Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (19,207)

Search Parameters:
Keywords = novel products

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 1664 KB  
Article
Quantized Nuclear Recoil in the Search for Sterile Neutrinos in Tritium Beta Decay with PTOLEMY
by Wonyong Chung, Mark Farino, Andi Tan, Christopher G. Tully and Shiran Zhang
Universe 2025, 11(9), 297; https://doi.org/10.3390/universe11090297 (registering DOI) - 2 Sep 2025
Abstract
The search for keV-scale sterile neutrinos in tritium beta decay is made possible through the theoretically allowed small admixture of electron flavor in right-handed, singlet, massive neutrino states. A distinctive feature of keV-scale sterile-neutrino–induced threshold distortions in the tritium beta spectrum is the [...] Read more.
The search for keV-scale sterile neutrinos in tritium beta decay is made possible through the theoretically allowed small admixture of electron flavor in right-handed, singlet, massive neutrino states. A distinctive feature of keV-scale sterile-neutrino–induced threshold distortions in the tritium beta spectrum is the presence of quantized nuclear-recoil effects, as predicted for atomic tritium bound to two-dimension materials such as graphene. The sensitivities to the sterile neutrino mass and electron-flavor mixing are considered in the context of the PTOLEMY detector simulation with tritiated graphene substrates. The ability to scan the entire tritium energy spectrum with a narrow energy window, low backgrounds, and high-resolution differential energy measurements provides the opportunity to pinpoint the quantized nuclear-recoil effects. providing an additional tool for identifying the kinematics of the production of sterile neutrinos. Background suppression is achieved by transversely accelerating electrons into a high magnetic field, where semi-relativistic electron tagging can be performed with cyclotron resonance emission RF antennas followed by deceleration through the PTOLEMY filter into a high-resolution differential energy detector operating in a zero-magnetic-field region. The PTOLEMY-based approach to keV-scale searches for sterile neutrinos involves a novel precision apparatus utilizing two-dimensional materials to yield high-resolution, sub-eV mass determination for electron-flavor mixing fractions of |Ue4|2105 and smaller. Full article
Show Figures

Figure 1

20 pages, 7580 KB  
Article
Peroxymonosulfate Activation by Sludge-Derived Biochar via One-Step Pyrolysis: Pollutant Degradation Performance and Mechanism
by Yi Wang, Liqiang Li, Hao Zhou and Jingjing Zhan
Water 2025, 17(17), 2588; https://doi.org/10.3390/w17172588 - 1 Sep 2025
Abstract
Municipal wastewater treatment relies primarily on biological methods, yet effective disposal of residual sludge remains a major challenge. Converting sludge into biochar via oxygen-limited pyrolysis presents a novel approach for waste resource recovery. This study prepared sludge-based biochar (SBC) through one-step pyrolysis of [...] Read more.
Municipal wastewater treatment relies primarily on biological methods, yet effective disposal of residual sludge remains a major challenge. Converting sludge into biochar via oxygen-limited pyrolysis presents a novel approach for waste resource recovery. This study prepared sludge-based biochar (SBC) through one-step pyrolysis of sewage sludge and applied it to activate peroxymonosulfate (PMS) for degrading diverse contaminants. Characterization (SEM, XPS, FTIR) revealed abundant pore structures and diverse surface functional groups on SBC. Using Acid Orange 7 (AO7) as the target pollutant, SBC effectively degraded AO7 across pH 3.0–9.0 and catalyst dosages (0.2–2.0 g·L−1), achieving a maximum observed rate constant (kobs) of 0.3108 min–1. Salinity and common anions showed negligible inhibition on AO7 degradation. SBC maintained 95% degradation efficiency after four reuse cycles and effectively degraded sulfamethoxazole, sulfamethazine, and rhodamine B besides AO7. Mechanistic studies (chemical quenching and ESR) identified singlet oxygen (1O2) and superoxide radicals (O2•- ) as the dominant reactive oxygen species for AO7 degradation. XPS indicated a 39% reduction in surface carbonyl group content after cycling, contributing to activity decline. LC-MS identified five intermediates, suggesting a potential degradation pathway driven by SBC/PMS system. ECOSAR model predictions indicated significantly reduced biotoxicity of the degradation products compared to AO7. This work provides a strategy for preparing sludge-derived catalysts for PMS activation and pollutant degradation, enabling effective solid waste resource utilization. Full article
18 pages, 9643 KB  
Article
Study on the Performance and Mechanism of Separating La from Light Rare Earth Elements Using Single-Column Method with a New Type of Silica-Based Phosphate-Functionalized Resin
by Ming Huang, Shunyan Ning, Juan Liu, Lifeng Chen, Mohammed F. Hamza and Yuezhou Wei
Inorganics 2025, 13(9), 296; https://doi.org/10.3390/inorganics13090296 - 1 Sep 2025
Abstract
This work develops a novel phosphate-functionalized extraction resin (HEHEHP + Cyanex272)/SiO2-P via the vacuum impregnation method for efficient separation of light rare earth element impurities from lanthanum (La3+) in nitric medium through synergistic extraction. Batch experiments have demonstrated superior [...] Read more.
This work develops a novel phosphate-functionalized extraction resin (HEHEHP + Cyanex272)/SiO2-P via the vacuum impregnation method for efficient separation of light rare earth element impurities from lanthanum (La3+) in nitric medium through synergistic extraction. Batch experiments have demonstrated superior adsorption selectivity toward impurity ions over La3+ in a pH 4 nitric acid solution. Column studies confirmed exceptional performance under ambient conditions, achieving a lanthanum treatment capacity of 120.6 mg/g and over 98% impurity removal, which surpasses most reported values. Notably, this purification process enables direct production of purified La3+ solutions through a single-column system without desorption, significantly enhancing efficiency and reducing costs. Mechanistic insights revealed combined ion exchange and coordination interactions between metal ions and P-OH/P=O groups, corroborated by advanced characterization and density functional theory calculations. These findings indicate a higher binding affinity of light rare earth compared with La3+. This strategy provides a scalable approach for ultra-high-purity lanthanum compound production in advanced optical and electronic applications. Full article
Show Figures

Graphical abstract

17 pages, 495 KB  
Conference Report
Innovative Solutions for a Sustainable Future: Main Topics of Selected Papers in the 19th SDEWES Conference in 2024
by Wenxiao Chu, Maria Vicidomini, Francesco Calise, Neven Duić, Poul Alberg Østergaard and Qiuwang Wang
Energies 2025, 18(17), 4647; https://doi.org/10.3390/en18174647 (registering DOI) - 1 Sep 2025
Abstract
From September 8th to 12th, 2024, the 19th SDEWES Conference on Sustainable Development of Energy, Water, and Environment Systems was successfully held in Rome. This event drew 700 researchers, scientists, and practitioners from 62 nations across six continents, with 570 participating in person [...] Read more.
From September 8th to 12th, 2024, the 19th SDEWES Conference on Sustainable Development of Energy, Water, and Environment Systems was successfully held in Rome. This event drew 700 researchers, scientists, and practitioners from 62 nations across six continents, with 570 participating in person and another 130 joining virtually. A total of seven papers were selected to be published in Energies, and the corresponding literature published in the most recent year is here reviewed. The main topics of the selected papers regard the adoption of district heating and cooling and their integration with renewable energies (such as geothermal or solar, the use of innovative bifacial PV panels, the use of biomass energy for the bio-synthetic natural gas production, the short-term electric load forecasting for industrial applications, and others. The reviewed papers show that several energy measures can be addressed to reach the decarbonization goals of 2050 and that the scientific community continues to find novel, sustainable, and efficient methods for the reduction in energy consumption and related CO2 emissions. Full article
Show Figures

Figure 1

40 pages, 6670 KB  
Review
Development Status of Production Purification and Casting and Rolling Technology of Electrical Aluminum Rod
by Xiaoyu Liu, Huixin Jin and Jiajun Jiang
Metals 2025, 15(9), 981; https://doi.org/10.3390/met15090981 (registering DOI) - 1 Sep 2025
Abstract
As the demand for lightweight and high-performance conductive materials grows in power transmission systems, aluminum alloy rods have emerged as a cost-effective and scalable alternative to copper conductors. This review systematically examines the development status and technological progress in the purification and casting–rolling [...] Read more.
As the demand for lightweight and high-performance conductive materials grows in power transmission systems, aluminum alloy rods have emerged as a cost-effective and scalable alternative to copper conductors. This review systematically examines the development status and technological progress in the purification and casting–rolling processes used in the production of Electrical Round Aluminum Rods (ERARs). It explores current challenges in improving electrical conductivity and mechanical strength while addressing issues such as hydrogen and oxide inclusion removal, grain refinement, and impurity segregation. Key purification techniques—including flux refining, gas treatment, filtration, and rotary injection—are compared in terms of performance, cost, and environmental impact. The paper also analyzes different casting–rolling methods, including continuous casting and rolling, twin-roll casting, and extrusion processes, with attention to process optimization and equipment design. Furthermore, emerging applications of artificial intelligence (AI) in predictive modeling, defect detection, and process parameter optimization are highlighted, offering a novel perspective on intelligent and sustainable ERAR production. This paper aims to provide insights for facilitating the industrial-scale production and performance enhancement of ERAR materials. Full article
15 pages, 4009 KB  
Article
Towards the Potential of Using Downstream-Separated Solvents as the Pulping Liquor of Upstream Lignocellulose Fractionation for Enhanced Acetone–Butanol–Ethanol Production
by Changsheng Su, Yunxing Gao, Gege Zhang, Hao Wen, Rui Chen, Jiajing Wang, Yujie Li, Mingyuan Sun, Jikang Cao and Di Cai
Fermentation 2025, 11(9), 514; https://doi.org/10.3390/fermentation11090514 (registering DOI) - 1 Sep 2025
Abstract
Developing efficient, clean, and sustainable lignocellulose pretreatment technologies is essential for second-generation biofuel production. In this study, we attempted to use downstream-separated binary acetone-water, n-butanol-water, and ethanol-water solutions as the initial liquor for upstream organosolv pulping, in order to achieve the efficient [...] Read more.
Developing efficient, clean, and sustainable lignocellulose pretreatment technologies is essential for second-generation biofuel production. In this study, we attempted to use downstream-separated binary acetone-water, n-butanol-water, and ethanol-water solutions as the initial liquor for upstream organosolv pulping, in order to achieve the efficient and economic closed-circuit clean fractionation of the lignocelluloses for biological acetone–butanol–ethanol (ABE) production. Parameters, including concentration and temperature of the organosolv pulping, were optimized systematically. Results indicated that the 50 wt% ethanol and 30 wt% acetone aqueous solutions and pulping at 200 °C for 1 h exhibited better corn stover fractionation performances with higher fermentable sugar production. The total monosaccharide recovery (including glucose and xylose) was 50.92% and 50.89%, respectively, in subsequent enzymatic saccharification. While pulping corn stover using n-butanol solution as initial liquor showed higher delignification 86.16% (50 wt% of n-butanol and 200 °C for 1 h), the hydrolysate obtained by the organosolv pulps always exhibited good fermentability. A maximized 15.0 g/L of ABE with 0.36 g/g of yield was obtained in Ethanol-200 °C-50% group, corresponding to 112 g of ABE production from 1 kg of raw corn stover. As expected, the lignin specimens fractionated by closed-circuit organosolv pulping exhibited narrow molecule weight distribution, high purity, and high preservation of active groups, which supports further valorization. This novel strategy tightly bridges the upstream and downstream processes of second-generation ABE production, providing a new route for ‘energy-matter intensive’ and environmentally friendly lignocelluloses biorefineries. Full article
(This article belongs to the Special Issue Bioprocesses for Biomass Valorization in Biorefineries)
Show Figures

Figure 1

20 pages, 1705 KB  
Article
From Blood Count Parameters to ROP Risk: Early Hematological Predictors in Preterm Infants
by Laura Bujoreanu Bezman, Carmen Tiutiuca, Florin Ciprian Bujoreanu, Nicoleta Cârneciu, Mihaela Crăescu, Florentin Dimofte, Elena Niculeț and Aurel Nechita
Medicina 2025, 61(9), 1581; https://doi.org/10.3390/medicina61091581 - 1 Sep 2025
Abstract
Background and Objectives: Retinopathy of prematurity (ROP) persists as a major global cause of preventable childhood blindness. While early diagnosis and timely intervention can significantly mitigate visual loss, research is increasingly focused on identifying novel prognostic factors, with hematological markers emerging as [...] Read more.
Background and Objectives: Retinopathy of prematurity (ROP) persists as a major global cause of preventable childhood blindness. While early diagnosis and timely intervention can significantly mitigate visual loss, research is increasingly focused on identifying novel prognostic factors, with hematological markers emerging as a promising avenue for refining ROP risk prediction. This study aimed to assess the association of hemoglobin levels, red blood cell count, platelet count, and blood transfusions with the risk of developing ROP. Materials and Methods: We conducted a retrospective study involving 140 preterm infants (gestational age ≤ 34 weeks) admitted to a neonatal intensive care unit between 2021 and 2024. Hematological parameters were monitored sequentially during the first 28 days of life, and ROP screening was performed in accordance with international guidelines. Statistical analyses evaluated associations between hematological markers and the risk of developing ROP. Results: Anemia prevalence was significantly higher in infants who developed ROP (83.1%) compared with those who did not (60.3%), conferring an increased risk of ROP (OR = 3.239; p = 0.001). Red blood cell transfusions were linked to a higher likelihood of developing ROP (OR = 3.088; p = 0.001), while platelet transfusions showed a similar association (OR = 2.807; p = 0.027). Platelet counts were significantly lower on days 7, 14, and 21 in the ROP group, and thrombocytopenia was associated with an elevated risk of disease (OR = 3.542; p = 0.001). Conclusions: Early hematological imbalances (anemia, thrombocytopenia) and the requirement for blood product transfusions are significantly associated with an increased risk of ROP. Integrating the monitoring of these specific parameters into existing ROP screening protocols could enhance early identification of vulnerable preterm infants, enabling more targeted surveillance and potential preventative strategies. Full article
(This article belongs to the Special Issue Clinical Ophthalmology: Current Status and Future Challenges)
Show Figures

Figure 1

18 pages, 4331 KB  
Review
Research Progress on Laser Additive Manufacturing of Oxide Dispersion-Strengthened Alloys—A Review
by Qian Zheng, Yan Yin, Chao Lu, Xiaoli Cui, Yutong Gao, Heng Zhu, Zhong Li, Junwei Shi, Wenqing Shi and Di Tie
Materials 2025, 18(17), 4094; https://doi.org/10.3390/ma18174094 (registering DOI) - 1 Sep 2025
Abstract
Oxide dispersion-strengthened (ODS) alloys are regarded as one of the most promising materials for Generation IV nuclear fission systems, owing to their exceptional attributes such as high strength, corrosion resistance, and irradiation tolerance. The traditional methods for fabricating oxide dispersion-strengthened (ODS) alloys are [...] Read more.
Oxide dispersion-strengthened (ODS) alloys are regarded as one of the most promising materials for Generation IV nuclear fission systems, owing to their exceptional attributes such as high strength, corrosion resistance, and irradiation tolerance. The traditional methods for fabricating oxide dispersion-strengthened (ODS) alloys are both time-consuming and costly. In contrast, additive manufacturing (AM) technologies enable precise control over material composition and geometric structure at the nanoscale, thereby enhancing the mechanical properties of components while reducing their weight. This novel approach offers significant advantages over conventional techniques, including reduced production costs, improved manufacturing efficiency, and more uniform distribution of oxide nanoparticles. This review begins by summarizing the state of the art in Fe-based and Ni-based ODS alloys fabricated via traditional routes. Subsequently, it examines recent progress in the AM of ODS alloys, including Fe-based, Ni-based, high-entropy alloys, and medium-entropy alloys, using powder bed fusion (PBF), directed energy deposition (DED), and wire arc additive manufacturing (WAAM). The microstructural characteristics, including oxide particle distribution, grain morphology, and alloy properties, are discussed in the context of different AM processes. Finally, critical challenges and future research directions for laser-based AM of ODS alloys are highlighted. Full article
Show Figures

Figure 1

12 pages, 1211 KB  
Article
Dynamic Thermal Voltage Adaptation for LED Branches in Automotive Applications
by Jose R. Martínez-Pérez, Miguel A. Carvajal, Juan J. Santaella, Pablo Escobedo, Nuria López-Ruiz and Antonio Martínez-Olmos
Sensors 2025, 25(17), 5392; https://doi.org/10.3390/s25175392 (registering DOI) - 1 Sep 2025
Abstract
This paper presents a novel technique for thermally compensating the power output of a DC-DC converter that supplies automotive lighting/signaling systems with multiple LED branches. The method ensures stable bias voltage for the current drivers controlling each branch, maintaining consistent power consumption across [...] Read more.
This paper presents a novel technique for thermally compensating the power output of a DC-DC converter that supplies automotive lighting/signaling systems with multiple LED branches. The method ensures stable bias voltage for the current drivers controlling each branch, maintaining consistent power consumption across a wide temperature range. This issue has been minimally addressed in existing literature, providing few solutions which are too complex for industrial production. The approach proposed is simple and involves incorporating a temperature-sensitive thermistor into the DC-DC converter’s control loop, enabling the output voltage to adjust with ambient temperature. Different control loop configurations are explored, demonstrating that a simple resistor-thermistor network can approximate the desired voltage response under diverse thermal conditions. The power dissipated in the current drivers is kept within a controlled range, improving system efficiency and reducing heat loss. Additionally, it minimizes the need for additional current drivers, lowering the cost of these systems, improving battery life of the DC-DC converter, and decreasing CO2 emissions. For the case studies analyzed, an optimized configuration with appropriate resistor values and thermistor models achieves a 75% relative reduction in power dissipation by the current driver and a 50% improvement in the relative efficiency of the LED branch system. Full article
Show Figures

Figure 1

28 pages, 4471 KB  
Article
Utilizing Response Surface Methodology for Design Optimization of Stone Mastic Asphalt Containing Palm Oil Clinker Aggregates
by Ali Mohammed Babalghaith, Abdalrhman Milad, Waqas Rafiq, Shaban Shahzad, Suhana Koting, Ahmed Suliman B. Ali and Abdualmtalab Abdualaziz Ali
Eng 2025, 6(9), 213; https://doi.org/10.3390/eng6090213 - 1 Sep 2025
Abstract
This study introduces a novel approach to enhance the sustainability of road pavement construction by utilizing palm oil clinker (POC), an industrial waste product, as a replacement for fine aggregates (passing 4.75 mm) in stone mastic asphalt (SMA) mixtures. Departing from conventional practices, [...] Read more.
This study introduces a novel approach to enhance the sustainability of road pavement construction by utilizing palm oil clinker (POC), an industrial waste product, as a replacement for fine aggregates (passing 4.75 mm) in stone mastic asphalt (SMA) mixtures. Departing from conventional practices, this research comprehensively evaluates the feasibility of using POC at varying replacement levels (0% to 100%) across a range of binder contents (5.0% to 7.0%). A significant contribution of this work is the application of Response Surface Methodology (RSM) to optimize the proportions of POC and binder content (BC), achieving target Marshall and volumetric properties for superior pavement performance. The results demonstrate that POC can effectively substitute fine aggregates in SMA mixtures, meeting all requirements for Marshall stability, flow, stiffness, and volumetric properties, even at a 100% replacement rate. Statistical analysis using RSM confirmed the model’s validity, exhibiting a high R-squared value (>0.80), significant p-values, and an adequate precision exceeding 4. Optimization analysis revealed that a 60% POC content with a 6% BC yields the most desirable combination for achieving optimal SMA mixture characteristics. Further validation through experimental testing showed a strong correlation with the theoretical RSM predictions, with an error margin below 5%. This research underscores the potential of POC as a sustainable alternative to traditional aggregates, paving the way for more environmentally friendly and cost-effective road construction practices while simultaneously addressing waste management challenges in the palm oil industry. Full article
(This article belongs to the Section Chemical, Civil and Environmental Engineering)
Show Figures

Figure 1

24 pages, 2945 KB  
Article
Comprehensive Investigation of Qatar Soil Bacterial Diversity and Its Correlation with Soil Nutrients
by Muhammad Riaz Ejaz, Kareem Badr, Farzin Shabani, Zahoor Ul Hassan, Nabil Zouari, Roda Al-Thani and Samir Jaoua
Microbiol. Res. 2025, 16(9), 196; https://doi.org/10.3390/microbiolres16090196 - 1 Sep 2025
Abstract
Arid and semi-arid regions show distinctive bacterial groups important for the sustainability of ecosystems and soil health. This study aims to investigate how environmental factors across five Qatari soils influence the taxonomic composition of bacterial communities and their predicted functional roles using 16S [...] Read more.
Arid and semi-arid regions show distinctive bacterial groups important for the sustainability of ecosystems and soil health. This study aims to investigate how environmental factors across five Qatari soils influence the taxonomic composition of bacterial communities and their predicted functional roles using 16S rRNA amplicon sequencing and soil chemical analysis. Soil samples from five different locations in Qatar (three coastal and two inland) identified 26 bacterial phyla, which were dominated by Actinomycetota (35–43%), Pseudomonadota (12–16%), and Acidobacteriota (4–13%). Species-level analysis discovered taxa such as Rubrobacter tropicus, Longimicrobium terrae, Gaiella occulta, Kallotenue papyrolyticum, and Sphingomonas jaspsi, suggesting the presence of possible novel microbial families. The functional predictions showed development in pathways related to amino acid metabolism, carbohydrate metabolism, and stress tolerance. In addition, heavy-metal-related taxa, which are known to harbor genes for metal resistance mechanisms including efflux pumps, metal chelation, and oxidative stress tolerance. The presence of Streptomyces, Pseudomonas, and Bacillus highlights their roles in stress tolerance, biodegradation, and metabolite production. These findings improve the understanding of microbial roles in dry soils, especially in nutrient cycling and ecosystem resilience. They highlight the importance of local bacteria for sustaining desert soil functions. Further research is needed to validate these relationships, using metabolomic approaches while monitoring microbial-community-changing aspects under fluctuating environmental conditions. Full article
Show Figures

Graphical abstract

24 pages, 2059 KB  
Review
Review and Prospect of Integration Compatibility in Digital Vehicles: Multi-Dimensional Challenges and Industry Practice
by Wang Zhang, Meng Shi, Xinglong Liu and Linjie Ren
Machines 2025, 13(9), 786; https://doi.org/10.3390/machines13090786 (registering DOI) - 1 Sep 2025
Abstract
Integration compatibility has emerged as a prominent challenge in the development of digital vehicles. This paper provides a comprehensive review of previous research on automotive integration compatibility, categorizing the relevant challenges into three main categories: technical, organizational, and methodological. Furthermore, the paper distinguishes [...] Read more.
Integration compatibility has emerged as a prominent challenge in the development of digital vehicles. This paper provides a comprehensive review of previous research on automotive integration compatibility, categorizing the relevant challenges into three main categories: technical, organizational, and methodological. Furthermore, the paper distinguishes between challenges encountered during the initial integration phase and those encountered during continuous integration according to the nodes of the start of production. By engaging in discussions with internal experts from an original equipment manufacturer (OEM) and other related enterprises regarding these challenges, the paper identifies the most pressing issues that require novel solutions, which are the current practical pain points of OEMs, thereby providing directions for future research. Full article
(This article belongs to the Section Vehicle Engineering)
Show Figures

Figure 1

18 pages, 4207 KB  
Article
Development of Aggregate Skeleton–Cementitious Paste-Coating Pervious Concrete
by Weixiong Zeng, Jiajian Chen and Tianxiang Chen
Coatings 2025, 15(9), 1013; https://doi.org/10.3390/coatings15091013 - 1 Sep 2025
Abstract
To avoid cumbersome casting procedures in the production of pervious concrete, a new type of casting method through coating cementitious paste onto the preplaced aggregate skeleton is developed. To optimize the key performances and reveal their governing mechanism, aggregate skeleton–cementitious paste-coating pervious concrete [...] Read more.
To avoid cumbersome casting procedures in the production of pervious concrete, a new type of casting method through coating cementitious paste onto the preplaced aggregate skeleton is developed. To optimize the key performances and reveal their governing mechanism, aggregate skeleton–cementitious paste-coating pervious concrete (ACPC) mixes with different porosity, water/cement (w/c) ratio and sand ratio were produced and had their permeability and strength tested. This study demonstrated that it is successful to produce pervious concrete by the novel casting method. Vibration of aggregate skeleton and high w/c ratio should not be adopted to avoid the formation of a layer of hardened paste at the bottom of the mix to block the vertical passage of water. In contrast to conventional concrete, a higher w/c ratio (from 0.23 to 0.34) generally resulted in a higher strength (from 3.77 to 8.71 MPa) of ACPC. A small amount of sand increased both the permeability and strength through the balling bearing effect and filling effect, respectively. Both the optimum sand ratio to achieve the highest vertical permeability and strength were found to be 0.05, which offered this porous structure concurrently satisfactory permeability (permeability coefficient higher than grade K2) and acceptable strength (compressive strength higher than 5 MPa). Key influencing factors of permeability and strength of ACPC were analyzed. This study can advance the technology of casting concrete and the production of pervious concrete as road pavement in the construction of “sponge city”. Full article
(This article belongs to the Special Issue Novel Cleaner Materials for Pavements)
Show Figures

Graphical abstract

17 pages, 1043 KB  
Article
Empirical Evidence on the Impact of Technological Innovation and Human Capital on Improving and Enhancing Environmental Sustainability
by Sinan Erdogan and Guray Akalin
Sustainability 2025, 17(17), 7840; https://doi.org/10.3390/su17177840 (registering DOI) - 31 Aug 2025
Abstract
Conservation of the natural balance to hinder global warming is a contemporary task for policymakers. To this end, several policy tools have been proposed. Technological innovation, which increases productivity and aids in the development of eco-friendly technologies, and human capital, which fosters environmental [...] Read more.
Conservation of the natural balance to hinder global warming is a contemporary task for policymakers. To this end, several policy tools have been proposed. Technological innovation, which increases productivity and aids in the development of eco-friendly technologies, and human capital, which fosters environmental awareness and provides knowledge of technology use, are among the policy options. Therefore, the primary aim of this study is to test whether human capital accumulation and technological innovation improve environmental sustainability in emerging countries by utilizing the recently proposed novel Cross-sectionally Augmented Autoregressive Distributed Lag method in ten of N-11 countries from 1996 to 2019. The empirical results suggest that economic development and human capital negatively impact environmental sustainability, proxied by the load capacity factor. In contrast, renewable energy has a positive impact on sustainable development. Lastly, empirical estimations using several technological innovation indicators uncover that technological innovation may have no systematic impact on the load capacity factor. Therefore, technological advances and human capital may not create the desired impact on environmental quality. Full article
(This article belongs to the Section Air, Climate Change and Sustainability)
Show Figures

Figure 1

26 pages, 4380 KB  
Review
Novel Fermentation Techniques for Improving Food Functionality: An Overview
by Precious O. Ajanaku, Ayoyinka O. Olojede, Christiana O. Ajanaku, Godshelp O. Egharevba, Faith O. Agaja, Chikaodi B. Joseph and Remilekun M. Thomas
Fermentation 2025, 11(9), 509; https://doi.org/10.3390/fermentation11090509 (registering DOI) - 31 Aug 2025
Abstract
Fermentation has been a crucial process in the preparation of foods and beverages for consumption, especially for the purpose of adding value to nutrients and bioactive compounds; however, conventional approaches have certain drawbacks such as not being able to fulfill the requirements of [...] Read more.
Fermentation has been a crucial process in the preparation of foods and beverages for consumption, especially for the purpose of adding value to nutrients and bioactive compounds; however, conventional approaches have certain drawbacks such as not being able to fulfill the requirements of the ever-increasing global population as well as the sustainability goals. This review aims to evaluate how the application of advanced fermentation techniques can transform the food production system to be more effective, nutritious, and environmentally friendly. The techniques discussed include metabolic engineering, synthetic biology, AI-driven fermentation, quorum sensing regulation, and high-pressure processing, with an emphasis on their ability to enhance microbial activity with a view to enhancing product output. Authentic, wide-coverage scientific research search engines were used such as Google Scholar, Research Gate, Science Direct, PubMed, and Frontiers. The literature search was carried out for reports, articles, as well as papers in peer-reviewed journals from 2010 to 2024. A statistical analysis with a graphical representation of publication trends on the main topics was conducted using PubMed data from 2010 to 2024. In this present review, 112 references were used to investigate novel fermentation technologies that fortify the end food products with nutritional and functional value. Images that illustrate the processes involved in novel fermentation technologies were designed using Adobe Photoshop. The findings indicate that, although there are issues regarding costs, the scalability of the process, and the acceptability of the products by the consumers, the technologies provide a way of developing healthy foods and products produced using sustainable systems. This paper thus calls for more research and development as well as for the establishment of a legal frameworks to allow for the integration of these technologies into the food production system and make the food industry future-proof. Full article
(This article belongs to the Special Issue Feature Review Papers in Fermentation for Food and Beverages 2024)
Show Figures

Graphical abstract

Back to TopTop