Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (177)

Search Parameters:
Keywords = non-synonymous single nucleotide polymorphisms

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4338 KB  
Article
Computational Identification of RNF114 nsSNPs with Potential Roles in Psoriasis and Immune Dysregulation
by Ghalia Mahfod Aldoseri, Arwa Ibrahim Alwabran, Ghanem Mahfod Aldoseri, Mobarak Mahfod Aldoseri and Ebtihal Kamal
Med. Sci. 2025, 13(3), 194; https://doi.org/10.3390/medsci13030194 - 16 Sep 2025
Viewed by 375
Abstract
Background: RNF114 gene encodes an E3 ubiquitin ligase involved in immune signaling and regulation of inflammation. Genetic variants, particularly nonsynonymous single-nucleotide polymorphisms (nsSNPs), may interfere with protein function and cause immune diseases such as psoriasis. Although significant, the structural and functional impact of [...] Read more.
Background: RNF114 gene encodes an E3 ubiquitin ligase involved in immune signaling and regulation of inflammation. Genetic variants, particularly nonsynonymous single-nucleotide polymorphisms (nsSNPs), may interfere with protein function and cause immune diseases such as psoriasis. Although significant, the structural and functional impact of RNF114 nsSNPs is not well understood. Methods: We used comprehensive bioinformatics analyses to predict the functional impact of RNF114 nsSNPs. Deleterious variants were predicted by SIFT, PolyPhen-2, PROVEAN, META-SNP, ESNP&GO, PANTHER, and Alpha-Missense. Protein stability was examined by I-Mutant2.0, and MUpro further contextualized variant effects. Structural modeling was performed by AlphaFold and visualized using UCSF ChimeraX 1.10.1. Additionally, we studied the Conservation using ConSurf and protein-protein interaction by STRING tools. Results: Among 252 available nsSNPs, three mutations—C49R (rs1600868749), R68C (rs745318334), and R68H (rs758000156)—were predicted to have a deleterious and destabilizing effects on the protein structure by all the tools. All three variants were located in extremely conserved residues and were predicted to significantly destabilize the protein structure. Structural modeling demonstrated disruptions in the RNF114 domain structure. STRING analysis revealed interactions of RNF114 with key immune regulators, and pathway enrichment pointed to roles in NF-κB signaling, ubiquitin-mediated proteolysis, and autoimmune disease pathways. Conclusions: In the current study, we predicted three novel, potentially pathogenic RNF114 variants with protein-destabilizing effect that could lead to immune dysregulation. Full article
Show Figures

Figure 1

11 pages, 4048 KB  
Article
Duplex Probe-Based Fluorescence Melting Curve Analysis for Simultaneous Genotyping of rs1126728 and rs11208257 in the Phosphoglucomutase-1 Gene
by Mikiko Soejima and Yoshiro Koda
Diagnostics 2025, 15(18), 2345; https://doi.org/10.3390/diagnostics15182345 - 16 Sep 2025
Viewed by 411
Abstract
Background/Objectives: Phosphoglucomutase-1 (PGM1) is an enzyme that plays important roles in glycolysis, glycogen metabolism, and glycosylation. The PGM1 gene harbors two common nonsynonymous single-nucleotide variants (rs1126728 and rs11208257), which result in four functional PGM1 phenotypes. Correlations between PGM1 polymorphisms and several pathological conditions [...] Read more.
Background/Objectives: Phosphoglucomutase-1 (PGM1) is an enzyme that plays important roles in glycolysis, glycogen metabolism, and glycosylation. The PGM1 gene harbors two common nonsynonymous single-nucleotide variants (rs1126728 and rs11208257), which result in four functional PGM1 phenotypes. Correlations between PGM1 polymorphisms and several pathological conditions have been suggested. Methods: To identify the rs1126728 and rs11208257 concurrently, a fluorescence melting curve analysis (FMCA) was developed that utilizes two distinct dual-labeled fluorescence probes. Two distinct Taq polymerases, one with and one without 5′-3′exonuclease activity, were compared. This method was then applied to 95 unrelated Japanese subjects. Results: Both Taq polymerases, with and without 5′-3′exonuclease activity, were found to be sufficiently functional. Furthermore, the results of the FMCA using both Taq polymerases were compared with the direct Sanger sequencing results of PCR products from the 95 Japanese subjects, demonstrating 100% concordance. Conclusions: The duplex probe-based FMCA developed in this study is useful for examining the association between rs1126728 or rs11208257 and a range of pathological conditions using a relatively large number of subjects. Full article
(This article belongs to the Section Pathology and Molecular Diagnostics)
Show Figures

Figure 1

30 pages, 3992 KB  
Article
Sheep Pox Susceptibility: Role of Genetic Variants, Gene Expression, and Immune-Oxidative Markers
by Asmaa A. Darwish, Huda A. Alqahtani, Amin Tahoun, Ahmed Ateya, Noha A. Helmy, Amani A. Hafez, Hanan M. Alharbi, Khairiah M. Alwutayd, Manal A. Babaker, Ammar AL-Farga, Eman A. Al-Shahari, Zakaria A. Salih, Mohammed Ali. Al-Duais and Ahmed El-Sayed
Vet. Sci. 2025, 12(9), 867; https://doi.org/10.3390/vetsci12090867 - 8 Sep 2025
Viewed by 748
Abstract
Sheep pox, caused by sheep pox virus (SPV), is a transboundary disease that threatens sheep production and trade. This study aimed to identify genetic, immunological, and biochemical markers associated with susceptibility to SPV in Barki ewes. A total of 100 adult ewes were [...] Read more.
Sheep pox, caused by sheep pox virus (SPV), is a transboundary disease that threatens sheep production and trade. This study aimed to identify genetic, immunological, and biochemical markers associated with susceptibility to SPV in Barki ewes. A total of 100 adult ewes were examined, including 50 clinically healthy and 50 naturally infected animals. PCR detected SPV DNA in 60% of suspected scab samples, highlighting diagnostic challenges in field investigations. Blood samples were analyzed for hematological indices, cytokine profiles, acute phase proteins, oxidative stress biomarkers, iron metabolism, and hormonal parameters. Expression profiles and single-nucleotide polymorphisms (SNPs) in 15 immune and antioxidant genes were characterized from cDNA-derived sequences. Infected animals exhibited microcytic hypochromic anemia, leukocytosis, elevated proinflammatory cytokines, and reduced IL-10. Acute phase proteins, oxidative stress markers, and cortisol were increased, whereas antioxidant capacity and transferrin were reduced. Twenty-three SNPs were identified, including non-synonymous variants, which showed promising but unvalidated associations with disease status. These findings highlight immune, oxidative, and genetic alterations in SPV-infected sheep, but further longitudinal and cross-validated studies are needed to establish their diagnostic or breeding utility. Full article
(This article belongs to the Special Issue Emerging Viral Pathogens in Domestic and Wild Animals)
Show Figures

Figure 1

15 pages, 3003 KB  
Article
Phylogenetic and Molecular Evolutionary Insights into Monkeypox Virus Circulation in Shenzhen, China, 2023–2024
by Chuan Shi, Xiaochen Zheng, Lei Lei, Jinhui Xiao, Guangqing Yu, Yingdong Li, Zhifeng Ma, Minjie Li, Yanling Zeng, Ziquan Lv, Yixiong Chen, Wei Tan and Qianru Wang
Viruses 2025, 17(9), 1214; https://doi.org/10.3390/v17091214 - 5 Sep 2025
Viewed by 792
Abstract
The 2022 global mpox outbreak highlighted the risk of sustained human-to-human transmission of monkeypox virus (MPXV) in non-endemic regions, yet genomic surveillance in Asia, particularly in China, remains limited. This study conducted horizontal genomic surveillance of MPXV in Shenzhen from 2023 to 2024 [...] Read more.
The 2022 global mpox outbreak highlighted the risk of sustained human-to-human transmission of monkeypox virus (MPXV) in non-endemic regions, yet genomic surveillance in Asia, particularly in China, remains limited. This study conducted horizontal genomic surveillance of MPXV in Shenzhen from 2023 to 2024 to characterize the phylogenetic structure, mutational patterns, and adaptive evolution of locally circulating strains. Phylogenetic analysis showed 95.2% of strains belonged to the dominant lineage C.1.1, with 4.8% in lineage E.3, forming three distinct genetic clusters that indicate multiple independent introductions and established local transmission chains. Whole-genome mutational analysis identified 146 single-nucleotide polymorphisms (SNPs), 81.5% of which carried APOBEC3-mediated mutation signatures (TC > TT and GA > AA), reflecting host-driven antiviral editing. Notably, dynamic changes in low-complexity regions (LCRs) were observed, implying potential roles in genome plasticity and adaptive evolution. Functional analysis revealed non-synonymous substitution biases in host-interacting proteins OPG064, OPG145, and OPG210, while replication protein OPG105 remained conserved. Structural modeling identified critical substitutions in OPG002 (S54F), OPG016 (R84K), and OPG036 (R48C) that may enhance immune evasion by modulating TNF-α signaling, NKG2D engagement, and Type I interferon antagonism. These findings illuminate unique MPXV evolutionary dynamics in Shenzhen, emphasizing continuous genomic surveillance for non-endemic outbreak preparedness. Full article
Show Figures

Figure 1

13 pages, 3091 KB  
Article
Identification of Novel Gene Cluster Potentially Associated with Insecticide Resistance in Anopheles gambiae s.l.
by Hyacinthe Dipina Ki, Mahamadi Kientega, Sabéré O. G. Yemien, Hamidou Maiga, Nouhoun Traoré, Koama Bayili, Moussa Namountougou and Abdoulaye Diabaté
Genes 2025, 16(9), 1018; https://doi.org/10.3390/genes16091018 - 28 Aug 2025
Viewed by 723
Abstract
Background/Objectives: Despite the increasing emergence of resistance, insecticide-based tools remain the primary method for malaria vector control in Africa. To maintain the effectiveness of these interventions, continuous monitoring and identification of novel resistance mechanisms is essential. This study aimed to investigate potential new [...] Read more.
Background/Objectives: Despite the increasing emergence of resistance, insecticide-based tools remain the primary method for malaria vector control in Africa. To maintain the effectiveness of these interventions, continuous monitoring and identification of novel resistance mechanisms is essential. This study aimed to investigate potential new insecticide resistance genes in the Anopheles gambiae complex. Methods: We analyzed whole-genome sequencing data from the An. gambiae 1000 Genomes Project. A broad range of genomic analysis techniques and tools were used to identify and explore genetic variation in the candidate resistance genes. Results: High haplotype homozygosity values, indicative of positive selection, were detected in a 2L chromosomal region corresponding to an aldehyde oxidase gene cluster (AGAP006220, AGAP006221, AGAP006224, AGAP006225, AGAP006226). Single nucleotide polymorphisms (SNPs) have been identified in these genes with frequencies up to 100%, including 569, 691, 1433, 978, and 811 non-synonymous SNPs in AGAP006220, AGAP006221, AGAP006224, AGAP006225, and AGAP006226, respectively. Copy number variations (CNVs) such as deletions and amplifications were also identified at low frequencies (<12%). Population structure analyses revealed adaptive and geographic gene flow between An. gambiae and An. coluzzii. Conclusions: This study provides evidence that aldehyde oxidase genes may contribute to insecticide resistance in An. gambiae s.l. populations. These results highlight the importance of genomic surveillance for detecting novel resistance loci and guiding the development of improved vector control strategies under changing ecological and evolutionary conditions. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

14 pages, 1697 KB  
Article
Characterisation of Four New Genes in the Ovine KAP19 Family
by Lingrong Bai, Huitong Zhou, Jianning He, Jinzhong Tao, Guo Yang and Jon G. H. Hickford
Int. J. Mol. Sci. 2025, 26(14), 6863; https://doi.org/10.3390/ijms26146863 - 17 Jul 2025
Viewed by 347
Abstract
This study identified four new keratin-associated protein genes (KRTAP19-n) in sheep: sKRTAP19-1, sKRTAP19-2, sKRTAP19-4, and sKRTAP19-6. These genes are closely related to the previously identified sheep genes KRTAP19-3 and KRTAP19-5, as well as to human KRTAP19-n [...] Read more.
This study identified four new keratin-associated protein genes (KRTAP19-n) in sheep: sKRTAP19-1, sKRTAP19-2, sKRTAP19-4, and sKRTAP19-6. These genes are closely related to the previously identified sheep genes KRTAP19-3 and KRTAP19-5, as well as to human KRTAP19-n genes. However, no clear orthologous relationships were found, suggesting complex evolutionary dynamics for this gene family. Extensive nucleotide sequence variation was observed across the four genes. sKRTAP19-1 had four variants, defined by four synonymous single-nucleotide polymorphisms (SNPs) and a variable number of “GGCTAC” hexanucleotide repeats. sKRTAP19-2 had five variants involving seven SNPs, three of which were non-synonymous. sKRTAP19-4 had five variants with nine SNPs (three being non-synonymous) and a three-nucleotide deletion. sKRTAP19-6 had eight variants, defined by 13 SNPs and a two-nucleotide consecutive substitution, with four of the SNPs being non-synonymous. One distinct variant each of sKRTAP19-4 and sKRTAP19-6 was found exclusively in Yanchi Tan sheep, with seven unique nucleotide differences compared to other variants. These unique variants were identical to the Romanov sheep genome in the region amplified (excluding the primer binding regions), suggesting a shared ancestral origin. The findings highlight considerable genetic diversity in ovine KRTAP19-n and lay a foundation for future research into their role in regulating wool fibre characteristics. Full article
(This article belongs to the Special Issue Molecular Genetics and Genomics of Ruminants—Second Edition)
Show Figures

Figure 1

17 pages, 3403 KB  
Article
Reduced Genetic Diversity of Key Fertility and Vector Competency Related Genes in Anopheles gambiae s.l. Across Sub-Saharan Africa
by Fatoumata Seck, Mouhamadou Fadel Diop, Karim Mané, Amadou Diallo, Idrissa Dieng, Moussa Namountougou, Abdoulaye Diabate, Alfred Amambua-Ngwa, Ibrahima Dia and Benoit Sessinou Assogba
Genes 2025, 16(5), 543; https://doi.org/10.3390/genes16050543 - 30 Apr 2025
Viewed by 1268
Abstract
Background: Insecticide resistance challenges the vector control efforts towards malaria elimination and proving the development of complementary tools. Targeting the genes that are involved in mosquito fertility and susceptibility to Plasmodium with small molecule inhibitors has been a promising alternative to curb the [...] Read more.
Background: Insecticide resistance challenges the vector control efforts towards malaria elimination and proving the development of complementary tools. Targeting the genes that are involved in mosquito fertility and susceptibility to Plasmodium with small molecule inhibitors has been a promising alternative to curb the vector population and drive the transmission down. However, such an approach would require a comprehensive knowledge of the genetic diversity of the targeted genes to ensure the broad efficacy of new tools across the natural vector populations. Methods: Four fertility and parasite susceptibility genes were identified from a systematic review of the literature. The Single Nucleotide Polymorphisms (SNPs) found within the regions spanned by these four genes, genotyped across 2784 wild-caught Anopheles gambiae s.l. from 19 sub-Saharan African (SSA) countries, were extracted from the whole genome SNP data of the Ag1000G project (Ag3.0). The population genetic analysis on gene-specific data included the determination of the population structure, estimation of the differentiation level between the populations, evaluation of the linkage between the non-synonymous SNPs (nsSNPs), and a few statistical tests. Results: As potential targets for small molecule inhibitors to reduce malaria transmission, our set of four genes associated with Anopheles fertility and their susceptibility to Plasmodium comprises the mating-induced stimulator of oogenesis protein (MISO, AGAP002620), Vitellogenin (Vg, AGAP004203), Lipophorin (Lp, AGAP001826), and Haem-peroxidase 15 (HPX15, AGAP013327). The analyses performed on these potential targets of small inhibitor molecules revealed that the genes are conserved within SSA populations of An. gambiae s.l. The overall low Fst values and low clustering of principal component analysis between species indicated low genetic differentiation at all the genes (MISO, Vg, Lp and HPX15). The low nucleotide diversity (>0.10), negative Tajima’s D values, and heterozygosity analysis provided ecological insights into the purifying selection that acts to remove deleterious mutations, maintaining genetic diversity at low levels within the populations. None of MISO nsSNPs were identified in linkage disequilibrium, whereas a few weakly linked nsSNPs with ambiguous haplotyping were detected at other genes. Conclusions: This integrated finding on the genetic features of major malaria vectors’ biological factors across natural populations offer new insights for developing sustainable malaria control tools. These loci were reasonably conserved, allowing for the design of effective targeting with small molecule inhibitors towards controlling vector populations and lowering global malaria transmission. Full article
(This article belongs to the Section Microbial Genetics and Genomics)
Show Figures

Figure 1

17 pages, 3690 KB  
Article
An In-Depth Characterization of SARS-CoV-2 Omicron Lineages and Clinical Presentation in Adult Population Distinguished by Immune Status
by Greta Marchegiani, Luca Carioti, Luigi Coppola, Marco Iannetta, Leonardo Alborghetti, Vincenzo Malagnino, Livia Benedetti, Maria Mercedes Santoro, Massimo Andreoni, Loredana Sarmati, Claudia Alteri, Francesca Ceccherini-Silberstein and Maria Concetta Bellocchi
Viruses 2025, 17(4), 540; https://doi.org/10.3390/v17040540 - 8 Apr 2025
Viewed by 799
Abstract
This retrospective study analyzed SARS-CoV-2 Omicron variability since its emergence, focusing on immunocompromised (IPs) and non-immunocompromised adult people (NIPs). Phylogenetic analysis identified at least five major Omicron lineage groups circulating in Central Italy, from December 2021 to December 2023: (a) BA.1 (34.0%), (b) [...] Read more.
This retrospective study analyzed SARS-CoV-2 Omicron variability since its emergence, focusing on immunocompromised (IPs) and non-immunocompromised adult people (NIPs). Phylogenetic analysis identified at least five major Omicron lineage groups circulating in Central Italy, from December 2021 to December 2023: (a) BA.1 (34.0%), (b) BA.2 + BA.4 (25.8%), (c) BA.5 + BF (10.8%), (d) BQ + BE + EF (9.2%), and (e) Recombinants (20.2%). The BA.2 + BA.4 lineages were more common in IPs compared to NIPs (30.9% vs. 17.8%, respectively; p = 0.011); conversely, Recombinants were less prevalent in IPs than in NIPs (16.0% vs. 27.1%, respectively; p = 0.018). High-abundant single nucleotide polymorphisms (SNPs; prevalence ≥ 40%) and non-synonymous SNPs (prevalence ≥ 20%) increased during the emergence of new variants, rising from BA.1 to Recombinants (54 to 92, and 43 to 70, respectively, both p < 0.001). Evaluating the genetic variability, 109 SNPs were identified as being involved in significant positive or negative associations in pairs (phi > 0.70, p < 0.001), with 19 SNPs associated in 3 distinct clusters (bootstrap > 0.96). Multivariate regression analysis showed that hospitalization was positively associated with one specific cluster, including S686R and A694S in Spike and L221F in Nucleocapsid (AOR: 2.74 [95% CI: 1.13–6.64, p = 0.025]), and with increased age (AOR:1.03 [95% CI: 1.00–1.06], p = 0.028). Conversely, negative associations with hospitalization were observed for female gender and previous vaccination status (AORs: 0.34 [95% CI: 0.14–0.83], p = 0.017 and 0.19 (95% CI: 0.06–0.63, p = 0.006, respectively). Interestingly, the S686R SNP located in a furin cleavage site suggests its potential pathogenetic role. The results show how Omicron genetic diversification significantly influences disease severity and hospitalization, together with age, sex, and vaccination status as key factors. Full article
(This article belongs to the Special Issue Coronaviruses Pathogenesis, Immunity, and Antivirals (2nd Edition))
Show Figures

Figure 1

32 pages, 4595 KB  
Article
Integrative In Silico Analysis to Identify Functional and Structural Impacts of nsSNPs on Programmed Cell Death Protein 1 (PD-1) Protein and UTRs: Potential Biomarkers for Cancer Susceptibility
by Hakeemah Al-Nakhle, Retaj Al-Shahrani, Jawanah Al-Ahmadi, Wesal Al-Madani and Rufayda Al-Juhani
Genes 2025, 16(3), 307; https://doi.org/10.3390/genes16030307 - 4 Mar 2025
Viewed by 2164
Abstract
Background: Programmed cell death protein 1 (PD-1), encoded by the PDCD1 gene, is critical in immune checkpoint regulation and cancer immune evasion. Variants in PDCD1 may alter its function, impacting cancer susceptibility and disease progression. Objectives: This study evaluates the structural, functional, and [...] Read more.
Background: Programmed cell death protein 1 (PD-1), encoded by the PDCD1 gene, is critical in immune checkpoint regulation and cancer immune evasion. Variants in PDCD1 may alter its function, impacting cancer susceptibility and disease progression. Objectives: This study evaluates the structural, functional, and regulatory impacts of non-synonymous single-nucleotide polymorphisms (nsSNPs) in the PDCD1 gene, focusing on their pathogenic and oncogenic roles. Methods: Computational tools, including PredictSNP1.0, I-Mutant2.0, MUpro, HOPE, MutPred2, Cscape, Cscape-Somatic, GEPIA2, cBioPortal, and STRING, were used to analyze 695 nsSNPs in the PD1 protein. The analysis covered structural impacts, stability changes, regulatory effects, and oncogenic potential, focusing on conserved domains and protein–ligand interactions. Results: The analysis identified 84 deleterious variants, with 45 mapped to conserved regions like the Ig V-set domain essential for ligand-binding interactions. Stability analyses identified 78 destabilizing variants with significant protein instability (ΔΔG values). Ten nsSNPs were identified as potential cancer drivers. Expression profiling showed differential PDCD1 expression in tumor versus normal tissues, correlating with improved survival in skin melanoma but limited value in ovarian cancer. Regulatory SNPs disrupted miRNA-binding sites and transcriptional regulation, affecting PDCD1 expression. STRING analysis revealed key PD-1 protein partners within immune pathways, including PD-L1 and PD-L2. Conclusions: This study highlights the significance of PDCD1 nsSNPs as potential biomarkers for cancer susceptibility, advancing the understanding of PD-1 regulation. Experimental validation and multi-omics integration are crucial to refine these findings and enhance theraputic strategies. Full article
(This article belongs to the Special Issue Molecular Diagnostic and Prognostic Markers of Human Cancers)
Show Figures

Figure 1

21 pages, 5996 KB  
Article
Molecular Characteristics and Role of Buffalo SREBF2 in Triglyceride and Cholesterol Biosynthesis in Mammary Epithelial Cells
by Wenbin Dao, Hongyan Chen, Yina Ouyang, Lige Huang, Xinyang Fan and Yongwang Miao
Genes 2025, 16(2), 237; https://doi.org/10.3390/genes16020237 - 19 Feb 2025
Viewed by 1246
Abstract
Background/Objectives: Sterol regulatory element-binding transcription factor 2 (SREBF2) is a key transcription factor involved in regulating cholesterol homeostasis. However, its role in buffalo mammary gland lipid metabolism remains unclear. Methods: To address this, we isolated and characterized the SREBF2 gene from buffalo [...] Read more.
Background/Objectives: Sterol regulatory element-binding transcription factor 2 (SREBF2) is a key transcription factor involved in regulating cholesterol homeostasis. However, its role in buffalo mammary gland lipid metabolism remains unclear. Methods: To address this, we isolated and characterized the SREBF2 gene from buffalo mammary glands and performed an in-depth analysis of its molecular characteristics, tissue-specific expression, and functional roles in buffalo mammary epithelial cells (BuMECs). Additionally, we investigated the single nucleotide polymorphisms (SNPs) of SREBF2 in both river and swamp buffalo. Results: The coding sequence (CDS) of buffalo SREBF2 is 3327 bp long and encodes a protein of 1108 amino acid residues. Bioinformatics analysis revealed that the molecular characteristics of buffalo SREBF2 were highly similar across Bovidae species, with collinearity being observed among them. An expression profile analysis revealed that SREBF2 is expressed in all 11 tested tissues of buffalo, with its expression level in the mammary gland being higher during lactation than in the dry period. The knockdown of SREBF2 in BuMECs during lactation led to a significant reduction in the expression of genes involved in triglyceride (TAG) and cholesterol synthesis, including PI3K, AKT, mTOR, SREBF1, PPARG, INSIG1, ACACA, SCD, DGAT1, LPL, CD36, HMGCR, and SQLE. This knockdown led to a 23.53% and 94.56% reduction in TAG and cholesterol levels in BuMECs, respectively. In addition, a total of 22 SNPs were identified in both buffalo types, of which four non-synonymous substitutions (c.301G>C, c.304A>T, c.1240G>A, and c.2944G>A) were found exclusively in the SREBF2 CDS of swamp buffalo, and the assessment revealed that these substitutions had no impact on SREBF2 function. Conclusions: These findings emphasize the critical role of SREBF2 in regulating both triglyceride and cholesterol biosynthesis, providing valuable insights into its functions in buffalo mammary glands. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

16 pages, 9111 KB  
Article
Identification of the Highly Polymorphic Prion Protein Gene (PRNP) in Frogs (Rana dybowskii)
by Chang-Su Han, Sae-Young Won, Sang-Hun Park and Yong-Chan Kim
Animals 2025, 15(2), 220; https://doi.org/10.3390/ani15020220 - 15 Jan 2025
Viewed by 1659
Abstract
Prion diseases are fatal neurodegenerative diseases that can be transmitted by infectious protein particles, PrPScs, encoded by the endogenous prion protein gene (PRNP). The origin of prion seeds is unclear, especially in non-human hosts, and this identification is pivotal [...] Read more.
Prion diseases are fatal neurodegenerative diseases that can be transmitted by infectious protein particles, PrPScs, encoded by the endogenous prion protein gene (PRNP). The origin of prion seeds is unclear, especially in non-human hosts, and this identification is pivotal to preventing the spread of prion diseases from host animals. Recently, an abnormally high amyloid propensity in prion proteins (PrPs) was found in a frog, of which the genetic variations in the PRNP gene have not been investigated. In this study, genetic polymorphisms in the PRNP gene were investigated in 194 Dybowski’s frogs using polymerase chain reaction (PCR) and amplicon sequencing. We carried out in silico analyses to predict functional alterations according to non-synonymous single nucleotide polymorphisms (SNPs) using PolyPhen-2, PANTHER, SIFT, and MutPred2. We used ClustalW2 and MEGA X to compare frog PRNP and PrP sequences with those of prion-related animals. To evaluate the impact of the SNPs on protein aggregation propensity and 3D structure, we utilized AMYCO and ColabFold. We identified 34 novel genetic polymorphisms including 6 non-synonymous SNPs in the frog PRNP gene. The hydrogen bond length varied at codons 143 and 207 according to non-synonymous SNPs, even if the electrostatic potential was not changed. In silico analysis predicted S143N to increase the aggregation propensity, and W6L, C8Y, R211W, and L241F had damaging effects on frog PrPs. The PRNP and PrP sequences of frogs showed low homology with those of prion-related mammals. To the best of our knowledge, this study was the first to discover genetic polymorphisms in the PRNP gene in amphibians. Full article
(This article belongs to the Special Issue Prion Diseases in Animals)
Show Figures

Figure 1

20 pages, 2383 KB  
Article
Molecular and Biochemical Mechanisms of Scutellum Color Variation in Bactrocera dorsalis Adults (Diptera: Tephritidae)
by Guangli Wang, Weijun Li, Jiazhan Wu, Ye Xu, Zhaohuan Xu, Qingxiu Xie, Yugui Ge, Haiyan Yang and Xiaozhen Li
Insects 2025, 16(1), 76; https://doi.org/10.3390/insects16010076 - 14 Jan 2025
Viewed by 1265
Abstract
Bactrocera dorsalis (Hendel) is an invasive fruit and vegetable pest, infesting citrus, mango, carambola, etc. We observed that the posterior thoracic scutella of some B. dorsalis adults are yellow, some light yellow, and some white in China. Compared with the B. dorsalis races [...] Read more.
Bactrocera dorsalis (Hendel) is an invasive fruit and vegetable pest, infesting citrus, mango, carambola, etc. We observed that the posterior thoracic scutella of some B. dorsalis adults are yellow, some light yellow, and some white in China. Compared with the B. dorsalis races with a yellow scutellum (YS) and white scutellum (WS), the race with a light-yellow scutellum (LYS) is dominant in citrus and carambola orchards. To reveal genetic correlates among the three races, the genomes of 22 samples (8 with YS, 7 with LYS, and 7 with WS) were sequenced by high-throughput sequencing technology. Single-nucleotide polymorphism (SNP) annotation showed that there were 17,580 non-synonymous mutation sites located in the exonic region. Principal component analysis based on independent SNP data revealed that the SNPs with LYS were more similar to that with YS when compared with WS. Most genes associated with scutellum color variation were involved in three pathways: oxidative phosphorylation, porphyrin and chlorophyll metabolism, and terpenoid backbone biosynthesis. By comparing the sequences among the three races, we screened out 276 differential genes (DGs) in YS vs. WS, 185 DGs in LYS vs. WS, and 104 DGs in YS vs. LYS. Most genes determining color variation in B. dorsalis scutella were located on chromosomes 2–5. Biochemical analysis showed that β-carotene content in YS and LYS was significantly higher than that in WS at any stage of adult days 1, 10, and 20. No significant differences were observed in cytochrome P450 or melanin content in YS, LYS, or WS. Our study provides results on aspects of scutellum color variation in B. dorsalis adults, providing molecular and physiological information for revealing the adaptation and evolution of the B. dorsalis population. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

20 pages, 8973 KB  
Article
Integrated Transcriptomic and Metabolomic Analysis of G. hirsutum and G. barbadense Responses to Verticillium Wilt Infection
by Baoguang Xing, Pengtao Li, Yanfang Li, Bingkai Cui, Zhihao Sun, Yu Chen, Shaoliang Zhang, Qiankun Liu, Aiming Zhang, Liuan Hao, Xue Du, Xiaoyan Liu, Bei Wu, Renhai Peng and Shoulin Hu
Int. J. Mol. Sci. 2025, 26(1), 28; https://doi.org/10.3390/ijms26010028 - 24 Dec 2024
Cited by 2 | Viewed by 1052
Abstract
Verticillium wilt (VW) caused by Verticillium dahliae (Vd) is a devastating fungal cotton disease characterized by high pathogenicity, widespread distribution, and frequent variation. It leads to significant losses in both the yield and quality of cotton. Identifying key non-synonymous single nucleotide polymorphism (SNP) [...] Read more.
Verticillium wilt (VW) caused by Verticillium dahliae (Vd) is a devastating fungal cotton disease characterized by high pathogenicity, widespread distribution, and frequent variation. It leads to significant losses in both the yield and quality of cotton. Identifying key non-synonymous single nucleotide polymorphism (SNP) markers and crucial genes associated with VW resistance in Gossypium hirsutum and Gossypium barbadense, and subsequently breeding new disease-resistant varieties, are essential for VW management. Here, we sequenced the transcriptome and metabolome of roots of TM-1 (G. hirsutum) and Hai7124 (G. barbadense) after 0, 1, and 2 days of V991 inoculation. Transcriptome analysis identified a total of 72,752 genes, with 5814 differentially expressed genes (DEGs) determined through multiple group comparisons. KEGG enrichment analysis revealed that the key pathways enriched by DEGs obtained from both longitudinal and transverse comparisons contained the glutathione metabolism pathway. Metabolome analysis identified 995 metabolites, and 22 differentially accumulated metabolites (DAMs), which were correlated to pathways including glutathione metabolism, degradation of valine, leucine, and isoleucine, and biosynthesis of terpenoids, alkaloids, pyridine, and piperidine. The conjoint analysis of transcriptomic and metabolomic sequencing revealed DAMs and DEGs associated with the glutathione metabolism pathway, and the key candidate gene GH_D11G2329 (glutathione S-transferase, GSTF8) potentially associated with cotton response to VW infection was selected. These findings establish a basis for investigating the mechanisms underlying the cotton plant’s resistance to VW. Full article
(This article belongs to the Special Issue Genetic Engineering of Plants for Stress Tolerance)
Show Figures

Figure 1

13 pages, 7508 KB  
Article
Towards the Albino Mutant Gene in Malus × Domestica Borkh.
by Guodong Zhao, Yang Li, Linguang Jia, Dongmei Chen, Chaohong Zhang, Xinsheng Zhang, Fengqiu Yang and Tongsheng Zhao
Plants 2024, 13(23), 3448; https://doi.org/10.3390/plants13233448 - 9 Dec 2024
Viewed by 1051
Abstract
Albino mutation is among the most common phenomena that often causes a water imbalance and disturbs physiological functions in higher species of trees. Albinism frequently occurs in hybridized apples, but almost all seedlings die shortly after germination. In this study, a spontaneous albino [...] Read more.
Albino mutation is among the most common phenomena that often causes a water imbalance and disturbs physiological functions in higher species of trees. Albinism frequently occurs in hybridized apples, but almost all seedlings die shortly after germination. In this study, a spontaneous albino mutant on Fuji apple trees was obtained. After bud grafting, new albino shoots with greenish-white leaves grew, although they were slender, small, and died easily. Resequencing analysis indicated that a total of 49.37 Gbp clean data of the albino mutant samples was obtained; its Q30 reached 91.43%, the average rate mapped was 93.69%, and genome coverage was 96.47% (at least one base cover). Comparisons of the sequences for the albino mutants revealed 4,817,412 single-nucleotide polymorphisms (SNPs), 721,688 insertion/deletion markers (InDels), and 43,072 structural variations (SVs). The genes with non-synonymous SNPs, InDels, and SVs in CDS were compared with KEGG, GO, COG, NR, and SwissProt databases, and a total of 5700 variant genes were identified. A total of 1377 mutant genes had the GO annotation information. Among these, 1520 mutant genes had the pathway annotation and took part in 123 pathways. A total of 1935 variant genes were functionally classified into 25 COG categories. Further research on these variants could help understand the molecular regulatory mechanism of the apple albino mutant. Similarly, variations in the homologous MdAPG1 (Albino or pale-green mutant 1) gene, which was located on Chromosome 11 and belonged to the S-adenosyl-L-methionine-dependent methyltransferases superfamily, may have led to the generation of this apple albino mutant. Full article
Show Figures

Figure 1

16 pages, 2108 KB  
Article
First Report of Polymorphisms and Genetic Characteristics of Prion-like Protein Gene (PRND) in Cats
by Min-Ju Jeong, Yong-Chan Kim and Byung-Hoon Jeong
Animals 2024, 14(23), 3438; https://doi.org/10.3390/ani14233438 - 27 Nov 2024
Cited by 1 | Viewed by 1036
Abstract
Prion diseases are fatal neurodegenerative disorders caused by the misfolding of the normal cellular prion protein (PrPC) into its infectious isoform (PrPSc). Although prion diseases in humans, sheep, goats, and cattle have been extensively studied, feline spongiform encephalopathy (FSE) [...] Read more.
Prion diseases are fatal neurodegenerative disorders caused by the misfolding of the normal cellular prion protein (PrPC) into its infectious isoform (PrPSc). Although prion diseases in humans, sheep, goats, and cattle have been extensively studied, feline spongiform encephalopathy (FSE) remains poorly understood. Genetic factors, particularly polymorphisms in the prion protein gene (PRNP) and prion-like protein gene (PRND), have been linked to prion disease susceptibility in various species. However, no studies have yet investigated the PRND gene in cats with respect to prion diseases. Therefore, we investigated polymorphisms in the feline PRND gene and analyzed their genetic characteristics. We sequenced the coding region of the PRND gene using samples from 210 domestic cats and determined the genotype and allele frequencies of PRND polymorphisms. We identified thirteen novel single nucleotide polymorphisms (SNPs), including six non-synonymous variants and one insertion/deletion (InDel) in the feline PRND gene. Four of the non-synonymous SNPs were predicted to have deleterious effects on the Doppel protein’s structure and function. Notably, the SNP c.97A>G (I33V) showed potential structural clashes, and the others formed additional hydrogen bonds. The LD analysis revealed strong genetic associations between the PRND SNPs and the PRNP InDel, suggesting linkage between these loci in cats. This study identifies novel PRND polymorphisms in domestic cats and provides new insights into the genetic factors underlying feline susceptibility to prion diseases. The strong genetic linkage between PRND and PRNP polymorphisms, coupled with predictions of detrimental effects on Doppel protein structure, suggests that PRND gene variants could influence prion disease progression in cats. These findings provide a foundational framework for future studies on the functional implications of PRND polymorphisms in FSE. To the best of our knowledge, this study is the first report on the genetic characteristics of PRND polymorphisms in cats. Full article
(This article belongs to the Special Issue Molecular Genomics and Genetics in Animal Prion Diseases)
Show Figures

Figure 1

Back to TopTop