Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (7,323)

Search Parameters:
Keywords = nitrogen potential

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2428 KB  
Article
OsPIP2;1 Positively Regulates Rice Tolerance to Water Stress Under Coupling of Partial Root-Zone Drying and Nitrogen Forms
by Chunyi Kuang, Ziying Han, Xiang Zhang, Xiaoyuan Chen, Zhihong Gao and Yongyong Zhu
Int. J. Mol. Sci. 2025, 26(19), 9782; https://doi.org/10.3390/ijms26199782 - 8 Oct 2025
Abstract
The coupling of partial root-zone drying (PRD) with nitrogen forms exerts an interactive “water-promoted fertilization” effect, which enhances rice (Oryza sativa L.) growth and development, improves water use efficiency (WUE), mediates the expression of aquaporins (AQPs), and alters root water conductivity. In [...] Read more.
The coupling of partial root-zone drying (PRD) with nitrogen forms exerts an interactive “water-promoted fertilization” effect, which enhances rice (Oryza sativa L.) growth and development, improves water use efficiency (WUE), mediates the expression of aquaporins (AQPs), and alters root water conductivity. In this study, gene cloning and CRISPR-Cas9 technologies were employed to construct overexpression and knockout vectors of the OsPIP2;1 gene, which were then transformed into rice (cv. Meixiangzhan 2). Three water treatments were set: normal irrigation (CK); partial root-zone drying (PRD); and 10% PEG-simulated water stress (PEG), combined with a nitrogen form ratio of ammonium nitrogen (NH4+) to nitrate nitrogen (NO3) at 50:50 (A50/N50) for the coupled treatment of rice seedlings. The results showed that under the coupled treatment of PRD and the aforementioned nitrogen form, the expression level of the OsPIP2;1 gene in roots was upregulated by 0.62-fold on the seventh day, while its expression level in leaves was downregulated by 1.84-fold. Overexpression of OsPIP2;1 enabled Meixiangzhan 2 to maintain a higher abscisic acid (ABA) level under different water conditions, which helped rice reduce water potential and enhance water absorption. Compared with the CK treatment, overexpression of OsPIP2;1 increased the superoxide dismutase (SOD) activity of rice under PRD by 26.98%, effectively alleviating tissue damage caused by excessive accumulation of O2. The physiological and biochemical characteristics of OsPIP2;1-overexpressing rice showed correlations under PRD and A50/N50 nitrogen form conditions, with WUE exhibiting a significant positive correlation with transpiration rate, chlorophyll content, nitrogen content, and Rubisco enzyme activity. Overexpression of OsPIP2;1 could promote root growth and increase the total biomass of rice plants. The application of the OsPIP2;1 gene in rice genetic engineering modification holds great potential for improving important agricultural traits of crops. This study provides new insights into the mechanism by which the AQP family regulates water use in rice and has certain significance for exploring the role of AQP genes in rice growth and development as well as in response to water stress. Full article
(This article belongs to the Special Issue Plant Tolerance to Stress)
Show Figures

Figure 1

16 pages, 2293 KB  
Article
Material Conversion, Microbial Community Composition, and Metabolic Functional Succession During Algal Sludge Composting
by Manting Zhou, Wenjing Zhu, Zhenrong Zheng, Hainan Wu, Haibing Cong and Shaoyuan Feng
Water 2025, 17(19), 2904; https://doi.org/10.3390/w17192904 - 8 Oct 2025
Abstract
Although bacterial and fungal communities play essential roles in organic matter degradation and humification during composting, their composition, interactions, abiotic compost properties, and succession patterns remain unclear. In this study, the succession of bacterial and fungal communities during algal sludge composting was explored [...] Read more.
Although bacterial and fungal communities play essential roles in organic matter degradation and humification during composting, their composition, interactions, abiotic compost properties, and succession patterns remain unclear. In this study, the succession of bacterial and fungal communities during algal sludge composting was explored using 16S and ITS rRNA amplicon sequencing. The compost rapidly entered the thermophilic phase (>50 °C) within the first phase. During the composting process, the diversity of bacterial and fungal communities did not show a significant response to the different composting phases. The physicochemical parameters and microbial community structures changed significantly during the thermophilic and cooling phases, particularly in the former, and gradually stabilized as the compost matured. Integrated random forest and network analyses suggested that the bacteria genera Geobacillus and Parapedobacter, along with the fungus genus Gilmaniella, could serve as potential biomarkers for different composting phases. The functional activity of the bacterial communities was obviously higher during the thermophilic phase than during the other phases, while fungal activity remained relatively high during both the thermophilic and cooling phases. Structural Equation Modeling (SEM) further indicated that bacterial communities primarily mediated nitrogen transformation and humification processes, while fungal communities mainly contributed to humification. These results cast a new light on understanding about microbial function during aerobic algal sludge composting. Full article
Show Figures

Figure 1

16 pages, 1315 KB  
Article
Nitrous Oxide Emission from a Single-Stage Oxygen-Limited Mainstream Anammox Reactor Treating Moderate C/N Ratio Sewage
by Da Di, Xiwei Cao and Xin Zhou
Separations 2025, 12(10), 271; https://doi.org/10.3390/separations12100271 - 7 Oct 2025
Abstract
Nitrous oxide (N2O), a potent greenhouse gas, is an important environmental concern associated with biological nitrogen removal in wastewater treatment plants. Anaerobic ammonium oxidation (anammox), recognized as an advanced carbon-neutral nitrogen removal technology, requires a continuous supply of nitrite, which also [...] Read more.
Nitrous oxide (N2O), a potent greenhouse gas, is an important environmental concern associated with biological nitrogen removal in wastewater treatment plants. Anaerobic ammonium oxidation (anammox), recognized as an advanced carbon-neutral nitrogen removal technology, requires a continuous supply of nitrite, which also serves as a key precursor for N2O generation. However, the regulation of the carbon-to-nitrogen (C/N) ratio to minimize N2O emission in mainstream anammox systems remains insufficiently understood. In this study, we evaluated the long-term nitrogen removal performance and N2O emission potential of an oxygen-limited anammox biofilm reactor treating synthetic municipal wastewater with a typical C/N range of 4.0–6.0. Experimental results demonstrated that the highest nitrogen removal efficiency (95.3%), achieved through coupled anammox and denitrification, and the lowest N2O emission factor (0.73%) occurred at a C/N ratio of 5.0. As the C/N ratio increased from 4.0 to 5.0, N2O emissions decreased progressively, but rose slightly when the ratio was further increased to 6.0. High-throughput sequencing revealed that microbial community composition and the abundance of key functional taxa were significantly influenced by the C/N ratio. At a C/N ratio of 5.0, proliferation of anammox bacteria and the disappearance of Acinetobacter populations appeared to contribute to the significant reduction in N2O emission. Furthermore, gene annotation analysis indicated higher abundances of anammox-associated genes (hzs, hdh) and N2O reductase gene (nosZ) at this ratio compared with others. Overall, this study identifies a C/N-dependent strategy for mitigating N2O emissions in mainstream anammox systems and provides new insights into advancing carbon-neutral wastewater treatment. Full article
19 pages, 3909 KB  
Article
The Effects of Long-Term Manure and Grass Mulching on Microbial Communities, Enzyme Activities, and Soil Organic Nitrogen Fractions in Orchard Soils of the Loess Plateau, China
by Qi Wang, Luxiao Guo, Xue Gao, Songling Chen, Xinxin Song, Fei Gao, Wei Liu, Hua Guo, Guoping Wang and Xinping Fan
Agriculture 2025, 15(19), 2084; https://doi.org/10.3390/agriculture15192084 - 6 Oct 2025
Abstract
Organic manure and grass mulching are widely recognized as modifiers of soil microbial communities and nutrient dynamics; however, the combined effects of these practices on nitrogen fractionation and microbial functionality in orchard ecosystems remain poorly understood. This study conducted a comprehensive evaluation of [...] Read more.
Organic manure and grass mulching are widely recognized as modifiers of soil microbial communities and nutrient dynamics; however, the combined effects of these practices on nitrogen fractionation and microbial functionality in orchard ecosystems remain poorly understood. This study conducted a comprehensive evaluation of soil nitrogen fractions, enzymatic activity, microbial diversity and functional traits in walnut orchards under three management practices: organic manure (OM), grass mulching combined with manure (GM), and chemical fertilization (CF) in China’s Loess Plateau. The results revealed that OM and GM significantly enhanced soil nutrient pools, with GM elevating total nitrogen by 1.96-fold, soil organic carbon by 97.79%, ammonium nitrogen by 128%, and nitrate nitrogen by 54.56% relative to CF. Furthermore, the OM significantly increased the contents of total hydrolysable nitrogen, amino sugar nitrogen, amino acid nitrogen, ammonia nitrogen, hydrolysable unidentified nitrogen, non-acid-hydrolyzable nitrogen compared to the CF and GM treatments. Meanwhile, ASN and AN had significant effects on mineral and total nitrogen. The OM and GM had higher activities of leucine aminopeptidase enzymes (LAP), α-glucosidase enzyme, β-glucosidase enzyme (βG), and N-acetyl-β-D-glucosidase enzyme (NAG). Microbial community analysis revealed distinct responses to different treatments: OM and GM enhanced bacterial Shannon index, while suppressing fungal diversity, promoting the relative abundance of copiotrophic bacterial phyla such as Proteobacteria and Chloroflexi. Moreover, GM favored the enrichment of lignocellulose-degrading Ascomycota fungi. Functional annotation indicated that Chemoheterotrophy (43.54%) and Aerobic chemoheterotrophy (42.09%) were the dominant bacterial metabolic pathways. The OM significantly enhanced the abundance of fermentation-related genes. Additionally, fungal communities under the OM and GM showed an increased relative abundance of saprotrophic taxa, and a decrease in the relative abundances of potential animal and plant pathogenic taxa. The Random forest model further confirmed that βG, LAP, and NAG, as well as Basidiomycota, Mortierellomycota, and Ascomycota served as pivotal mediators of soil organic nitrogen fraction. Our findings demonstrated that combined organic amendments and grass mulching can enhance soil N retention capacity, microbial functional redundancy, and ecosystem stability in semi-arid orchards. These insights support the implementation of integrated organic management as a sustainable approach to enhance nutrient cycling and minimize environmental trade-offs in perennial fruit production systems. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

15 pages, 2901 KB  
Article
Enhanced Nitrification Potential Soil from a Warm-Temperate Shrub Tussock Ecosystem Under Nitrogen Deposition and Warming Is Driven by Increased Nitrosospira Abundance
by Baihui Ren, Longzhen Ma, Tianyue Xu, Haoyan Li, Jiahuan Li, Jiyun Yang and Long Bai
Agronomy 2025, 15(10), 2347; https://doi.org/10.3390/agronomy15102347 - 6 Oct 2025
Viewed by 58
Abstract
Atmospheric nitrogen (N) deposition and climate warming significantly influence soil nitrogen transformation processes. Nitrification, a key step in the N cycle, is primarily driven by ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB). However, their responses to environmental changes in warm-temperate shrub tussock grasslands—a [...] Read more.
Atmospheric nitrogen (N) deposition and climate warming significantly influence soil nitrogen transformation processes. Nitrification, a key step in the N cycle, is primarily driven by ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB). However, their responses to environmental changes in warm-temperate shrub tussock grasslands—a major grassland type in China—remain poorly understood. In this study, we examined the effects of N addition and warming on the community composition of ammonia oxidizers and soil nitrification potential (NP) through pot experiments simulating field conditions. Our results demonstrated that (1) the AOB community was more responsive to N addition and warming than AOA, with the genus Nitrosospira increasing by 6.30–21.75% under treatments; (2) soil pH increased significantly under warming (from 6.53 to 6.86) but remained unchanged under N addition; (3) NP increased significantly under all treatment conditions, most markedly under warming alone (2.83-fold increase compared to the control); and (4) NP was positively correlated with both soil pH and the relative abundance of Nitrosospira. These findings suggest that warming and N deposition enhance nitrification in shrub tussock soil by altering AOB community structure and increasing soil pH. This study provides new insights into the microbial mechanisms driving N cycling in warm-temperate grasslands under global change. Full article
Show Figures

Figure 1

17 pages, 6046 KB  
Article
Oral Treatment with the Vimentin-Targeting Compound ALD-R491 Mitigates Hyperinflammation, Multi-Organ Injury, and Mortality in CLP-Induced Septic Mice
by Jianping Wu, Shuaishuai Wang, Kuai Yu, Zijing Xu, Xueting Wu, Deebie Symmes, Lian Mo, Chun Cheng, Ruihuan Chen and Junfeng Zhang
Life 2025, 15(10), 1563; https://doi.org/10.3390/life15101563 - 6 Oct 2025
Viewed by 154
Abstract
Sepsis is a life-threatening condition driven by a dysregulated host response to infection, with high mortality and few treatment options. Decades of failed drug development underscore the urgent need for therapies with novel mechanisms of action. Vimentin, an intermediate filament protein, acts as [...] Read more.
Sepsis is a life-threatening condition driven by a dysregulated host response to infection, with high mortality and few treatment options. Decades of failed drug development underscore the urgent need for therapies with novel mechanisms of action. Vimentin, an intermediate filament protein, acts as a network hub that senses and integrates cellular signals. Its involvement in key sepsis pathologies, including infection, hyperinflammation, immunosuppression, coagulopathy and metabolic dysregulation, positions it as a potential therapeutic target. This study evaluated the efficacy of ALD-R491, a novel small-molecule vimentin modulator, in a murine model of polymicrobial sepsis induced by cecal ligation and puncture (CLP). Mice received ALD-R491 prophylactically or therapeutically, alone or with ceftriaxone. The treatment significantly reduced serum levels of key biomarkers of sepsis, including C-reactive protein (CRP), lactate (Lac), tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6), and dose-dependently improved the survival of septic mice. Organ-specific analysis confirmed the effects of ALD-R491 in mitigating hyperinflammation and multi-organ injury. The treatment reduced pulmonary edema and inflammation; preserved liver tissue architecture and improved hepatic function with lowered alanine aminotransferase/aspartate aminotransferase (ALT/AST); decreased kidney tubular damage; and improved renal function with lowered creatinine/blood urea nitrogen (BUN). These preclinical findings indicate that the vimentin-targeting agent ALD-R491 represents a promising therapeutic candidate for sepsis and merits further clinical investigation. Full article
Show Figures

Figure 1

22 pages, 2773 KB  
Article
Synthesis, Crystallographic Study and Antibacterial Activity of Ternary Copper(II) Complex with Chromone-Based Ligand and Pyridine
by Nikolina Filipović, Anamarija Stanković, Martina Medvidović-Kosanović, Dominik Goman, Stjepan Šarić, Goran Palijan and Tomislav Balić
Crystals 2025, 15(10), 870; https://doi.org/10.3390/cryst15100870 - 6 Oct 2025
Viewed by 149
Abstract
A new copper(II) complex was synthesized using chromone-2-carboxylic acid as the main ligand, and coordinated pyridine molecules. The complex was successfully crystallized and structurally characterized by single crystal X-ray diffraction. This revealed a mononuclear structure with a distorted square pyramidal geometry around the [...] Read more.
A new copper(II) complex was synthesized using chromone-2-carboxylic acid as the main ligand, and coordinated pyridine molecules. The complex was successfully crystallized and structurally characterized by single crystal X-ray diffraction. This revealed a mononuclear structure with a distorted square pyramidal geometry around the central Cu(II) ion. The coordination sphere comprises oxygen atoms from the chromone moiety and nitrogen atoms from pyridine, resulting in a five-coordinate complex. A comprehensive physicochemical characterization was performed using Fourier transform infrared spectroscopy (FT-IR), UV–Vis spectroscopy, elemental (C, H, N), electrochemical (CV) and thermal analysis (TGA/DSC) to confirm the coordination environment and thermal stability of the compound. The complex exhibits distinct spectroscopic features indicative of ligand–metal charge transfer and dd transitions typical of Cu(II) species. In addition, the synthesized complex was subjected to antimicrobial screening against Gram-positive and Gram-negative bacteria. The compound showed promising antibacterial activity, particularly against Escherichia coli, indicating its potential as a bioactive coordination compound. These results contribute to the growing body of research on metal-based chromone derivatives and emphasize the importance of copper complexes for the development of new antibacterial agents with defined crystal structures. Full article
(This article belongs to the Special Issue Celebrating the 10th Anniversary of International Crystallography)
Show Figures

Figure 1

20 pages, 1043 KB  
Article
Multi-Criteria Decision-Making Algorithm Selection and Adaptation for Performance Improvement of Two Stroke Marine Diesel Engines
by Hla Gharib and György Kovács
J. Mar. Sci. Eng. 2025, 13(10), 1916; https://doi.org/10.3390/jmse13101916 - 5 Oct 2025
Viewed by 216
Abstract
Selecting an appropriate Multi-Criteria Decision-Making (MCDM) algorithm for optimizing marine diesel engine operation presents a complex challenge due to the diversity in mathematical formulations, normalization schemes, and trade-off resolutions across methods. This study systematically evaluates fourteen MCDM algorithms, which are grouped into five [...] Read more.
Selecting an appropriate Multi-Criteria Decision-Making (MCDM) algorithm for optimizing marine diesel engine operation presents a complex challenge due to the diversity in mathematical formulations, normalization schemes, and trade-off resolutions across methods. This study systematically evaluates fourteen MCDM algorithms, which are grouped into five primary methodological categories: Scoring-Based, Distance-Based, Pairwise Comparison, Outranking, and Hybrid/Intelligent System-Based methods. The goal is to identify the most suitable algorithm for real-time performance optimization of two stroke marine diesel engines. Using Diesel-RK software, calibrated for marine diesel applications, simulations were performed on a variant of the MAN-B&W-S60-MC-C8-8 engine. A refined five-dimensional parameter space was constructed by systematically varying five key control variables: Start of Injection (SOI), Dwell Time, Fuel Mass Fraction, Fuel Rail Pressure, and Exhaust Valve Timing. A subset of 4454 high-potential alternatives was systematically evaluated according to three equally important criteria: Specific Fuel Consumption (SFC), Nitrogen Oxides (NOx), and Particulate Matter (PM). The MCDM algorithms were evaluated based on ranking consistency and stability. Among them, Proximity Indexed Value (PIV), Integrated Simple Weighted Sum Product (WISP), and TriMetric Fusion (TMF) emerged as the most stable and consistently aligned with the overall consensus. These methods reliably identified optimal engine control strategies with minimal sensitivity to normalization, making them the most suitable candidates for integration into automated marine engine decision-support systems. The results underscore the importance of algorithm selection and provide a rigorous basis for establishing MCDM in emission-constrained maritime environments. This study is the first comprehensive, simulation-based evaluation of fourteen MCDM algorithms applied specifically to the optimization of two stroke marine diesel engines using Diesel-RK software. Full article
(This article belongs to the Special Issue Marine Equipment Intelligent Fault Diagnosis)
Show Figures

Figure 1

20 pages, 1247 KB  
Article
Effects and Mechanisms of Granulated Compost on Soil Nitrogen Supply and Crop Uptake: Preliminary Evidence from a 15N Tracing Field Experiment in Tobacco
by Chen Wang, Fenglei Guo, Shuaipeng Wu, Xinjing Fu, Xiaorong Zhao and Guitong Li
Agronomy 2025, 15(10), 2345; https://doi.org/10.3390/agronomy15102345 - 5 Oct 2025
Viewed by 199
Abstract
Organic fertilizer granulation represents a promising strategy for modifying nitrogen (N) release from compost in soil. Nevertheless, there is a lack of large-scale field trials exploring its impact on tobacco production and soil N supply. This research conducted a preliminary study by employing [...] Read more.
Organic fertilizer granulation represents a promising strategy for modifying nitrogen (N) release from compost in soil. Nevertheless, there is a lack of large-scale field trials exploring its impact on tobacco production and soil N supply. This research conducted a preliminary study by employing 15N tracing technology to investigate the effects of granular compost on soil N transformation and supply; on the yield and quality of tobacco leaves; and on the distribution of granular compost-derived N among the different soil N pools and tobacco plant organs. The results revealed that the 2 cm diameter granule organic fertilizer treatment (G2) significantly increased tobacco leaf yield by 15% compared to conventional fertilization (CK). However, the 4 cm diameter granule organic fertilizer (G4) treatment resulted in a reduction in leaf yield. Notably, the quality of tobacco leaves remained unaffected compared to conventional fertilization treatment; the N content ranged from 15 to 25 g kg−1, which was within the high-quality range. The results also indicated that direct N supply to the tobacco from granular compost was limited. The G2 and G4 treatments provided 2.8% and 2.2% of the N in the fertilizer to the tobacco plants, respectively, with more than 93% of the N in the tobacco plants derived from the soil. Therefore, both of these particle sizes of granular compost facilitated the absorption of soil N by tobacco plants. At the end of the growth period, the N content derived from the G4 granular fertilizer in the soil was significantly higher than that from the G2 fertilizer. This may be due to the slower nutrient release mechanism and longer release period of the G4 fertilizer compared to G2. Our results suggested that granulated compost fertilizer (both G2 and G4) has the potential to enhance soil N supply. Despite the elevated nitrogen levels observed in leaves treated with 4 cm diameter granular fertilizer, an integrated assessment of yield performance demonstrates that the 2 cm diameter granular organic fertilizer delivers superior economic benefits. However, G2 may also have a higher potential for N loss. Further investigations under field conditions are necessary to validate the applicability of granular fertilizer of different particle sizes and its specific mechanisms of impact. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

31 pages, 6180 KB  
Review
Nitrogen Eutrophication in Chinese Aquatic Ecosystems: Drivers, Impacts, and Mitigation Strategies
by Armstrong Ighodalo Omoregie, Muhammad Oliver Ensor Silini, Lin Sze Wong and Adharsh Rajasekar
Nitrogen 2025, 6(4), 92; https://doi.org/10.3390/nitrogen6040092 - 4 Oct 2025
Viewed by 119
Abstract
Nitrogen eutrophication represents a significant environmental challenge in Chinese aquatic ecosystems, exacerbated by rapid agricultural intensification, industrial expansion, and urban development. This review consolidates existing knowledge on the drivers and impacts of nitrogen pollution in Chinese aquatic ecosystems, with a focus on environments [...] Read more.
Nitrogen eutrophication represents a significant environmental challenge in Chinese aquatic ecosystems, exacerbated by rapid agricultural intensification, industrial expansion, and urban development. This review consolidates existing knowledge on the drivers and impacts of nitrogen pollution in Chinese aquatic ecosystems, with a focus on environments such as lakes, rivers, and coastal waters. The primary sources of nitrogen enrichment are excessive fertilizer application, livestock manure discharge, industrial emissions, and untreated industrial and municipal wastewater. These inputs have led to severe ecological consequences, including harmful algal blooms, hypoxia, loss of biodiversity, and deteriorating water quality, threatening ecosystem health and human well-being. The review also examines mitigation strategies implemented in China, encompassing regulatory policies such as the “Zero Growth” fertilizer initiative, as well as technological advancements in wastewater treatment and sustainable farming practices. Case studies highlighting successful interventions, such as lake restoration projects and integrated watershed management, demonstrate the potential for effective nitrogen control. However, persistent challenges remain, including uneven policy enforcement, insufficient public awareness, and gaps in scientific understanding of nitrogen cycling dynamics. This review aims to inform future efforts toward achieving sustainable nitrogen management in China by synthesizing current research and identifying key knowledge gaps. Addressing these issues is crucial for safeguarding China’s aquatic ecosystems and promoting global nutrient stewardship. Full article
16 pages, 6983 KB  
Article
Hierarchically Porous Metal–Organic Frameworks-Based Controlled-Release Fertilizer: Improved Nutrient Loading and Rice Growth
by Ruimin Zhang, Gaoqiang Lv, Changwen Du, Fei Ma, Shanshan Liu, Fangqun Gan and Ke Wu
Agronomy 2025, 15(10), 2334; https://doi.org/10.3390/agronomy15102334 - 4 Oct 2025
Viewed by 238
Abstract
Nitrogen (N) and phosphorus (P) play vital roles in crop growth. However, conventional fertilizers exhibit low utilization efficiency, making them prone to causing resource wastage and water eutrophication. Although metal–organic frameworks (MOFs) have shown great potential for application in controlled-release fertilizers (CRFs), currently [...] Read more.
Nitrogen (N) and phosphorus (P) play vital roles in crop growth. However, conventional fertilizers exhibit low utilization efficiency, making them prone to causing resource wastage and water eutrophication. Although metal–organic frameworks (MOFs) have shown great potential for application in controlled-release fertilizers (CRFs), currently reported MOF-based CRFs suffer from low nutrient content, which limits their further application. To address this issue, this study synthesized a series of hierarchically porous MOFs, denoted as MIL-156(X), using sodium acetate as a modulator under hydrothermal conditions. These materials were subsequently loaded with urea and phosphate from aqueous solution to form MOFs-based CRFs (N-P-MIL-156(X)). Results indicate that MIL-156(X) retain microporous integrity while incorporating abundant mesopores. Increasing modulator content reduced particle size and average pore diameter but increased specific surface area and adsorption capacity for urea and phosphate. MIL-156-H (with a high modulator content addition) exhibited the highest adsorption capacity, conforming to Langmuir isotherm and pseudo-second-order kinetics. The adsorption mechanisms of urea and phosphate involved hydrogen bonding and the formation of Ca intra-spherical complexes, respectively. N-P-MIL-156-H contained 10.8% N and 16.3% P2O5, with sustained release durations exceeding 42 days (N) and 56 days (P2O5) in an aqueous solution. Pot trials demonstrated significantly higher nutrient use efficiency (N-44.8%, P2O5-16.56%) and a 12.22% yield increase compared to conventional fertilization (N-35.6%, P2O5-13.32%). Thus, N-P-MIL-156-H-based fertilization significantly promotes rice growth and N/P utilization efficiency, offering a promising strategy for developing controlled-release fertilizers and improving nutrient management. Full article
Show Figures

Figure 1

7 pages, 854 KB  
Proceeding Paper
Air Pollutants Projections Using SHERPA Simulator: How Can Cyprus Achieve Cleaner Air
by Jude Brian Ramesh, Stelios P. Neophytides, Orestis Livadiotis, Diofantos G. Hadjimitsis, Silas Michaelides and Maria N. Anastasiadou
Environ. Earth Sci. Proc. 2025, 35(1), 63; https://doi.org/10.3390/eesp2025035063 - 3 Oct 2025
Viewed by 111
Abstract
Air quality is a vital factor for safeguarding public and environmental health. Particulate matter (i.e., PM2.5 and PM10) and nitrogen dioxide are among the most harmful air pollutants leading to severe health risks such as respiratory and cardiovascular diseases, while also affecting the [...] Read more.
Air quality is a vital factor for safeguarding public and environmental health. Particulate matter (i.e., PM2.5 and PM10) and nitrogen dioxide are among the most harmful air pollutants leading to severe health risks such as respiratory and cardiovascular diseases, while also affecting the environment negatively by contributing to the formation of acid rains and ground level ozone. The European Union has introduced new thresholds on those pollutants to be met by the year 2030, taking into consideration the guidelines set by the World Health Organization, aiming for a healthier environment for humans and living species. Cyprus is an island that is vulnerable to those pollutants mostly due to its geographic location, facilitating shipping activities and dust transport from Sahara Desert, and the methods used to produce electricity which primarily rely on petroleum products. Furthermore, the country suffers from heavy traffic conditions, making it susceptible to high levels of nitrogen dioxide. Thus, the projection of air pollutants according to different scenarios based on regulations and policies of the European Union are necessary towards clean air and better practices. The Screening for High Emission Reduction Potential on Air (SHERPA) is a tool developed by the European Commission which allows the simulation of emission reduction scenarios and their effect on the following key pollutants: NO, NO2, O3, PM2.5, PM10. This study aims to assess the potential of the SHERPA simulation tool to support air quality related decision and policy planning in Cyprus to ensure that the country will remain within the thresholds that will be applicable in 2030. Full article
Show Figures

Figure 1

15 pages, 2699 KB  
Article
Rhizosphere Microbiota and Soil Nutrients Shape Fruit Lignan Composition of Schisandra chinensis Across Temperate Cultivation Sites in Northeast and Northwest China
by Yanli Wang, Wenpeng Lu, Jiaqi Li, Yiming Yang, Shutian Fan, Yue Wang, Hongyan Qin, Nan Shu, Baoxiang Zhang, Changyu Li, Jingmeng Zhu, Jinshuo Wang, Sisi Yang and Peilei Xu
Life 2025, 15(10), 1555; https://doi.org/10.3390/life15101555 - 3 Oct 2025
Viewed by 220
Abstract
Schisandra chinensis (Turcz.) Baill. (S. chinensis) is a widely used medicinal plant whose therapeutic efficacy is closely linked to its lignan content. While previous studies have focused on soil fertility and cultivar variation, the interplay among soil nutrients, rhizosphere microbiota, and lignan [...] Read more.
Schisandra chinensis (Turcz.) Baill. (S. chinensis) is a widely used medicinal plant whose therapeutic efficacy is closely linked to its lignan content. While previous studies have focused on soil fertility and cultivar variation, the interplay among soil nutrients, rhizosphere microbiota, and lignan accumulation remains poorly understood. This study investigated S. chinensis grown across 20 cultivation sites to elucidate the relationships among soil nutrient profiles, fruit lignan composition, and rhizosphere microbial communities. Six major lignans were quantified using HPLC, soil nutrients were analyzed via standard chemical assays, and rhizosphere bacterial communities were profiled using 16S rRNA sequencing. Multivariate analyses revealed significant variation in soil properties and lignan content across sites. Notably, available phosphorus, organic matter, and total nitrogen showed strong correlations with specific lignan compounds. From the top 50 taxa ranked by relative abundance at the genus level, 18 bacterial genera associated with lignan components were identified. Among them, Mycobacterium, Arthrobacter, Haliangium, Bacillus, Sphingomonas, Rhodanobacter, Ellin6067, Bradyrhizobium, Pseudolabrys, Chujaibacter, Gemmatimonas, Bryobacter, MND1, Candidatus Sollbacter, Gaiella, Paenibacillus, RB41, and Candidatus_Udaeobacter were significantly associated with lignan levels, suggesting potential microbial involvement in lignan biosynthesis. These findings provide insights into the ecological factors shaping the medicinal quality of S. chinensis and offer a foundation for targeted cultivation and breeding strategies. Full article
(This article belongs to the Section Diversity and Ecology)
Show Figures

Figure 1

16 pages, 2870 KB  
Article
Coupling Rare-Earth Complexes with Carbon Dots via Surface Imprinting: A New Strategy for Spectroscopic Cu2+ Sensors
by Zuoyi Liu, Bo Hu and Minjia Meng
Molecules 2025, 30(19), 3967; https://doi.org/10.3390/molecules30193967 - 2 Oct 2025
Viewed by 238
Abstract
A surface molecularly imprinted ratiometric fluorescent sensor (Eu/CDs@SiO2@IIPs) was constructed for the selective and visual detection of Cu2+. The sensor integrates blue-emitting carbon dots as an internal reference and a custom-designed Eu(III) complex, Eu(MAA)2(2,9-phen), as both the [...] Read more.
A surface molecularly imprinted ratiometric fluorescent sensor (Eu/CDs@SiO2@IIPs) was constructed for the selective and visual detection of Cu2+. The sensor integrates blue-emitting carbon dots as an internal reference and a custom-designed Eu(III) complex, Eu(MAA)2(2,9-phen), as both the functional and fluorescent monomer within a surface-imprinted polymer layer, enabling efficient ratiometric fluorescence response. This structural design ensured that all fluorescent monomers were located at the recognition sites, thereby reducing background fluorescence interference and enhancing the accuracy of signal changes. Under optimized conditions, the sensor exhibited a detection limit of 2.79 nM, a wide linear range of 10–100 nM, and a rapid response time of 3.0 min. Moreover, the uncoordinated nitrogen atoms in the phenanthroline ligand improved resistance to interference from competing ions, significantly enhancing selectivity. Practical applicability was validated by spiked recovery tests in deionized and river water, with results showing good agreement with ICP-MS analysis. These findings highlight the potential of Eu/CDs@SiO2@IIPs as a sensitive, selective, and portable sensing platform for on-site monitoring of Cu2+ in complex water environments. Full article
(This article belongs to the Special Issue 5th Anniversary of the "Applied Chemistry" Section)
Show Figures

Figure 1

26 pages, 5547 KB  
Article
Coffee Waste as a Green Precursor for Iron Nanoparticles: Toward Circular, Efficient and Eco-Friendly Dye Removal from Aqueous Systems
by Cristina Rodríguez-Rasero, Juan Manuel Garrido-Zoido, María del Mar García-Galán, Eduardo Manuel Cuerda-Correa and María Francisca Alexandre-Franco
J. Xenobiot. 2025, 15(5), 158; https://doi.org/10.3390/jox15050158 - 2 Oct 2025
Viewed by 194
Abstract
In this study, the use of spent coffee waste as a green precursor of polyphenolic compounds, which are subsequently employed as reducing agents for the synthesis of zero-valent iron nanoparticles (nZVI) aimed at the efficient removal of dyes from aqueous systems, has been [...] Read more.
In this study, the use of spent coffee waste as a green precursor of polyphenolic compounds, which are subsequently employed as reducing agents for the synthesis of zero-valent iron nanoparticles (nZVI) aimed at the efficient removal of dyes from aqueous systems, has been investigated. The nanoparticles, generated in situ in the presence of controlled amounts of hydrogen peroxide, were applied in the removal of organic dyes—including methylene blue, methyl orange, and orange G—through a heterogeneous Fenton-like catalytic process. The synthesized nZVI were thoroughly characterized by nitrogen adsorption at 77 K, scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FT-IR), and powder X-ray diffraction (XRD). A statistical design of experiments and response surface methodology were employed to evaluate the effect of polyphenol, Fe(III), and H2O2 concentrations on dye removal efficiency. Results showed that under optimized conditions, a 100% removal efficiency could be achieved. This work highlights the potential of nZVI synthesized from agro-industrial waste through sustainable routes as an effective solution for water remediation, contributing to circular economy strategies and environmental protection. Full article
Show Figures

Graphical abstract

Back to TopTop