losses. Therefore, it is of great significance to quickly and accurately diagnose its internal leakage state. Among the current methods for identifying fluid machinery faults, model-based methods have difficulties in parameter determination. Although the data-driven convolutional neural network (CNN) has great potential in the field of fault diagnosis, it has problems such as hyperparameter selection relying on experience, insufficient capture of time series and multi-scale features, and lack of research on valve internal leakage type identification. To this end, this study proposes a safety valve internal leakage identification method based on high-frequency FPGA data acquisition and improved CNN. The acoustic emission signals of different internal leakage states are obtained through the high-frequency FPGA acquisition system, and the two-dimensional time–frequency diagram is obtained by short-time Fourier transform and input into the improved model. The model uses the leaky rectified linear unit (LReLU) activation function to enhance nonlinear expression, introduces random pooling to prevent overfitting, optimizes hyperparameters with the help of horned lizard optimization algorithm (HLOA), and integrates the bidirectional gated recurrent unit (BiGRU) and selective kernel attention module (SKAM) to enhance temporal feature extraction and multi-scale feature capture. Experiments show that the average recognition accuracy of the model for the internal leakage state of the safety valve is 99.7%, which is better than the comparison model such as ResNet-18. This method provides an effective solution for the diagnosis of internal leakage of safety valves, and the signal conversion method can be extended to the fault diagnosis of other mechanical equipment. In the future, we will explore the fusion of lightweight networks and multi-source data to improve real-time and robustness. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

20 pages, 3983 KB  
Article
Novel Tunable Pseudoresistor-Based Chopper-Stabilized Capacitively Coupled Amplifier and Its Machine Learning-Based Application
by Mohammad Aleem Farshori, M. Nizamuddin, Renuka Chowdary Bheemana, Krishna Prakash, Shonak Bansal, Mohammad Zulqarnain, Vipin Sharma, S. Sudhakar Babu and Kanwarpreet Kaur
Micromachines 2025, 16(9), 1000; https://doi.org/10.3390/mi16091000 - 29 Aug 2025
Viewed by 640
Abstract
This work presents a high-common-mode-rejection-ratio (CMRR) and high-gain FinFET-based bio-potential amplifier with a novel CMRR reduction technique. In this paper, a feedback buffer is used alongside a capacitively coupled chopper-stabilized circuit to reduce the common-mode signal gain, thus boosting the overall CMRR of [...] Read more.
This work presents a high-common-mode-rejection-ratio (CMRR) and high-gain FinFET-based bio-potential amplifier with a novel CMRR reduction technique. In this paper, a feedback buffer is used alongside a capacitively coupled chopper-stabilized circuit to reduce the common-mode signal gain, thus boosting the overall CMRR of the circuit. The conventional pseudoresistor in the feedback circuit is replaced with a tunable parallel-cell configuration of pseudoresistors to achieve high linearity. A chopper spike filter is used to mitigate spikes generated by switching activity. The mid-band gain of the chopper-stabilized amplifier is 42.6 dB, with a bandwidth in the range of 6.96 Hz to 621 Hz. The noise efficiency factor (NEF) of the chopper-stabilized amplifier is 6.1, and its power dissipation is 0.92 µW. The linearity of the parallel pseudoresistor cell is tested for different tuning voltages (Vtune) and various numbers of parallel pseudoresistor cells. The simulation results also demonstrate the pseudoresistor cell performance for different process corners and temperature changes. The low cut-off frequency is adjusted by varying the parameters of the parallel pseudoresistor cell. The CMRR of the chopper-stabilized amplifier, with and without the feedback buffer, is 106.9 dB and 100.3 dB, respectively. The feedback buffer also reduces the low cut-off frequency, demonstrating its multi-utility. The proposed circuit is compatible with bio-signal acquisition and processing. Additionally, a machine learning-based arrhythmia diagnosis model is presented using a convolutional neural network (CNN) + Long Short-Term Memory (LSTM) algorithm. For arrhythmia diagnosis using the CNN+LSTM algorithm, an accuracy of 99.12% and a mean square error (MSE) of 0.0273 were achieved. Full article
Show Figures

Figure 1

16 pages, 15007 KB  
Article
Analysis of Surface EMG Signals to Control of a Bionic Hand Prototype with Its Implementation
by Adam Pieprzycki, Daniel Król, Bartosz Srebro and Marcin Skobel
Sensors 2025, 25(17), 5335; https://doi.org/10.3390/s25175335 - 28 Aug 2025
Viewed by 786
Abstract
The primary objective of the presented study is to develop a comprehensive system for the acquisition of surface electromyographic (sEMG) data and to perform time–frequency analysis aimed at extracting discriminative features for the classification of hand gestures intended for the control of a [...] Read more.
The primary objective of the presented study is to develop a comprehensive system for the acquisition of surface electromyographic (sEMG) data and to perform time–frequency analysis aimed at extracting discriminative features for the classification of hand gestures intended for the control of a simplified bionic hand prosthesis. The proposed system is designed to facilitate precise finger gesture execution in both prosthetic and robotic hand applications. This article outlines the methodology for multi-channel sEMG signal acquisition and processing, as well as the extraction of relevant features for gesture recognition using artificial neural networks (ANNs) and other well-established machine learning (ML) algorithms. Electromyographic signals were acquired using a prototypical LPCXpresso LPC1347 ARM Cortex M3 (NXP, Eindhoven, Holland) development board in conjunction with surface EMG sensors of the Gravity OYMotion SEN0240 type (DFRobot, Shanghai, China). Signal processing and feature extraction were carried out in the MATLAB 2024b environment, utilizing both the Fourier transform and the Hilbert–Huang transform to extract selected time–frequency characteristics of the sEMG signals. An artificial neural network (ANN) was implemented and trained within the same computational framework. The experimental protocol involved 109 healthy volunteers, each performing five predefined gestures of the right hand. The first electrode was positioned on the brachioradialis (BR) muscle, with subsequent channels arranged laterally outward from the perspective of the participant. Comprehensive analyses were conducted in the time domain, frequency domain, and time–frequency domain to evaluate signal properties and identify features relevant to gesture classification. The bionic hand prototype was fabricated using 3D printing technology with a PETG filament (Spectrum, Pęcice, Poland). Actuation of the fingers was achieved using six MG996R servo motors (TowerPro, Shenzhen, China), each with an angular range of 180, controlled via a PCA9685 driver board (Adafruit, New York, NY, USA) connected to the main control unit. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

20 pages, 2409 KB  
Article
Brainwave Biometrics: A Secure and Scalable Brain–Computer Interface-Based Authentication System
by Mashael Aldayel, Nouf Alsedairy and Abeer Al-Nafjan
AI 2025, 6(9), 205; https://doi.org/10.3390/ai6090205 - 28 Aug 2025
Viewed by 1165
Abstract
This study introduces a promising authentication framework utilizing brain–computer interface (BCI) technology to enhance both security protocols and user experience. A key strength of this approach lies in its reliance on objective, physiological signals—specifically, brainwave patterns—which are inherently difficult to replicate or forge, [...] Read more.
This study introduces a promising authentication framework utilizing brain–computer interface (BCI) technology to enhance both security protocols and user experience. A key strength of this approach lies in its reliance on objective, physiological signals—specifically, brainwave patterns—which are inherently difficult to replicate or forge, thereby providing a robust foundation for secure authentication. The authentication system was developed and implemented in four sequential stages: signal acquisition, preprocessing, feature extraction, and classification. Objective feature extraction methods, including Fisher’s Linear Discriminant (FLD) and Discrete Wavelet Transform (DWT), were employed to isolate meaningful brainwave features. These features were then classified using advanced machine learning techniques, with Quadratic Discriminant Analysis (QDA) and Convolutional Neural Networks (CNN) achieving accuracy rates exceeding 99%. These results highlight the effectiveness of the proposed BCI-based system and underscore the value of objective, data-driven methodologies in developing secure and user-friendly authentication solutions. To further address usability and efficiency, the number of BCI channels was systematically reduced from 64 to 32, and then to 16, resulting in accuracy rates of 92.64% and 80.18%, respectively. This reduction streamlined the authentication process, demonstrating that objective methods can maintain high performance even with simplified hardware and pointing to future directions for practical, real-world implementation. Additionally, we developed a real-time application using our custom dataset, reaching 99.75% accuracy with a CNN model. Full article
Show Figures

Figure 1

21 pages, 5952 KB  
Article
Evaluation of Helmet Wearing Compliance: A Bionic Spidersense System-Based Method for Helmet Chinstrap Detection
by Zhen Ma, He Xu, Ziyu Wang, Jielong Dou, Yi Qin and Xueyu Zhang
Biomimetics 2025, 10(9), 570; https://doi.org/10.3390/biomimetics10090570 - 27 Aug 2025
Viewed by 2237
Abstract
With the rapid advancement of industrial intelligence, ensuring occupational safety has become an increasingly critical concern. Among the essential personal protective equipment (PPE), safety helmets play a vital role in preventing head injuries. There is a growing demand for real-time detection of helmet [...] Read more.
With the rapid advancement of industrial intelligence, ensuring occupational safety has become an increasingly critical concern. Among the essential personal protective equipment (PPE), safety helmets play a vital role in preventing head injuries. There is a growing demand for real-time detection of helmet chinstrap wearing status during industrial operations. However, existing detection methods often encounter limitations such as user discomfort or potential privacy invasion. To overcome these challenges, this study proposes a non-intrusive approach for detecting the wearing state of helmet chinstraps, inspired by the mechanosensory hair arrays found on spider legs. The proposed method utilizes multiple MEMS inertial sensors to emulate the sensory functionality of spider leg hairs, thereby enabling efficient acquisition and analysis of helmet wearing states. Unlike conventional vibration-based detection techniques, posture signals reflect spatial structural characteristics; however, their integration from multiple sensors introduces increased signal complexity and background noise. To address this issue, an improved adaptive convolutional neural network (ICNN) integrated with a long short-term memory (LSTM) network is employed to classify the tightness levels of the helmet chinstrap using both single-sensor and multi-sensor data. Experimental validation was conducted based on data collected from 20 participants performing wall-climbing robot operation tasks. The results demonstrate that the proposed method achieves a high recognition accuracy of 96%. This research offers a practical, privacy-preserving, and highly effective solution for helmet-wearing status monitoring in industrial environments. Full article
(This article belongs to the Section Biomimetic Design, Constructions and Devices)
Show Figures

Figure 1

15 pages, 5441 KB  
Article
The Study and Development of BPM Noise Monitoring at the Siam Photon Source
by Wanisa Promdee, Sukho Kongtawong, Surakawin Suebka, Thapakron Pulampong, Natthawut Suradet, Roengrut Rujanakraikarn, Puttimate Hirunuran and Siriwan Jummunt
Particles 2025, 8(3), 76; https://doi.org/10.3390/particles8030076 - 25 Aug 2025
Viewed by 438
Abstract
This study presents the development of a noise-monitoring system for the storage ring at the Siam Photon Source, designed to detect and classify noise patterns in real time using beam position monitor (BPM) data. Noise patterns were categorized into four classes: broad peak, [...] Read more.
This study presents the development of a noise-monitoring system for the storage ring at the Siam Photon Source, designed to detect and classify noise patterns in real time using beam position monitor (BPM) data. Noise patterns were categorized into four classes: broad peak, multipeak, normal peak, and no beam. Two BPMs located at the multipole wiggler section, BPM-MPW1 and BPM-MPW2, were selected for detailed monitoring based on consistent noise trends observed across the ring. The dataset was organized in two complementary formats: two-dimensional (2D) images used for training and validating the models and one-dimensional (1D) CSV files containing the corresponding raw numerical signal data. Pre-trained deep learning and 1D convolutional neural network (CNN) models were employed to classify these patterns, achieving an overall classification accuracy of up to 99.83%. The system integrates with the EPICS control framework and archiver log data, enabling continuous data acquisition and long-term analyses. Visualization and monitoring features were developed using CS-Studio/Phoebus, providing both operators and beamline scientists with intuitive tools to track beam quality and investigate noise-related anomalies. This approach highlights the potential of combining beam diagnostics with machine learning to enhance operational stability and optimize the synchrotron radiation performance for user experiments. Full article
(This article belongs to the Special Issue Generation and Application of High-Power Radiation Sources 2025)
Show Figures

Figure 1

16 pages, 1386 KB  
Article
Balancing Energy Consumption and Detection Accuracy in Cardiovascular Disease Diagnosis: A Spiking Neural Network-Based Approach with ECG and PCG Signals
by Guihao Ran, Yijing Wang, Han Zhang, Jiahui Cheng and Dakun Lai
Sensors 2025, 25(17), 5263; https://doi.org/10.3390/s25175263 - 24 Aug 2025
Viewed by 818
Abstract
Electrocardiogram (ECG) and phonocardiogram (PCG) signals are widely used in the early prevention and diagnosis of cardiovascular diseases (CVDs) due to their ability to accurately reflect cardiac conditions from different physiological perspectives and their ease of acquisition. Currently, some studies have explored the [...] Read more.
Electrocardiogram (ECG) and phonocardiogram (PCG) signals are widely used in the early prevention and diagnosis of cardiovascular diseases (CVDs) due to their ability to accurately reflect cardiac conditions from different physiological perspectives and their ease of acquisition. Currently, some studies have explored the joint use of ECG and PCG signals for disease screening, but few studies have considered the trade-off between classification performance and energy consumption in model design. In this study, we propose a multimodal CVDs detection framework based on Spiking Neural Networks (SNNs), which integrates ECG and PCG signals. A differential fusion strategy at the signal level is employed to generate a fused EPCG signal, from which time–frequency features are extracted using the Adaptive Superlets Transform (ASLT). Two separate Spiking Convolutional Neural Network (SCNN) models are then trained on the ECG and EPCG signals, respectively. A confidence-based dynamic decision-level (CDD) fusion strategy is subsequently employed to perform the final classification. The proposed method is validated on the PhysioNet/CinC Challenge 2016 dataset, achieving an accuracy of 89.74%, an AUC of 89.08%, and an energy consumption of 209.6 μJ. This method not only achieves better balancing performance compared to unimodal signals but also realizes an effective balance between model energy consumption and classification effect, which provides an effective idea for the development of low-power, multimodal medical diagnostic systems. Full article
(This article belongs to the Special Issue Sensors for Heart Rate Monitoring and Cardiovascular Disease)
Show Figures

Figure 1

11 pages, 697 KB  
Data Descriptor
A Multi-Sensor Dataset for Human Activity Recognition Using Inertial and Orientation Data
by Jhonathan L. Rivas-Caicedo, Laura Saldaña-Aristizabal, Kevin Niño-Tejada and Juan F. Patarroyo-Montenegro
Data 2025, 10(8), 129; https://doi.org/10.3390/data10080129 - 14 Aug 2025
Viewed by 1434
Abstract
Human Activity Recognition (HAR) using wearable sensors is an increasingly relevant area for applications in healthcare, rehabilitation, and human–computer interaction. However, publicly available datasets that provide multi-sensor, synchronized data combining inertial and orientation measurements are still limited. This work introduces a publicly available [...] Read more.
Human Activity Recognition (HAR) using wearable sensors is an increasingly relevant area for applications in healthcare, rehabilitation, and human–computer interaction. However, publicly available datasets that provide multi-sensor, synchronized data combining inertial and orientation measurements are still limited. This work introduces a publicly available dataset for Human Activity Recognition, captured using wearable sensors placed on the chest, hands, and knees. Each device recorded inertial and orientation data during controlled activity sessions involving participants aged 20 to 70. A standardized acquisition protocol ensured consistent temporal alignment across all signals. The dataset was preprocessed and segmented using a sliding window approach. An initial baseline classification experiment, employing a Convolutional Neural Network (CNN) and Long-Short Term Memory (LSTM) model, demonstrated an average accuracy of 93.5% in classifying activities. The dataset is publicly available in CSV format and includes raw sensor signals, activity labels, and metadata. This dataset offers a valuable resource for evaluating machine learning models, studying distributed HAR approaches, and developing robust activity recognition pipelines utilizing wearable technologies. Full article
Show Figures

Figure 1

Back to TopTop