Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (661)

Search Parameters:
Keywords = non-recyclable waste

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 1661 KB  
Article
Process Analysis of PMMA Dental Waste Depolymerization in Semi-Batch Reactors
by Armando Costa Ferreira, Haroldo Jorge da Silva Ribeiro, Douglas Alberto Rocha de Castro, Marcelo Costa Santos, Caio Campos Ferreira, Fernanda Paula da Costa Assunção, Sérgio Duvoisin Jr., Luiz Eduardo Pizarro Borges, Nélio Teixeira Machado and Lucas Pinto Bernar
Polymers 2025, 17(19), 2711; https://doi.org/10.3390/polym17192711 - 9 Oct 2025
Abstract
This study examines the chemical recycling of polymethylmethacrylate (PMMA) dental waste in semi-batch fixed-bed reactors via pyrolysis, aiming to convert this waste into the valuable monomer methyl methacrylate (MMA). First, the effect of temperature is analyzed in a laboratory-scale (30 g) semi-batch reactor [...] Read more.
This study examines the chemical recycling of polymethylmethacrylate (PMMA) dental waste in semi-batch fixed-bed reactors via pyrolysis, aiming to convert this waste into the valuable monomer methyl methacrylate (MMA). First, the effect of temperature is analyzed in a laboratory-scale (30 g) semi-batch reactor at 350, 400 and 450 °C. In order to visualize the combined effect of temperature and increase in bed volume, experiments conducted at 350 °C in the laboratory (30 g) and on a pilot scale (20 kg) are compared. Experiments conducted at 475°C on technical and pilot scales are also compared to elucidate this behavior. A detailed process analysis is presented, considering different experiments conducted in a semi-batch technical-scale reactor. Experiments were conducted in a 2 L reactor at temperatures of 425 °C, 450 °C and 475 °C to understand the effects of heating rate and temperature on product yield and composition. The results show that at 425 °C, MMA was the primary liquid component, with minimal by-products, suggesting that lower temperatures enhance monomer recovery. Higher temperatures, however, increased gas yields and reduced MMA yield due to intensified thermal cracking. This study also highlights that char formation and non-condensable gases increase with the reactor scale, indicating that heat transfer limitations can influence MMA purity and yield. These findings emphasize that for effective MMA recovery, lower temperatures and controlled heating rates are optimal, especially in larger reactors where heat transfer issues are more prominent. This research study contributes to scaling up PMMA recycling processes, supporting industrial applications to achieve efficient monomer recovery from waste. Full article
(This article belongs to the Section Circular and Green Sustainable Polymer Science)
Show Figures

Figure 1

28 pages, 3028 KB  
Article
Performance Research of Ultra-High Performance Concrete Incorporating Municipal Solid Waste Incineration Fly Ash
by Fengli Liu, Yize He, Junhua Liu, Feiyang Zhang, Xiaofei Hao and Chang Liu
Materials 2025, 18(19), 4623; https://doi.org/10.3390/ma18194623 - 7 Oct 2025
Viewed by 275
Abstract
Waste management poses escalating threats to environmental sustainability, particularly with municipal solid waste (MSW) growth. Incineration, a widely adopted method for reducing waste volume, produces millions of tons of municipal solid waste incineration fly ash (MSWIFA) each year. Despite its high toxicity and [...] Read more.
Waste management poses escalating threats to environmental sustainability, particularly with municipal solid waste (MSW) growth. Incineration, a widely adopted method for reducing waste volume, produces millions of tons of municipal solid waste incineration fly ash (MSWIFA) each year. Despite its high toxicity and classification as a hazardous solid waste, its ultrafine particle size and pozzolanic activity offer potential for its use in construction materials. In this study, MSWIFA was used to replace 6%, 12%, 18% and 24% of cementitious materials, and the effect of MSWIFA substitution rate on the workability, mechanical properties, microstructure, and durability of UHPC was studied. Furthermore, the study assessed the solidification capacity of the UHPC for heavy metal ions and quantitatively analyzed its eco-economic benefits. The results show that, under standard curing conditions, substituting 12% of cementitious materials with MSWIFA significantly modified UHPC hydration, shortened setting time, reduced fluidity, and increased wet packing density. The 28-day compressive strength reached 134.63 MPa, comparable to the control group. Concurrently, fluidity, durability, and heavy metal leaching all met the required standards, with energy consumption reduced by 14.86%, carbon emissions lowered by 12.76%, and economic costs decreased by 6.41%. This study provides a feasible solution for recycling MSWIFA into non-hazardous concrete, facilitating sustainable hazardous waste management and mitigating heavy metal-related environmental pollution. Full article
Show Figures

Figure 1

19 pages, 3515 KB  
Article
IR Spectroscopy as a Diagnostic Tool in the Recycling Process and Evaluation of Recycled Polymeric Materials
by Kaiyue Hu, Luigi Brambilla and Chiara Castiglioni
Sensors 2025, 25(19), 6205; https://doi.org/10.3390/s25196205 - 7 Oct 2025
Viewed by 231
Abstract
Driven by environmental concerns and aligned with the principles of the circular economy, urban plastic waste—including packaging materials, disposable items, non-functional objects, and industrial scrap—is increasingly being collected, recycled, and marketed as a potential substitute for virgin polymers. However, the use of recycled [...] Read more.
Driven by environmental concerns and aligned with the principles of the circular economy, urban plastic waste—including packaging materials, disposable items, non-functional objects, and industrial scrap—is increasingly being collected, recycled, and marketed as a potential substitute for virgin polymers. However, the use of recycled polymers introduces uncertainties that can significantly affect both the durability and the further recyclability of the resulting products. This paper demonstrates how spectroscopic analysis in the mid-infrared (MIR) and near-infrared (NIR) regions can be applied well beyond the basic identification of the main polymeric component, typically performed during the sorting stage of recycling processes. A detailed interpretation of spectral data, based on well-established correlations between spectroscopic response and material structure, enables the classification of recycled polymers according to specific physicochemical properties, such as chemical composition, molecular architecture, and morphology. In this context, infrared spectroscopy not only provides a reliable comparison with the corresponding virgin polymer references but also proves particularly effective in assessing the homogeneity of recycled materials and the reproducibility of their properties—factors not inherently guaranteed due to the variability of input sources. As a case study, we present a robust protocol for determining the polypropylene content in recycled polyethylene samples. Full article
Show Figures

Figure 1

26 pages, 4484 KB  
Article
Banana (Musa sapientum) Waste-Derived Biochar–Magnetite Magnetic Composites for Acetaminophen Removal via Photochemical Fenton Oxidation
by Manasik M. Nour, Maha A. Tony, Mai Kamal Fouad and Hossam A. Nabwey
Catalysts 2025, 15(10), 955; https://doi.org/10.3390/catal15100955 - 5 Oct 2025
Viewed by 231
Abstract
Recently, researchers have been focused on the recycling as well as transforming of bio-waste streams into a valuable resource. Banana peels are promising for such application, due to their wide availability. In this context, the integration of banana peel-derived biochar with environmentally benign [...] Read more.
Recently, researchers have been focused on the recycling as well as transforming of bio-waste streams into a valuable resource. Banana peels are promising for such application, due to their wide availability. In this context, the integration of banana peel-derived biochar with environmentally benign magnetite has significantly broadened its potential applications as a solar photocatalyst compared to the conventional photocatalysts. The materials are mixed in varied proportions of Ban-Char500-Mag@-(0:1), Ban-Char500@Mag-(1:1) and Ban-Char500@Mag-(2:1) and characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM) augmented with dispersive X-ray spectroscopy (EDX). Such modification is leading to an improvement in its application as a solar photocatalyst using the photochemical solar collector facility. The study discusses the factors controlling acetaminophen removal from aqueous effluent within 30 min of solar illumination time. Furthermore, the highlighted optimum parameters are pH 3.0, using 10 mg/L of the Ban-Char500@Mag-(1:1) catalyst and 100 mg/L of the hydrogen peroxide as a Fenton combination system for removing a complete acetaminophen from wastewater (100% oxidation). Also, the temperature influence in the oxidation system is studied and the high temperature is unfavorable, which verifies that the reaction is exothermic in nature. The catalyst is signified as a sustainable (recoverable, recyclable and reusable) substance, and showed a 72% removal even though it was in the six cyclic uses. Further, the kinetic study is assessed, and the experimental results revealed the oxidation process is following the first-order kinetic reaction. Also, the kinetic–thermodynamic parameters of activation are investigated and it is confirmed that the oxidation is exothermic and non-spontaneous in nature. Full article
(This article belongs to the Special Issue Environmentally Friendly Catalysis for Green Future)
Show Figures

Figure 1

21 pages, 3880 KB  
Article
Utilizing Recycled PET and Mining Waste to Produce Non-Traditional Bricks for Sustainable Construction
by Gonzalo Díaz-García, Piero Diaz-Miranda and Christian Tineo-Villón
Sustainability 2025, 17(19), 8841; https://doi.org/10.3390/su17198841 - 2 Oct 2025
Viewed by 453
Abstract
Plastic waste, particularly polyethylene terephthalate (PET), poses a growing environmental challenge. This study investigates the feasibility of incorporating recycled PET into clay bricks as a sustainable alternative in construction. Bricks were fabricated with 0%, 5%, 10%, and 15% PET content. Clay characterization included [...] Read more.
Plastic waste, particularly polyethylene terephthalate (PET), poses a growing environmental challenge. This study investigates the feasibility of incorporating recycled PET into clay bricks as a sustainable alternative in construction. Bricks were fabricated with 0%, 5%, 10%, and 15% PET content. Clay characterization included particle size distribution, Atterberg limits, and moisture content. Physical and mechanical tests evaluated dimensional variability, void percentage, warping, water absorption, suction, unit compressive strength (fb), and prism compressive strength (fm). Statistical analysis (Shapiro–Wilk, p < 0.05) validated the results. PET addition improved physical properties—reducing water absorption, suction, and voids—while slightly compromising mechanical strength. The 15% PET mix showed the best overall performance (fb = 24.00 kg/cm2; fm = 20.40 kg/cm2), with uniform deformation and lower absorption (18.7%). Recycled PET enhances key physical attributes of clay bricks, supporting its use in eco-friendly construction. However, reduced compressive strength limits its structural applications. Optimizing PET particle size, clay type, and firing conditions is essential to improve load-bearing capacity. Current formulations are promising for non-structural uses, contributing to circular material strategies. Full article
(This article belongs to the Topic Sustainable Building Materials)
Show Figures

Figure 1

22 pages, 11691 KB  
Article
Sustainable Integrated Approach to Waste Treatment in Automotive Industry: Solidification/Stabilization, Valorization, and Techno-Economic Assessment
by Marija Štulović, Dragana Radovanović, Zoran Anđić, Nela Vujović, Jelena Ivanović, Sanja Jevtić and Željko Kamberović
Sustainability 2025, 17(19), 8553; https://doi.org/10.3390/su17198553 - 23 Sep 2025
Viewed by 476
Abstract
An integrated approach to waste management is based on efficient and safe methods for waste prevention, recycling, and safe waste treatment. In accordance with these principles, in this study, non-hazardous aluminosilicate waste (dust and sand) was used in the solidification/stabilization (S/S) treatment of [...] Read more.
An integrated approach to waste management is based on efficient and safe methods for waste prevention, recycling, and safe waste treatment. In accordance with these principles, in this study, non-hazardous aluminosilicate waste (dust and sand) was used in the solidification/stabilization (S/S) treatment of hazardous waste (coating, emulsion, and sludge) from the automotive industry. Also, the oily component of the waste was valorized and investigated for energy recovery through co-incineration. The two S/S processes were proposed and their sustainability was assessed by utilizing all types of waste generated in the same plant, obtaining stabilized material suitable for safe disposal and oil phases for further valorization, and by techno-economic analysis. The efficiency of the S/S processes was evaluated by measuring unconfined compressive strength, hydraulic conductivity, density, and the EN 12457-4 standard leaching test of S/S products, along with XRD, SEM-EDS, and TG-DTG analyses. The possibility of using the oil phase was assessed based on its calorific value. The techno-economic assessment compared the investments, operating costs, and potential savings of both treatment scenarios. The results show that an integrated approach enables safe waste immobilization and resource recovery, contributing to environmental protection and economic benefits. Full article
Show Figures

Figure 1

22 pages, 3747 KB  
Article
Recycled Polystyrene as a Sustainable Material for Hollow Fiber Membranes in Dye Filtration
by Mauricio Huhn-Ibarra, Libia Madai Itza-Uitzil, Marcial Yam-Cervantes, Abigail González-Díaz, Fernando José Zapata-Catzin, Javier Ivan Cauich-Cupul, Manuel Aguilar-Vega and Maria Ortencia González-Díaz
Membranes 2025, 15(10), 285; https://doi.org/10.3390/membranes15100285 - 23 Sep 2025
Viewed by 436
Abstract
Expanded polystyrene (EPS) waste was chemically modified by sulfonation to obtain sulfonated EPS (sEPS), which was subsequently blended with virgin polyphenylsulfone (PPSU) at concentrations ranging from 10 to 50% to elaborate hollow fiber membranes for dye removal. The membranes were elaborated by non-solvent-induced [...] Read more.
Expanded polystyrene (EPS) waste was chemically modified by sulfonation to obtain sulfonated EPS (sEPS), which was subsequently blended with virgin polyphenylsulfone (PPSU) at concentrations ranging from 10 to 50% to elaborate hollow fiber membranes for dye removal. The membranes were elaborated by non-solvent-induced phase separation and characterized by scanning electron microscopy, mechanical properties, antifouling, water flux measurements, and dye rejection performance. Scanning electron microscopy images of PPSU/sEPS blends showed well-defined membrane cross-sections with no polymer segregation up to 30% recycled EPS content, indicating improved compatibility due to EPS sulfonation. The HFMs present mean pore radii ranging from 4.2 ± 0.5 to 11.1 ± 1.0 nm with porosity up to 80%. Water flux improved significantly from 3.1 to 21.2 L m−2 h−1 at 2 bar as sEPS content increased. Dye rejection performance was promising, with Reactive Black 5 rejection ranging from 77% to 99%. The 80/20s PPSU/sEPS membrane showed the highest Reactive Black 5 rejection at 98.3% and revealed a 70.3% rejection in a 24 h dye mixture test. Furthermore, the 70/30s displayed superior anti-fouling properties, achieving a 99.3% flux recovery ratio in a xanthan gum solution at 2 bar. This study demonstrates a novel approach to transform EPS waste into high-performance hollow fiber membrane with competitive antifouling and dye separation properties. Full article
Show Figures

Figure 1

27 pages, 12942 KB  
Article
Recycled Materials and Lightweight Insulating Additions to Mixtures for 3D Concrete Printing
by Marcin Maroszek, Magdalena Rudziewicz, Karina Rusin-Żurek, Izabela Hager and Marek Hebda
Materials 2025, 18(18), 4387; https://doi.org/10.3390/ma18184387 - 19 Sep 2025
Viewed by 443
Abstract
Three-dimensional concrete printing (3DCP) is advancing rapidly, yet its sustainable adoption requires alignment with circular-economy principles. This study evaluates the substitution of natural aggregates with recycled constituents, 3DCP waste, brick debris, glass cullet, mixed rubble, fly ash, and slag, and the use of [...] Read more.
Three-dimensional concrete printing (3DCP) is advancing rapidly, yet its sustainable adoption requires alignment with circular-economy principles. This study evaluates the substitution of natural aggregates with recycled constituents, 3DCP waste, brick debris, glass cullet, mixed rubble, fly ash, and slag, and the use of lightweight fillers (expanded perlite, lightweight expanded clay aggregate (LECA), and expanded polystyrene (EPS)) to reduce density and improve insulation. Key properties, such as particle-size distribution, printability, mechanical performance, thermal conductivity, and water absorption, were determined. Results indicate that grading strongly affected mixture behavior. Narrow distributions (fly ash, milled 3DCP waste) enhanced extrudability, while broader gradings (glass, rubble, slag) increased water demand and extrusion risks. Despite these differences, all systems remained within the printable window: flow spread decreased with most recycled additions (lowest for brick) and increased with glass. Mechanical responses were composition-dependent. Flexural strength typically decreased. Compressive strength benefited from broader gradings, with replacement levels up to ~6% enhancing strength due to improved packing. Loading anisotropy typical of 3DCP was observed, with perpendicular compressive strength reaching up to 13% higher values than parallel loading. Lightweight fillers significantly reduced thermal conductivity. LECA provided the best compromise between strength and insulation, perlite showed intermediate behavior, and EPS achieved the lowest thermal conductivity but induced significant strength penalties due to weak matrix-EPS interfaces. Water absorption decreased in recycled-aggregate mixes, whereas lightweight systems, particularly with perlite, retained higher uptake. The results demonstrate that non-reactive recycled aggregates and lightweight insulating fillers can be successfully integrated into extrusion-based 3DCP without compromising printability. Full article
Show Figures

Graphical abstract

17 pages, 2017 KB  
Article
Sustainable Recovery of Critical Metals from Spent Lithium-Ion Batteries Using Deep Eutectic Solvents
by Jafar Goudarzi, Zhi Chen, Gaixia Zhang, Jinguang Hu, Karim Zaghib, Sixu Deng, Afzal Ahmed Dar, Xiaolei Wang, Fariborz Haghighat, Catherine N. Mulligan, Chunjiang An and Antonio Avalos Ramirez
Batteries 2025, 11(9), 340; https://doi.org/10.3390/batteries11090340 - 14 Sep 2025
Viewed by 1057
Abstract
The surging demand for lithium-ion batteries (LIBs) has intensified the need for sustainable recovery of critical metals such as lithium, manganese, cobalt, and nickel from spent cathodes. While conventional hydrometallurgical and pyrometallurgical methods are widely used, they involve high energy consumption, hazardous waste [...] Read more.
The surging demand for lithium-ion batteries (LIBs) has intensified the need for sustainable recovery of critical metals such as lithium, manganese, cobalt, and nickel from spent cathodes. While conventional hydrometallurgical and pyrometallurgical methods are widely used, they involve high energy consumption, hazardous waste generation, and complex processing steps, underscoring the urgency of developing eco-friendly alternatives. This study presents a novel, water-enhanced deep eutectic solvent (DES) system composed of choline chloride and D-glucose for the efficient leaching of valuable metals from spent LiMn-based battery cathodes. The DES was synthesized under mild conditions and applied to dissolve cathode powder, with leaching performance optimized by varying temperature and duration. Under optimal conditions (100 °C, 24 h), exceptional recovery efficiencies were achieved: 98.9% for lithium, 98.4% for manganese, and 71.7% for nickel. Material characterization using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and inductively coupled plasma mass spectrometer (ICP-MS) confirm effective phase dissolution and metal release. Although this DES system requires relatively higher temperature and longer reaction time compared to traditional acid leaching, it offers clear advantages in terms of non-toxicity, biodegradability, and elimination of strong oxidizing agents. These results demonstrate the potential of water-enhanced choline chloride–glucose DES as a green alternative for future development in sustainable battery recycling, supporting circular economy objectives. Full article
Show Figures

Figure 1

22 pages, 1053 KB  
Review
Edible Pouch Packaging for Food Applications—A Review
by Azin Omid Jeivan and Sabina Galus
Processes 2025, 13(9), 2910; https://doi.org/10.3390/pr13092910 - 12 Sep 2025
Viewed by 1445
Abstract
Current food packaging, primarily made of non-biodegradable plastics, significantly contributes to environmental pollution. New packaging systems for food applications from biopolymers and/or with multifunctional properties are being developed as substitutes for synthetic polymers. The increasing concern over the environmental effects of packaging waste [...] Read more.
Current food packaging, primarily made of non-biodegradable plastics, significantly contributes to environmental pollution. New packaging systems for food applications from biopolymers and/or with multifunctional properties are being developed as substitutes for synthetic polymers. The increasing concern over the environmental effects of packaging waste is driving a transition toward renewable packaging materials. Edible films and coatings play a vital role in maintaining food quality by preventing the loss of aroma, flavour, and important components, while also extending shelf life. Biopolymers, including polysaccharides, proteins, and lipids, are gaining attention as the future of packaging due to the environmental issues linked to petrochemical-based plastics. Modern packaging should not only protect products but also be biodegradable, recyclable, and have a minimal ecological impact. This review comprehensively summarises edible packaging in the form of single-use, fast-dissolving pouches for food applications as a circular approach and a sustainable solution in food technology. Innovations have resulted in the development of a unique packaging solution made from renewable sources. This packaging utilises plant and animal by-products to create edible films and pouches that are easy to seal. Edible packaging is emerging as a sustainable alternative, designed to simplify food packaging while minimising waste. Fast-dissolving scalable packaging, particularly edible films that dissolve in water, is used for individual servings of dry foods and instant beverages. This includes items like breakfast cereals, instant coffee or tea, and various powdered products. Additionally, there is an innovative approach to single-use packaging for oils and powders, leveraging the convenience and efficiency of these fast-dissolving films. Edible pouch packaging, made from safe and edible materials, provides a biodegradable option that decomposes naturally, thereby reducing pollution and the need for disposal. Full article
Show Figures

Graphical abstract

18 pages, 8055 KB  
Article
The Effect of Recycled Wind Turbine Blade GFRP on the Mechanical and Durability Properties of Concrete
by Waldemar Kępys, Barbara Tora, Vojtěch Václavík and Justyna Jaskowska-Lemańska
Sustainability 2025, 17(18), 8201; https://doi.org/10.3390/su17188201 - 11 Sep 2025
Viewed by 533
Abstract
Growing concerns about industrial waste have intensified the search for practical reuse strategies in the construction industry. One of the most problematic types of waste is decommissioned wind turbine blades, which are tough, lightweight glass fibre composites that resist conventional recycling. In this [...] Read more.
Growing concerns about industrial waste have intensified the search for practical reuse strategies in the construction industry. One of the most problematic types of waste is decommissioned wind turbine blades, which are tough, lightweight glass fibre composites that resist conventional recycling. In this study, shredded glass fibre-reinforced polymer (GFRP) recovered from such blades was used to partially replace the 2–8 mm fraction of natural aggregate in concrete at 10%, 20%, 30%, and 40% by volume. X-ray fluorescence (XRF) analysis showed that the material consists mainly of SiO2, CaO, and Al2O3. X-ray computed tomography (XCT) revealed uneven fibre dispersion and a clear increase in porosity. Compared with the control mix, compressive strength reduced by 7–25%, splitting tensile strength by 18–24%, and elastic modulus by 17–35%. All mixes achieved watertightness class W12 (1.2 MPa), though the depth of water penetration increased with GFRP content. After 50 freeze–thaw cycles, frost-resistance class F50 was only met at 10% replacement. While these trends underline the performance trade-offs, they also point to a realistic route for diverting composite waste from landfills, reducing reliance on quarried aggregate and producing ‘green’ concretes for non-structural, prefabricated elements, where moderate strength is acceptable and reducing weight is advantageous. Full article
(This article belongs to the Section Sustainable Engineering and Science)
Show Figures

Figure 1

42 pages, 5242 KB  
Review
The Mechanisms of Lead Toxicity in Living Organisms
by Anastasiia Generalova, Slavena Davidova and Galina Satchanska
J. Xenobiot. 2025, 15(5), 146; https://doi.org/10.3390/jox15050146 - 11 Sep 2025
Viewed by 1213
Abstract
Lead (Pb) is a non-essential, toxic heavy metal with no known biological function that has caused widespread environmental contamination throughout human history. Pb toxicity represents one of the most persistent environmental health challenges, with no safe exposure threshold identified. The metal demonstrates remarkable [...] Read more.
Lead (Pb) is a non-essential, toxic heavy metal with no known biological function that has caused widespread environmental contamination throughout human history. Pb toxicity represents one of the most persistent environmental health challenges, with no safe exposure threshold identified. The metal demonstrates remarkable persistence in biological systems, with approximately 90% of it stored in bone tissue for decades, mimicking calcium due to its similar ionic properties. Contemporary contamination primarily stems from mining activities, battery manufacturing, electronic waste recycling, and deteriorating infrastructure. Pb enters organisms through multiple pathways and causes severe health impacts across all biological systems, with particularly devastating neurodevelopmental and bone effects in children and cardiovascular and reproductive consequences in adults. On a molecular level, Pb disrupts cellular processes through ion mimicry, replacing essential metals in enzymes and proteins and leading to mitochondrial dysfunction, oxidative stress, DNA damage, and epigenetic modifications. This review examines the sources of Pb pollution and its toxicological impacts on bacteria, fungi, plants, animals, and humans. It explores the molecular mechanisms underlying these effects, including neuroinflammation, genotoxicity, and cell death pathways. The paper considers current approaches for Pb removal from contaminated environments and therapeutic interventions for Pb poisoning. Full article
Show Figures

Graphical abstract

26 pages, 5306 KB  
Article
Interfacial Shear Strength of Sand–Recycled Rubber Mixtures Against Steel: Ring-Shear Testing and Machine Learning Prediction
by Rayed Almasoudi, Hossam Abuel-Naga and Abolfazl Baghbani
Buildings 2025, 15(18), 3276; https://doi.org/10.3390/buildings15183276 - 10 Sep 2025
Viewed by 463
Abstract
Soil–structure contacts often govern deformation and stability in foundations and buried infrastructure. Rubber waste is used in soil mixtures to enhance geotechnical performance and promote environmental sustainability. This study investigates the peak and residual shear strength of sand–steel interfaces, where the sand is [...] Read more.
Soil–structure contacts often govern deformation and stability in foundations and buried infrastructure. Rubber waste is used in soil mixtures to enhance geotechnical performance and promote environmental sustainability. This study investigates the peak and residual shear strength of sand–steel interfaces, where the sand is mixed with recycled rubber. It also develops predictive machine learning (ML) models based on the experimental data. Two silica sands, medium and coarse, were mixed with two rubber gradations; however, Rubber B was included only in limited comparative tests at a fixed content. Ring-shear tests were performed against smooth and rough steel plates under normal stresses of 25 to 200 kPa to capture the full τ–δ response. Nine input variables were considered: median particle size (D50), regularity index (RI), porosity (n), coefficients of uniformity (Cu) and curvature (Cc), rubber content (RC), applied normal stress (σn), normalised roughness (Rn), and surface hardness (HD). These variables were used to train multiple linear regression (MLR) and random forest regression (RFR) models. The models were trained and validated on 96 experimental data points derived from ring-shear tests across varied material and loading conditions. The machine learning models facilitated the exploration of complex, non-linear relationships between the input variables and both peak and residual interfacial shear strength. Experimental findings demonstrated that particle size compatibility, rubber content, and surface roughness significantly influence interface behaviour, with optimal conditions varying depending on the surface type. Moderate inclusion of rubber was found to enhance strength under certain conditions, while excessive content could lead to performance reduction. The MLR model demonstrated superior generalisation in predicting peak strength, whereas the RFR model yielded higher accuracy for residual strength. Feature importance analyses from both models identified the most influential parameters governing the shear response at the sand–steel interface. Full article
Show Figures

Figure 1

19 pages, 2866 KB  
Article
Recycling Foundry Sands in Concrete: A Comparative Study on the Use of Green Sand and Chemically Bonded Sand as Partial Replacements for Natural Sand
by Pietro Di Maida, Corrado Sciancalepore, Enrico Radi, Luca Lanzoni and Daniel Milanese
Materials 2025, 18(18), 4245; https://doi.org/10.3390/ma18184245 - 10 Sep 2025
Viewed by 482
Abstract
Currently, many foundries successfully reuse sand multiple times within their production cycle. However, when the sand can no longer be reused, it is disposed of, resulting in environmental damage and high disposal costs for the company. The present research aims to explore the [...] Read more.
Currently, many foundries successfully reuse sand multiple times within their production cycle. However, when the sand can no longer be reused, it is disposed of, resulting in environmental damage and high disposal costs for the company. The present research aims to explore the potential reuse of foundry sands as fine aggregate in concrete. Since this by-product is classified as non-hazardous waste, it can offer interesting opportunities for the recycling of a material that is currently one of the most widely used in the construction industry. This paper studies the potential reuse of green sand (GS) and chemically bonded sand (CBS) as a partial replacement for natural sand (NS) in concrete. Concrete specimens made with 10%, 20%, and 30% of foundry sand were tested, and a comparative analysis was carried out with the standard mixture in terms of chemical–physical properties, workability, and mechanical properties. The results showed a reduction in the performance of concrete specimens prepared with foundry sands. The lowest reductions in the strength, which were always below 10%, were observed for a 10% inclusion rate of both GS and CBS, with slightly better performance for CBS. Performance reductions tend to increase with higher replacement rates. However, these performance reductions turn out to be acceptable for concrete used in non-structural applications. Full article
Show Figures

Figure 1

24 pages, 2164 KB  
Review
Catalytic and Non-Catalytic Co-Gasification of Biomass and Plastic Wastes for Energy Production
by Mariana Busto, Liza Ainalen Dosso, Franco Nardi, Juan Manuel Badano and Carlos Roman Vera
Catalysts 2025, 15(9), 844; https://doi.org/10.3390/catal15090844 - 2 Sep 2025
Viewed by 800
Abstract
The management of solid waste and the supply of energy are two of the most important environmental problems of our time. Projections indicate that by 2050, the global demand for electrical energy is expected to increase by 35% and the amount of solid [...] Read more.
The management of solid waste and the supply of energy are two of the most important environmental problems of our time. Projections indicate that by 2050, the global demand for electrical energy is expected to increase by 35% and the amount of solid waste generated to increase by 45%. In this context, polymeric waste materials such as biomass and plastics can be valorised through thermochemical processes for the generation of energy. Gasification, which converts carbonaceous materials into syngas, tar, and char, is one of the most promising recycling technologies. The composition and relative quantities of the products are influenced by the process configuration, operating parameters, and the type of fuel used. Tar removal is facilitated by adding specific catalysts to the process. The co-processing of biomass and plastics in the gasification process, called co-gasification, improves the gas yield and reduces solid residues. This review evaluates catalytic and non-catalytic co-gasification of biomass waste and non-biodegradable plastics, with a focus on syngas production and its energy potential. Full article
Show Figures

Graphical abstract

Back to TopTop