Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (567)

Search Parameters:
Keywords = neutral-shifted

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3739 KB  
Article
Theoretical Insights into the Molecular Interaction in Li-Ion Battery Electrolytes from the Perspective of the Dielectric Continuum Solvation Model
by Yumeng Zhao, Runmin Li, Xiaoxiao Li, Xinsheng Zhao, Yunsong Li and Yuxiao Lin
Crystals 2025, 15(9), 796; https://doi.org/10.3390/cryst15090796 (registering DOI) - 8 Sep 2025
Abstract
Rational electrolyte design stands as a frontier in the research and development of Li-ion batteries. Nevertheless, detailed investigations about the influence of the dielectric continuum solvation model on molecular interactions are still limited. Herein, we systematically study the impacts of the dielectric constant [...] Read more.
Rational electrolyte design stands as a frontier in the research and development of Li-ion batteries. Nevertheless, detailed investigations about the influence of the dielectric continuum solvation model on molecular interactions are still limited. Herein, we systematically study the impacts of the dielectric constant (ε) on isolated molecules (i.e., ions and solvent molecules), isolated ion pairs, and solvation complexes via density functional theory calculations. The energy shift due to solvation cavity creation is the largest, and charged species always have larger energy shifts than neutral species. For charged species, the energy shifts gradually decrease with a decreasing proportion of Li ions and an increasing proportion of anions, while for neutral species, larger dipole moments lead to higher energy shifts. As predicted by the relative method, the energetic order of ion pairs and solvation complexes in vacuum can be dramatically changed in various dielectric continuums. Furthermore, electrochemical stability windows of charged species change dramatically with ε, while those of neutral species stay almost constant. By clarifying the impacts of dielectric continuum solvation on molecular interactions, we hope to set a benchmark for the molecular interaction calculation, which is critical for the rational design of electrolytes in Li-ion batteries. Full article
Show Figures

Figure 1

21 pages, 4279 KB  
Article
The Antimicrobial Effect and ROS Redox Activity of Nb2O5-Containing Powders Obtained by the Sol–Gel Method
by Kalina Ivanova, Elitsa Pavlova, Iliana Ivanova and Albena Bachvarova-Nedelcheva
Gels 2025, 11(9), 716; https://doi.org/10.3390/gels11090716 (registering DOI) - 7 Sep 2025
Abstract
The aim of the present paper is to study the antimicrobial effects of Nb2O5-containing nanosized powders. A combination of inorganic [telluric acid (H6TeO6)] and organic [Ti(IV) n-butoxide, Nb(V) ethoxide (C10H25NbO5 [...] Read more.
The aim of the present paper is to study the antimicrobial effects of Nb2O5-containing nanosized powders. A combination of inorganic [telluric acid (H6TeO6)] and organic [Ti(IV) n-butoxide, Nb(V) ethoxide (C10H25NbO5)] precursors was used to prepare gels. To allow for further hydrolysis, the gels were aged in air for a few days. The gels were amorphous, but at 600 °C the amorphous phase was absent, and only TiO2 (anatase) crystals were detected. The average crystallite size of TiO2 (anatase) was about 10 nm. The UV-Vis spectrum of the as-prepared gel showed red shifting in the cut-off region. The obtained nanopowders were evaluated for antimicrobial properties against E. coli ATCC 25922, P. aeruginosa ATCC 27853, S. aureus ATCC 25923, and C. albicans 18804. Among these, only E. coli was examined in combination with the antibiotic ciprofloxacin to assess whether there was a potential synergistic effect. The results showed that the material exhibited antibacterial activity against the abovementioned bacterial strains but not against C. albicans. In the case of E. coli combined with ciprofloxacin, a concentration-dependent enhancement in antibacterial activity was observed. The obtained samples can be considered as prospective materials for use as environmental catalysts. The newly synthesized nanocomposite showed a balancing, modulating, and neutralizing effect on the generation of ROS. The inhibitory effect was preserved in all tested model chemical systems at pH 7.4 (physiological), indicating potential biological applications in inflammatory and oxidation processes in vivo. Full article
Show Figures

Figure 1

32 pages, 4655 KB  
Article
Phenological Variation of Native and Reforested Juglans neotropica Diels in Response to Edaphic and Orographic Gradients in Southern Ecuador
by Byron Palacios-Herrera, Santiago Pereira-Lorenzo and Darwin Pucha-Cofrep
Diversity 2025, 17(9), 627; https://doi.org/10.3390/d17090627 - 6 Sep 2025
Viewed by 62
Abstract
Juglans neotropica Diels, classified as endangered on the IUCN Red List, plays a crucial role in the resilience of Andean montane forests in southern Ecuador—a megadiverse region encompassing coastal, Andean, and Amazonian ecosystems. This study examines how climatic, edaphic, and topographic gradients influence [...] Read more.
Juglans neotropica Diels, classified as endangered on the IUCN Red List, plays a crucial role in the resilience of Andean montane forests in southern Ecuador—a megadiverse region encompassing coastal, Andean, and Amazonian ecosystems. This study examines how climatic, edaphic, and topographic gradients influence the species’ phenotypic traits across six source localities—Tibio, Merced, Tundo, Victoria, Zañe, and Argelia—all of which are localities situated in the provinces of Loja and Zamora Chinchipe. By integrating long-term climate records, slope mapping, and soil characterization, we assessed the effects of temperature, precipitation, humidity, soil moisture, and terrain steepness on leaf presence, fruit maturation, and tree architecture. Over the past 20 years, temperature increased by 1.5 °C (p < 0.01), while precipitation decreased by 22%, disrupting local edaphoclimatic balances. More than 2000 individuals were measured in forest stands, with estimated ages ranging from 11 to 355 years. ANOVA results revealed that Tundo and Victoria exhibited significantly greater DBH, height, and volume (p ≤ 0.05), with Victoria showing a 30% larger DBH than Argelia, the lowest-performing provenance. Soils ranged from loam to sandy loam, with slopes exceeding 45% and pH levels from slightly acidic to neutral. These findings confirm the species’ pronounced phenotypic plasticity and ecological adaptability, directly informing site-specific conservation strategies and long-term forest management under shifting climatic conditions. Full article
(This article belongs to the Special Issue Plant Diversity Hotspots in the 2020s)
Show Figures

Figure 1

49 pages, 1459 KB  
Article
A Deep Learning Approach for Real-Time Intrusion Mitigation in Automotive Controller Area Networks
by Anila Kousar, Saeed Ahmed and Zafar A. Khan
World Electr. Veh. J. 2025, 16(9), 492; https://doi.org/10.3390/wevj16090492 - 1 Sep 2025
Viewed by 407
Abstract
The digital revolution has profoundly influenced the automotive industry, shifting the paradigm from conventional vehicles to smart cars (SCs). The SCs rely on in-vehicle communication among electronic control units (ECUs) enabled by assorted protocols. The Controller Area Network (CAN) serves as the de [...] Read more.
The digital revolution has profoundly influenced the automotive industry, shifting the paradigm from conventional vehicles to smart cars (SCs). The SCs rely on in-vehicle communication among electronic control units (ECUs) enabled by assorted protocols. The Controller Area Network (CAN) serves as the de facto standard for interconnecting these units, enabling critical functionalities. However, inherited non-delineation in SCs— transmits messages without explicit destination addressing—poses significant security risks, necessitating the evolution of an astute and resilient self-defense mechanism (SDM) to neutralize cyber threats. To this end, this study introduces a lightweight intrusion mitigation mechanism based on an adaptive momentum-based deep denoising autoencoder (AM-DDAE). Employing real-time CAN bus data from renowned smart vehicles, the proposed framework effectively reconstructs original data compromised by adversarial activities. Simulation results illustrate the efficacy of the AM-DDAE-based SDM, achieving a reconstruction error (RE) of less than 1% and an average execution time of 0.145532 s for data recovery. When validated on a new unseen attack, and on an Adversarial Machine Learning attack, the proposed model demonstrated equally strong performance with RE < 1%. Furthermore, the model’s decision-making capabilities were analysed using Explainable AI techinques such as SHAP and LIME. Additionally, the scheme offers applicable deployment flexibility: it can either be (a) embedded directly into individual ECU firmware or (b) implemented as a centralized hardware component interfacing between the CAN bus and ECUs, preloaded with the proposed mitigation algorithm. Full article
(This article belongs to the Special Issue Vehicular Communications for Cooperative and Automated Mobility)
Show Figures

Graphical abstract

30 pages, 1238 KB  
Article
Deconstructing the Digital Economy: A New Measurement Framework for Sustainability Research
by Xiaoling Yuan, Baojing Han, Shubei Wang and Jiangyang Zhang
Sustainability 2025, 17(17), 7857; https://doi.org/10.3390/su17177857 - 31 Aug 2025
Viewed by 417
Abstract
Empirical research on the impact of the digital economy on sustainable development is hampered by severe methodological challenges. Discrepancies in the theoretical foundations and construction logic of measurement frameworks have led to diverse and often conflicting conclusions, hindering the systematic accumulation of knowledge. [...] Read more.
Empirical research on the impact of the digital economy on sustainable development is hampered by severe methodological challenges. Discrepancies in the theoretical foundations and construction logic of measurement frameworks have led to diverse and often conflicting conclusions, hindering the systematic accumulation of knowledge. This study aims to address this critical gap by proposing a new, logically consistent measurement framework. To overcome the existing limitations, we construct a functional deconstruction framework grounded in General-Purpose Technology (GPT) theory and a “stock–flow” perspective. This framework deconstructs the digital economy into a neutral “digital infrastructure” (stock platform) and two forces reflecting its inherent duality: a “consumption force” (digital industrialization) and an “empowerment force” (industrial digitalization). Based on this, we develop a measurement system adhering to the principle of “logical purity” and apply a “two-step entropy weighting method with annual standardization” to assess 30 provinces in China from 2012 to 2023. Our analysis reveals a multi-scalar evolution. At the micro level, we identified four distinct provincial development models and three evolutionary paths. At the macro level, we found that the overall inter-provincial disparity followed an inverted U-shaped trajectory, with the core contradiction shifting from an “access gap” to a more profound “application gap.” Furthermore, the primary driver of this disparity has transitioned from being “empowerment-led” to a new phase of a “dual-force rebalancing.” The main contribution of this study is the provision of a new analytical tool that enables a paradigm shift from “aggregate assessment” to “structural diagnosis.” By deconstructing the digital economy, our framework allows for the identification of internal structural imbalances and provides a more robust and nuanced foundation for future causal inference studies and evidence-based policymaking in the field of digital sustainability Full article
Show Figures

Figure 1

19 pages, 5168 KB  
Article
Green Tea Modulates Temporal Dynamics and Environmental Adaptation of Microbial Communities in Daqu Fermentation
by Liang Zhao, Fangfang Li, Hao Xiao, Tengfei Zhao, Yanxia Zhong, Zhihui Hu, Lu Jiang, Xiangyong Wang and Xinye Wang
Fermentation 2025, 11(9), 511; https://doi.org/10.3390/fermentation11090511 - 31 Aug 2025
Viewed by 374
Abstract
This study investigated the impact of green tea addition on microbial community dynamics during Daqu fermentation, a critical process in traditional baijiu production. Four Daqu variants (0%, 10%, 20%, 30% tea) were analyzed across six fermentation periods using 16S rRNA/ITS sequencing, coupled with [...] Read more.
This study investigated the impact of green tea addition on microbial community dynamics during Daqu fermentation, a critical process in traditional baijiu production. Four Daqu variants (0%, 10%, 20%, 30% tea) were analyzed across six fermentation periods using 16S rRNA/ITS sequencing, coupled with STR, TDR, Sloan neutral model, and phylogenetic analyses. Results showed time-dependent increases in bacterial/fungal richness, with 30% tea maximizing species richness. Tea delayed bacterial shifts until day 15 but accelerated fungal reconstruction from day 6, expanding the temporal response window. While stochastic processes dominated initial assembly (77–94% bacteria, 88–99% fungi), deterministic processes intensified with tea concentration, particularly in fungi (1% → 12%). Tea increased bacterial dispersal limitation and reduced phylogenetic conservatism of endogenous factors. This work proposed a framework for rationally engineering fermentation ecosystems by decoding evolutionary-ecological rules of microbial assembly. It revealed how plant-derived additives can strategically adjust niche partitioning and ancestral constraints to reprogram microbiome functionality. These findings provided a theoretical foundation in practical strategies for optimizing industrial baijiu production through targeted ecological interventions. Full article
(This article belongs to the Special Issue Development and Application of Starter Cultures, 2nd Edition)
Show Figures

Figure 1

14 pages, 709 KB  
Article
Operative Creativity: Art at the Intersection of Simulation and Realization
by Maayan Amir
Arts 2025, 14(5), 99; https://doi.org/10.3390/arts14050099 - 27 Aug 2025
Viewed by 253
Abstract
This essay proposes operative creativity as a conceptual and artistic response to the shifting roles of images in the age of algorithmic perception. Departing from Harun Farocki’s seminal artwork Eye/Machine, which first introduced the operative image as functioning not to represent but [...] Read more.
This essay proposes operative creativity as a conceptual and artistic response to the shifting roles of images in the age of algorithmic perception. Departing from Harun Farocki’s seminal artwork Eye/Machine, which first introduced the operative image as functioning not to represent but to activate within machinic processes, it traces the transformation of images from representational devices to machinic agents embedded in systems of simulation and realization. Although operative images were initially engineered for strictly technological functions, they have, from their inception, been subject to repurposing for human perception and interpretation. Drawing on literature theorizing the redirection of operative images within military, computational, and epistemic domains, the essay does not attempt a comprehensive survey. Instead, it opens a conceptual aperture within the framework, expanding it to illuminate the secondary redeployment of operative images in contemporary visual culture. Concluding with the artwork Terms and Conditions, co-created by Ruti Sela and the author, it examines how artistic gestures might neutralize the weaponized gaze, offering a mode of operative creativity that troubles machinic vision and reclaims a space for human opacity. Full article
Show Figures

Figure 1

22 pages, 5652 KB  
Article
Building Energy Assessment of Thermal and Electrical Properties for Compact Cities: Case Study of a Multi-Purpose Building in South Korea
by Jaeho Lee and Jaewan Suh
Buildings 2025, 15(17), 3023; https://doi.org/10.3390/buildings15173023 - 25 Aug 2025
Viewed by 448
Abstract
This study conducts a simulation-based assessment of a recently commissioned office building in the Republic of Korea, representing a typical public office facility. The building was modeled using EnergyPlus 23.1.0 after construction, although no validation was performed due to the absence of metered [...] Read more.
This study conducts a simulation-based assessment of a recently commissioned office building in the Republic of Korea, representing a typical public office facility. The building was modeled using EnergyPlus 23.1.0 after construction, although no validation was performed due to the absence of metered consumption data. Previous approaches relying on simplified methods such as the Radiant Time Series (RTS), which neglect dynamic building behavior, have often led to overestimated cooling and heating loads. This has emerged as a major obstacle in designing energy-efficient buildings within the context of compact and smart cities pursuing carbon neutrality. Consequently, the trend in building performance analysis is shifting toward dynamic simulations and digital twin-based design methodologies. Furthermore, electrification of buildings without adequate thermal load assessment may also contribute to overdesign, irrespective of urban environmental characteristics. From an urban planning standpoint, there is a growing need for performance criteria that reflect occupant behavior and actual usage patterns. However, dynamics-based building studies remain scarce in the Republic of Korea. In this context, the present study demonstrates that passive design strategies, implemented through systematic changes in envelope materials, HVAC operational standards, and compliance with ASHRAE 90.1 criteria, can significantly enhance thermal comfort and indoor air quality. The simulation results show that energy consumption can be reduced by over 36.21% without compromising occupant health or comfort. These findings underscore the importance of thermal load understanding prior to electrification and highlight the potential of LEED-aligned passive strategies for achieving high-performance, low-energy buildings. Full article
(This article belongs to the Special Issue Study on Building Energy Efficiency Related to Simulation Models)
Show Figures

Figure 1

28 pages, 2349 KB  
Article
Effective and Stable Senomorphic Apigenin Delivery System Obtained by Supercritical Carbon Dioxide Processing
by Anna Stasiłowicz-Krzemień, Natalia Rosiak, Giuseppe Francesco Racaniello, Nunzio Denora and Judyta Cielecka-Piontek
Int. J. Mol. Sci. 2025, 26(17), 8126; https://doi.org/10.3390/ijms26178126 - 22 Aug 2025
Viewed by 313
Abstract
Apigenin (AP) is a natural flavonoid with senomorphic potential and neuroprotective action; however, poor aqueous solubility (<1 μg/mL) limits its bioavailability and therapeutic use. Therefore, the aim of this study was to obtain an amorphous dispersion of AP and evaluate its biological properties. [...] Read more.
Apigenin (AP) is a natural flavonoid with senomorphic potential and neuroprotective action; however, poor aqueous solubility (<1 μg/mL) limits its bioavailability and therapeutic use. Therefore, the aim of this study was to obtain an amorphous dispersion of AP and evaluate its biological properties. Screening of AP solubilization capabilities under supercritical carbon dioxide processing conditions showed that the system with Soluplus (SOL) achieved the greatest improvement in AP dissolution (6455.4 ± 27.2 μg/mL). Using optimized process parameters (50 °C, 6500 PSI), the AP solubility increased to 8050.2 ± 35.1 μg/mL. X-ray powder diffraction (XRPD) confirmed amorphization, aligning with improved dissolution of AP in both acidic and neutral pH media. As a result, using the PAMPA model, an improvement in AP penetration through membranes simulating gastrointestinal and blood–brain barriers was demonstrated. The significant stability of the obtained amorphous AP dispersion (12 months at room conditions) was associated with stabilizing AP–solubilizer intermolecular interactions, mainly expressed as the shifts in the bands of AP in the range of 1018–1269 cm−1 observed in ATR-FT-IR spectra. Chromatographic analysis confirmed the lack of AP decomposition immediately after the preparation of the amorphous dispersion, as well as after 12 months. As expected, the improvement of AP solubility is correlated with better biological activity assessed in selected in vitro tests such as antioxidant properties (2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), and cupric ion reducing antioxidant capacity (CUPRAC) assays) and anticholinesterase inhibition capabilities (AChE and BChE assays). The effect of the studies on improving AP solubility under supercritical carbon dioxide processing conditions is obtaining a stable amorphous AP dispersion (up to 12 months). Regardless of the pH of the media, an improvement in AP dissolution and penetration, conditioned by the passive diffusion process, through biological membranes was noted. Moreover, a more efficient antioxidant and neuroprotective effect of AP in the developed amorphous dispersion can also be suggested. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
Show Figures

Graphical abstract

29 pages, 5577 KB  
Article
Institutional Quality, Macroeconomic Policy, and Sustainable Growth in Thailand
by Pathairat Pastpipatkul and Htwe Ko
Sustainability 2025, 17(16), 7524; https://doi.org/10.3390/su17167524 - 20 Aug 2025
Viewed by 428
Abstract
The effectiveness of fiscal and monetary policy in sustaining growth and facilitating recovery from economic crises is increasingly considered to be significantly influenced by the quality of a country’s institutions. Strong institutions may determine how well macroeconomic policies perform under both stable and [...] Read more.
The effectiveness of fiscal and monetary policy in sustaining growth and facilitating recovery from economic crises is increasingly considered to be significantly influenced by the quality of a country’s institutions. Strong institutions may determine how well macroeconomic policies perform under both stable and turbulent circumstances. This study examines how institutional quality (IQ) moderates the effects of fiscal and monetary policies on economic growth in Thailand from Q1:2003 to Q4:2023. Using a combination of BART and BASAD models, we find that voice and accountability and control of corruption are key institutional factors. Among macroeconomic indicators, exports, household debt, gold prices, and electricity generation emerge as the most important drivers of growth during the study period. The findings showed that IQ stabilizes and enhances the impact of policy interest rates and export growth while mitigating negative shocks from household debt and energy infrastructure challenges. Monetary policy effectiveness varies and depends on governmental institutions. Fiscal policy remains mostly neutral but shifts with institutional conditions. These results highlight that strong institutions improve the efficacy of macroeconomic policies and support sustainable growth. This study empirically examines the moderating role of IQ in economic resilience and policy design in an emerging economy using microdata from Thailand as a focus and the Time-varying Seemingly Unrelated Regression Equation (tvSURE) model. Full article
Show Figures

Graphical abstract

27 pages, 6232 KB  
Article
Insights from Earth Map: Unraveling Environmental Dynamics in the Euphrates–Tigris Basin
by Ayhan Ateşoğlu, Mustafa Hakkı Aydoğdu, Kasım Yenigün, Alfonso Sanchez-Paus Díaz, Giulio Marchi and Fidan Şevval Bulut
Sustainability 2025, 17(16), 7513; https://doi.org/10.3390/su17167513 - 20 Aug 2025
Viewed by 642
Abstract
The Euphrates–Tigris Basin is experiencing significant environmental transformations due to climate change, Land Use and Land Cover Change (LULCC), and anthropogenic pressures. This study employs Earth Map, an open-access remote sensing platform, to comprehensively assess climate trends, vegetation dynamics, water resource variability, and [...] Read more.
The Euphrates–Tigris Basin is experiencing significant environmental transformations due to climate change, Land Use and Land Cover Change (LULCC), and anthropogenic pressures. This study employs Earth Map, an open-access remote sensing platform, to comprehensively assess climate trends, vegetation dynamics, water resource variability, and land degradation across the basin. Key findings reveal a geographic shift toward aridity, with declining precipitation in high-altitude headwater regions and rising temperatures exacerbating water scarcity. While cropland expansion and localized improvements in land productivity were observed, large areas—particularly in hyperarid and steppe zones—show early signs of degradation, increasing the risk of dust source expansion. LULCC analysis highlights substantial wetland loss, irreversible urban growth, and agricultural encroachment into fragile ecosystems, with Iraq experiencing the most pronounced transformations. Climate projections under the SSP245 and SSP585 scenarios indicate intensified warming and aridity, threatening hydrological stability. This study underscores the urgent need for integrated water management, Land Degradation Neutrality (LDN), and climate-resilient policies to safeguard the basin’s ecological and socioeconomic resilience. Earth Map is a vital tool for monitoring environmental changes, offering rapid insights for policymakers and stakeholders in this data-scarce region. Future research should include higher-resolution datasets and localized socioeconomic data to improve adaptive strategies. Full article
(This article belongs to the Special Issue Drinking Water, Water Management and Environment)
Show Figures

Figure 1

16 pages, 1599 KB  
Article
Effect of pH-shifting on the Physicochemical Properties of Pea Proteins and Its Effect on the Texture of Hybrid Gels Formed with Casein Micelles
by Raiane Rodrigues da Silva, Luis Henrique de Paula Souza, Lucas Silva de Sousa, Laura Destro Rodrigues, Gustavo Schäfer Nogueira, Luis Gustavo Lima Nascimento and Antônio Fernandes Carvalho
Foods 2025, 14(16), 2887; https://doi.org/10.3390/foods14162887 - 20 Aug 2025
Viewed by 361
Abstract
Hybrid systems combining animal and plant proteins are promising for developing sustainable, high-protein foods. However, structural incompatibility between proteins like casein and pea protein hinders the formation of stable systems such as gels. This study explores pH-shifting (alkalization at pH 12 followed by [...] Read more.
Hybrid systems combining animal and plant proteins are promising for developing sustainable, high-protein foods. However, structural incompatibility between proteins like casein and pea protein hinders the formation of stable systems such as gels. This study explores pH-shifting (alkalization at pH 12 followed by neutralization) as an innovative strategy to improve pea protein functionality and compatibility in hybrid gels. Modified pea protein showed increased solubility, reduced particle size, higher zeta potential, and decreased intrinsic fluorescence intensity, indicating conformational changes and exposure of buried tryptophan residues. These structural changes influenced gel behavior depending on the protein ratio (casein/pea—80:20, 50:50, 20:80). Gels with higher pea content showed increased hardness and water-holding capacity, while in casein-rich gels, hardness decreased, likely due to altered protein–protein interactions. This is the first study to systematically apply pH-shifting to enhance the compatibility between pea protein and casein in high-protein gels, integrating structural and functional analyses. The results demonstrate the potential of pH-shifting as a sustainable and effective approach for improving plant protein performance in hybrid formulations. Full article
(This article belongs to the Special Issue Advances in the Development of Proteins from Grains and Legumes)
Show Figures

Graphical abstract

17 pages, 4515 KB  
Article
Longitudinal Bending Mechanical Performance of Double-O-Tube (DOT) Shield Tunnel
by Senyong Wang, Lehua Peng, Yuan Zhang and Rongzhu Liang
Buildings 2025, 15(16), 2934; https://doi.org/10.3390/buildings15162934 - 19 Aug 2025
Viewed by 277
Abstract
The longitudinal equivalent bending stiffness is a critical parameter for assessing the longitudinal responses of Double-O-Tube (DOT) shield tunnels under adjacent construction activities. Based on a longitudinal equivalent continuous model and the characteristics of the DOT shield tunnel cross-section, an analytical solution for [...] Read more.
The longitudinal equivalent bending stiffness is a critical parameter for assessing the longitudinal responses of Double-O-Tube (DOT) shield tunnels under adjacent construction activities. Based on a longitudinal equivalent continuous model and the characteristics of the DOT shield tunnel cross-section, an analytical solution for the longitudinal equivalent bending stiffness (LEBS) of the DOT shield tunnel has been derived. Given that the cross-section of the DOT shield tunnel is an irregular structure, two scenarios are considered: one in which the neutral axis is located at the waist of the tunnel and another where it is situated at the lower arch. Using the structural design of the DOT shield tunnel for Shanghai Metro Line M8 as a case study, the effects of bolt number, segment thickness, segment width, and pillar height on the longitudinal equivalent bending stiffness have been investigated. Additionally, formulas for calculating the deformation and stress indices of the DOT shield tunnel have been established. The results indicate that increasing the number of bolts and widening the segments can enhance the longitudinal equivalent bending stiffness efficiency (LEBSE), resulting in an upward shift of the neutral axis. Conversely, as the segment thickness increases, the LEBSE decreases linearly while the neutral axis moves downward; however, the value of LEBS itself increases. With an increase in the pillar height angle, the neutral axis shifts upward, leading to an increase in the LEBS. When the pillar height angle is increased from 10° to 45°, the LEBSE decreases rapidly, followed by a gradual increase with further elevation in the pillar height angle. When the tunnel curvature radius exceeds 15,000 m, the bolts, segments, and joint openings remain in a safe state. However, when the curvature radius decreases to 5233 m, the maximum tensile stress on the bolts reaches their yield limit, and the joint openings exceed the warning threshold. Full article
(This article belongs to the Special Issue Soil–Structure Interactions for Civil Infrastructure)
Show Figures

Figure 1

19 pages, 2963 KB  
Article
Theoretical Design of Composite Stratified Nanohole Arrays for High-Figure-of-Merit Plasmonic Hydrogen Sensors
by Jiyu Feng, Yuting Liu, Xinyi Chen, Mingyu Cheng and Bin Ai
Chemosensors 2025, 13(8), 309; https://doi.org/10.3390/chemosensors13080309 - 15 Aug 2025
Viewed by 408
Abstract
Fast, spark-free detection of hydrogen leaks is indispensable for large-scale hydrogen deployment, yet electronic sensors remain power-intensive and prone to cross-talk. Optical schemes based on surface plasmons enable remote read-out, but single-metal devices offer either weak H2 affinity or poor plasmonic quality. Here [...] Read more.
Fast, spark-free detection of hydrogen leaks is indispensable for large-scale hydrogen deployment, yet electronic sensors remain power-intensive and prone to cross-talk. Optical schemes based on surface plasmons enable remote read-out, but single-metal devices offer either weak H2 affinity or poor plasmonic quality. Here we employ full-wave finite-difference time-domain (FDTD) simulations to map the hydrogen response of nanohole arrays (NAs) that can be mass-produced by colloidal lithography. Square lattices of 200 nm holes etched into 100 nm films of Pd, Mg, Ti, V, or Zr expose an intrinsic trade-off: Pd maintains sharp extraordinary optical transmission modes but shifts by only 28 nm upon hydriding, whereas Mg undergoes a large dielectric transition that extinguishes its resonance. Vertical pairing of a hydride-forming layer with a noble metal plasmonic cap overcomes this limitation. A Mg/Pd bilayer preserves all modes and red-shifts by 94 nm, while the predicted optimum Ag (60 nm)/Mg (40 nm) stack delivers a 163 nm shift with an 83 nm linewidth, yielding a figure of merit of 1.96—surpassing the best plasmonic hydrogen sensors reported to date. Continuous-film geometry suppresses mechanical degradation, and the design rules—noble-metal plasmon generator, buried hydride layer, and thickness tuning—are general. This study charts a scalable route to remote, sub-ppm, optical hydrogen sensors compatible with a carbon-neutral energy infrastructure. Full article
(This article belongs to the Special Issue Innovative Gas Sensors: Development and Application)
Show Figures

Figure 1

26 pages, 36577 KB  
Article
Spatiotemporal Simulation Prediction and Driving Force Analysis of Carbon Storage in the Sanjiangyuan Region Based on SSP-RCP Scenarios
by Zeyu Li, Haichen Zhang, Linxing Zhao, Maqiang Xu, Changxian Qi, Qiang Gu and Yanhe Wang
Sustainability 2025, 17(16), 7391; https://doi.org/10.3390/su17167391 - 15 Aug 2025
Viewed by 336
Abstract
Global warming and rapid urban industrialization are profoundly transforming land-use patterns and carbon storage capacity in terrestrial ecosystems. A rigorous analysis of spatiotemporal variations in regional land-use changes and carbon storage dynamics provides critical insights for sustainable land-use planning and ecological security, particularly [...] Read more.
Global warming and rapid urban industrialization are profoundly transforming land-use patterns and carbon storage capacity in terrestrial ecosystems. A rigorous analysis of spatiotemporal variations in regional land-use changes and carbon storage dynamics provides critical insights for sustainable land-use planning and ecological security, particularly within the context of achieving carbon peaking and carbon neutrality targets. In this study, the PLUS-InVEST model was coupled with climate change and policy constraints to construct six future scenarios. We analyzed the characteristics of land-use evolution and the spatial and temporal changes in carbon storage in the Sanjiangyuan region from 2000 to 2020. We also predicted the potential impacts of land-use shift on carbon storage. The results show the following: (1) Land-use transitions exerted significant impacts on carbon stock. The Sanjiangyuan region experienced a net carbon stock reduction of 9.9 × 106 t during 2000–2020, with the most pronounced decline (6.1 × 106 t) occurring between 2000 and 2010. (2) Under the same climate scenario, the natural development (ND) scenario exhibited decreasing carbon reserves relative to 2020 baseline levels. Notably, land-use planning scenarios demonstrated spatially heterogeneous impacts, with the ecological protection (EP) scenario consistently maintaining higher carbon stocks compared to the ND scenario. (3) Multivariate driver interactions exerted stronger control over spatial carbon storage patterns than any individual factor. These findings inform targeted land-use management strategies to enhance regional carbon sequestration capacity, promote sustainable development, and support China’s carbon peaking and neutrality objectives. Full article
Show Figures

Figure 1

Back to TopTop