Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = nitrene radicals

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 7874 KiB  
Article
A Mechanistic Study on Iron-Based Styrene Aziridination: Understanding Epoxidation via Nitrene Hydrolysis
by Dóra Lakk-Bogáth, Patrik Török, Dénes Pintarics and József Kaizer
Molecules 2024, 29(15), 3470; https://doi.org/10.3390/molecules29153470 - 24 Jul 2024
Viewed by 1259
Abstract
Transition-metal-catalyzed nitrene transfer reactions are typically performed in organic solvents under inert and anhydrous conditions due to the involved air and water-sensitive nature of reactive intermediates. Overall, this study provides insights into the iron-based ([FeII(PBI)3](CF3SO3) [...] Read more.
Transition-metal-catalyzed nitrene transfer reactions are typically performed in organic solvents under inert and anhydrous conditions due to the involved air and water-sensitive nature of reactive intermediates. Overall, this study provides insights into the iron-based ([FeII(PBI)3](CF3SO3)2 (1), where PBI = 2-(2-pyridyl)benzimidazole), catalytic and stoichiometric aziridination of styrenes using PhINTs ([(N-tosylimino)iodo]benzene), highlighting the importance of reaction conditions including the effects of the solvent, co-ligands (para-substituted pyridines), and substrate substituents on the product yields, selectivity, and reaction kinetics. The aziridination reactions with 1/PhINTs showed higher conversion than epoxidation with 1/PhIO (iodosobenzene). However, the reaction with PhINTs was less selective and yielded more products, including styrene oxide, benzaldehyde, and 2-phenyl-1-tosylaziridine. Therefore, the main aim of this study was to investigate the potential role of water in the formation of oxygen-containing by-products during radical-type nitrene transfer catalysis. During the catalytic tests, a lower yield was obtained in a protic solvent (trifluoroethanol) than in acetonitrile. In the case of the catalytic oxidation of para-substituted styrenes containing electron-donating groups, higher yield, TON, and TOF were achieved than those with electron-withdrawing groups. Pseudo-first-order kinetics were observed for the stoichiometric oxidation, and the second-order rate constants (k2 = 7.16 × 10−3 M−1 s−1 in MeCN, 2.58 × 10−3 M−1 s−1 in CF3CH2OH) of the reaction were determined. The linear free energy relationships between the relative reaction rates (logkrel) and the total substituent effect (TE, 4R-PhCHCH2) parameters with slopes of 1.48 (MeCN) and 1.89 (CF3CH2OH) suggest that the stoichiometric aziridination of styrenes can be described through the formation of a radical intermediate in the rate-determining step. Styrene oxide formation during aqueous styrene aziridination most likely results from oxygen atom transfer via in situ iron oxo/oxyl radical complexes, which are formed through the hydrolysis of [FeIII(N•Ts)] under experimental conditions. Full article
(This article belongs to the Special Issue Exclusive Feature Papers in Inorganic Chemistry, 2nd Edition)
Show Figures

Figure 1

15 pages, 6238 KiB  
Article
Strategies for the Covalent Anchoring of a BMP-2-Mimetic Peptide to PEEK Surface for Bone Tissue Engineering
by Leonardo Cassari, Annj Zamuner, Grazia Maria Lucia Messina, Martina Marsotto, Hao-chen Chang, Trevor Coward, Chiara Battocchio, Giovanna Iucci, Giovanni Marletta, Lucy Di Silvio and Monica Dettin
Materials 2023, 16(10), 3869; https://doi.org/10.3390/ma16103869 - 21 May 2023
Cited by 6 | Viewed by 2428
Abstract
Researchers in the field of tissue engineering are always searching for new scaffolds for bone repair. Polyetheretherketone (PEEK) is a chemically inert polymer that is insoluble in conventional solvents. PEEK’s great potential in tissue engineering applications arises from its ability to not induce [...] Read more.
Researchers in the field of tissue engineering are always searching for new scaffolds for bone repair. Polyetheretherketone (PEEK) is a chemically inert polymer that is insoluble in conventional solvents. PEEK’s great potential in tissue engineering applications arises from its ability to not induce adverse reactions when in contact with biological tissues and its mechanical properties, which are similar to those of human bone. These exceptional features are limited by the bio-inertness of PEEK, which causes poor osteogenesis on the implant surface. Here, we demonstrated that the covalent grafting of the sequence (48–69) mapped on the BMP-2 growth factor (GBMP1α) significantly enhances the mineralization and gene expression of human osteoblasts. Different chemical methods were employed for covalently grafting the peptide onto 3D-printed PEEK disks: (a) the reaction between PEEK carbonyls and amino-oxy groups inserted in the peptides’ N-terminal sites (oxime chemistry) and (b) the photoactivation of azido groups present in the peptides’ N-terminal sites, which produces nitrene radicals able to react with PEEK surface. The peptide-induced PEEK surface modification was assessed using X-ray photoelectron measurements, while the superficial properties of the functionalized material were analyzed by means of atomic force microscopy and force spectroscopy. Live and dead assays and SEM measurements showed greater cell cover on functionalized samples than the control, without any cytotoxicity induction. Moreover, functionalization improved the rate of cell proliferation and the amount of calcium deposits, as demonstrated by the AlamarBlue™ and alizarin red results, respectively. The effects of GBMP1α on h-osteoblast gene expression were assayed using quantitative real-time polymerase chain reaction. Full article
(This article belongs to the Special Issue Biomaterials and Implant Biocompatibility (Second Volume))
Show Figures

Figure 1

14 pages, 7245 KiB  
Communication
Covalent Functionalization of Black Phosphorus Nanosheets with Dichlorocarbenes for Enhanced Electrocatalytic Hydrogen Evolution Reaction
by Aidar M. Kuchkaev, Airat M. Kuchkaev, Aleksander V. Sukhov, Svetlana V. Saparina, Oleg I. Gnezdilov, Alexander E. Klimovitskii, Sufia A. Ziganshina, Irek R. Nizameev, Iskander R. Vakhitov, Alexey B. Dobrynin, Dmitry I. Stoikov, Gennady A. Evtugyn, Oleg G. Sinyashin, Xiongwu Kang and Dmitry G. Yakhvarov
Nanomaterials 2023, 13(5), 826; https://doi.org/10.3390/nano13050826 - 23 Feb 2023
Cited by 6 | Viewed by 2418
Abstract
Two-dimensional black phosphorus (BP) has emerged as a perspective material for various micro- and opto-electronic, energy, catalytic, and biomedical applications. Chemical functionalization of black phosphorus nanosheets (BPNS) is an important pathway for the preparation of materials with improved ambient stability and enhanced physical [...] Read more.
Two-dimensional black phosphorus (BP) has emerged as a perspective material for various micro- and opto-electronic, energy, catalytic, and biomedical applications. Chemical functionalization of black phosphorus nanosheets (BPNS) is an important pathway for the preparation of materials with improved ambient stability and enhanced physical properties. Currently, the covalent functionalization of BPNS with highly reactive intermediates, such as carbon-free radicals or nitrenes, has been widely implemented to modify the material’s surface. However, it should be noted that this field requires more in-depth research and new developments. Herein, we report for the first time the covalent carbene functionalization of BPNS using dichlorocarbene as a functionalizing agent. The P–C bond formation in the obtained material (BP–CCl2) has been confirmed by Raman, solid-state 31P NMR, IR, and X-ray photoelectron spectroscopy methods. The BP–CCl2 nanosheets exhibit an enhanced electrocatalytic hydrogen evolution reaction (HER) performance with an overpotential of 442 mV at −1 mA cm−2 and a Tafel slope of 120 mV dec−1, outperforming the pristine BPNS. Full article
Show Figures

Figure 1

14 pages, 1501 KiB  
Article
Aziridination Reactivity of a Manganese(II) Complex with a Bulky Chelating Bis(Alkoxide) Ligand
by Sudheer S. Kurup, Natalie M. Woodland, Richard L. Lord and Stanislav Groysman
Molecules 2022, 27(18), 5751; https://doi.org/10.3390/molecules27185751 - 6 Sep 2022
Cited by 2 | Viewed by 2841
Abstract
Treatment of Mn(N(SiMe3)2)2(THF)2 with bulky chelating bis(alkoxide) ligand [1,1′:4′,1′′-terphenyl]-2,2′′-diylbis(diphenylmethanol) (H2[O-terphenyl-O]Ph) formed a seesaw manganese(II) complex Mn[O-terphenyl-O]Ph(THF)2, characterized by structural, spectroscopic, magnetic, and analytical methods. The reactivity of Mn[O-terphenyl-O] [...] Read more.
Treatment of Mn(N(SiMe3)2)2(THF)2 with bulky chelating bis(alkoxide) ligand [1,1′:4′,1′′-terphenyl]-2,2′′-diylbis(diphenylmethanol) (H2[O-terphenyl-O]Ph) formed a seesaw manganese(II) complex Mn[O-terphenyl-O]Ph(THF)2, characterized by structural, spectroscopic, magnetic, and analytical methods. The reactivity of Mn[O-terphenyl-O]Ph(THF)2 with various nitrene precursors was investigated. No reaction was observed between Mn[O-terphenyl-O]Ph(THF)2 and aryl azides. In contrast, the treatment of Mn[O-terphenyl-O]Ph(THF)2 with iminoiodinane PhINTs (Ts = p-toluenesulfonyl) was consistent with the formation of a metal-nitrene complex. In the presence of styrene, the reaction led to the formation of aziridine. Combining varying ratios of styrene and PhINTs in different solvents with 10 mol% of Mn[O-terphenyl-O]Ph(THF)2 at room temperature produced 2-phenylaziridine in up to a 79% yield. Exploration of the reactivity of Mn[O-terphenyl-O]Ph(THF)2 with various olefins revealed (1) moderate aziridination yields for p-substituted styrenes, irrespective of the electronic nature of the substituent; (2) moderate yield for 1,1′-disubstituted α-methylstyrene; (3) no aziridination for aliphatic α-olefins; (4) complex product mixtures for the β-substituted styrenes. DFT calculations suggest that iminoiodinane is oxidatively added upon binding to Mn, and the resulting formal imido intermediate has a high-spin Mn(III) center antiferromagnetically coupled to an imidyl radical. This imidyl radical reacts with styrene to form a sextet intermediate that readily reductively eliminates the formation of a sextet Mn(II) aziridine complex. Full article
Show Figures

Graphical abstract

6 pages, 1198 KiB  
Article
Construction of Benzenesulfonamide Derivatives via Copper and Visible Light-induced Azides and S(O)2–H Coupling
by Zhipeng Liang, Ya-Nan Wu and Yang Wang
Molecules 2022, 27(17), 5539; https://doi.org/10.3390/molecules27175539 - 28 Aug 2022
Viewed by 1863
Abstract
We here have developed an S(O)2–N coupling between phenylsulfinic acid derivatives and aryl azides by dual copper and visible light catalysis. In this efficient and mild pathway, the reaction produces sulfonamide compounds under redox-neutral condition, which is mechanistically different from the [...] Read more.
We here have developed an S(O)2–N coupling between phenylsulfinic acid derivatives and aryl azides by dual copper and visible light catalysis. In this efficient and mild pathway, the reaction produces sulfonamide compounds under redox-neutral condition, which is mechanistically different from the nitrogen nucleophilic substitution reactions. Significantly, this transformation intends to utilize the property of visible light-induced azides to generate triplet nitrene and followed coupling with sulfonyl radicals in situ to achieve structurally diverse benzenesulfinamides in good yields. Full article
(This article belongs to the Special Issue Visible Light Photocatalysis)
Show Figures

Figure 1

16 pages, 2364 KiB  
Article
Chloro- and Dichloro-methylsulfonyl Nitrenes: Spectroscopic Characterization, Photoisomerization, and Thermal Decomposition
by Yang Yang, Xianxu Chu, Yan Lu, Manabu Abe and Xiaoqing Zeng
Molecules 2018, 23(12), 3312; https://doi.org/10.3390/molecules23123312 - 13 Dec 2018
Cited by 4 | Viewed by 3664
Abstract
Chloro- and dichloro-methylsulfonyl nitrenes, CH2ClS(O)2N and CHCl2S(O)2N, have been generated from UV laser photolysis (193 and 266 nm) of the corresponding sulfonyl azides CH2ClS(O)2N3 and CHCl2S(O)2N [...] Read more.
Chloro- and dichloro-methylsulfonyl nitrenes, CH2ClS(O)2N and CHCl2S(O)2N, have been generated from UV laser photolysis (193 and 266 nm) of the corresponding sulfonyl azides CH2ClS(O)2N3 and CHCl2S(O)2N3, respectively. Both nitrenes have been characterized with matrix-isolation IR and EPR spectroscopy in solid N2 (10 K) and glassy toluene (5 K) matrices. Triplet ground-state multiplicity of CH2ClS(O)2N (|D/hc| = 1.57 cm−1 and |E/hc| = 0.0026 cm−1) and CHCl2S(O)2N (|D/hc| = 1.56 cm−1 and |E/hc| = 0.0042 cm−1) has been confirmed. In addition, dichloromethylnitrene CHCl2N (|D/hc| = 1.57 cm−1 and |E/hc| = 0 cm−1), formed from SO2-elimination in CHCl2S(O)2N, has also been identified for the first time. Upon UV light irradiation (365 nm), the two sulfonyl nitrenes R–S(O)2N (R = CH2Cl and CHCl2) undergo concomitant 1,2-R shift to N-sulfonlyamines R–NSO2 and 1,2-oxygen shift to S-nitroso compounds R–S(O)NO, respectively. The identification of these new species with IR spectroscopy is supported by 15N labeling experiments and quantum chemical calculations at the B3LYP/6-311++G(3df,3pd) level. In contrast, the thermally-generated sulfonyl nitrenes CH2ClS(O)2N (600 K) and CHCl2S(O)2N (700 K) dissociate completely in the gas phase, and in both cases, HCN, SO2, HCl, HNSO, and CO form. Additionally, ClCN, OCCl2, HNSO2, •NSO2, and the atmospherically relevant radical •CHCl2 are also identified among the fragmentation products of CHCl2S(O)2N. The underlying mechanisms for the rearrangement and decomposition of CH2ClS(O)2N and CHCl2S(O)2N are discussed based on the experimentally-observed products and the calculated potential energy profile. Full article
Show Figures

Graphical abstract

11 pages, 3565 KiB  
Article
Porphyrin Co(III)-Nitrene Radical Mediated Pathway for Synthesis of o-Aminoazobenzenes
by Monalisa Goswami and Bas De Bruin
Molecules 2018, 23(5), 1052; https://doi.org/10.3390/molecules23051052 - 1 May 2018
Cited by 9 | Viewed by 6235
Abstract
Azobenzenes are versatile compounds with a range of applications, including dyes and pigments, food additives, indicators, radical reaction initiators, molecular switches, etc. In this context, we report a general method for synthesizing o-aminoazobenzenes using the commercially available cobalt(II) tetraphenyl porphyrin [CoII [...] Read more.
Azobenzenes are versatile compounds with a range of applications, including dyes and pigments, food additives, indicators, radical reaction initiators, molecular switches, etc. In this context, we report a general method for synthesizing o-aminoazobenzenes using the commercially available cobalt(II) tetraphenyl porphyrin [CoII(TPP)]. The net reaction is a formal dimerization of two phenyl azides with concomitant loss of two molecules of dinitrogen. The most commonly used methodology to synthesize azobenzenes is based on the initial diazotization of an aromatic primary amine at low temperatures, which then reacts with an electron rich aromatic nucleophile. As such, this limits the synthesis of azobenzenes with an amine functionality. In contrast, the method we report here relies heavily on the o-amine moiety and retains it in the product. The reaction is metal catalyzed and proceeds through a porphyrin Co(III)-nitrene radical intermediate, which is known to form on activation of organic azides at the cobalt center. The synthesized o-aminoazobenzenes are bathochromatically shifted, as compared to azobenzenes without amine substituents. Based on the crystal structure of one of the products, strong H-bonding between the N-atom of the azo functionality and the H of the NH2 substituent is shown to stabilize the trans isomeric form of the product. The NH2 substituents offers possibilities for further functionalization of the synthesized azo compounds. Full article
(This article belongs to the Special Issue Radical Chemistry)
Show Figures

Graphical abstract

16 pages, 5674 KiB  
Article
Porphyrin Cobalt(III) “Nitrene Radical” Reactivity; Hydrogen Atom Transfer from Ortho-YH Substituents to the Nitrene Moiety of Cobalt-Bound Aryl Nitrene Intermediates (Y = O, NH)
by Monalisa Goswami, Christophe Rebreyend and Bas De Bruin
Molecules 2016, 21(2), 242; https://doi.org/10.3390/molecules21020242 - 20 Feb 2016
Cited by 21 | Viewed by 10997
Abstract
In the field of cobalt(II) porphyrin-catalyzed metallo-radical reactions, organic azides have emerged as successful nitrene transfer reagents. In the pursuit of employing ortho-YH substituted (Y = O, NH) aryl azides in Co(II) porphyrin-catalyzed nitrene transfer reactions, unexpected hydrogen atom transfer (HAT) from [...] Read more.
In the field of cobalt(II) porphyrin-catalyzed metallo-radical reactions, organic azides have emerged as successful nitrene transfer reagents. In the pursuit of employing ortho-YH substituted (Y = O, NH) aryl azides in Co(II) porphyrin-catalyzed nitrene transfer reactions, unexpected hydrogen atom transfer (HAT) from the OH or NH2 group in the ortho-position to the nitrene moiety of the key radical-intermediate was observed. This leads to formation of reactive ortho-iminoquinonoid (Y = O) and phenylene diimine (Y = NH) species. These intermediates convert to subsequent products in non-catalyzed reactions, as is typical for these free organic compounds. As such, the observed reactions prevent the anticipated cobalt-mediated catalytic radical-type coupling of the nitrene radical intermediates to alkynes or alkenes. Nonetheless, the observed reactions provide valuable insights into the reactivity of transition metal nitrene-radical intermediates, and give access to ortho-iminoquinonoid and phenylene diimine intermediates from ortho-YH substituted aryl azides in a catalytic manner. The latter can be employed as intermediates in one-pot catalytic transformations. From the ortho-hydroxy aryl azide substrates both phenoxizinones and benzoxazines could be synthesized in high yields. From the ortho-amino aryl azide substrates azabenzene compounds were obtained as the main products. Computational studies support these observations, and reveal that HAT from the neighboring OH and NH2 moiety to the nitrene radical moiety has a low energy barrier. Full article
(This article belongs to the Special Issue Organic Azides)
Show Figures

Graphical abstract

Back to TopTop