Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,675)

Search Parameters:
Keywords = nuclear receptor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2265 KB  
Article
Krill Oil Mitigates Cisplatin-Induced Ovarian Toxicity via Attenuation of Oxidative Stress and Inflammatory Pathways
by Erson Aksu and Oytun Erbas
Curr. Issues Mol. Biol. 2025, 47(9), 708; https://doi.org/10.3390/cimb47090708 (registering DOI) - 1 Sep 2025
Abstract
Cisplatin remains a cornerstone chemotherapeutic agent; however, its off-target gonadotoxicity poses a significant risk for premature ovarian failure (POF) and infertility in young women. Strategies to preserve ovarian function during chemotherapy are critically needed. To investigate the protective effects of krill oil supplementation [...] Read more.
Cisplatin remains a cornerstone chemotherapeutic agent; however, its off-target gonadotoxicity poses a significant risk for premature ovarian failure (POF) and infertility in young women. Strategies to preserve ovarian function during chemotherapy are critically needed. To investigate the protective effects of krill oil supplementation against cisplatin-induced ovarian damage in a rat model, with a focus on oxidative stress, inflammation, follicular dynamics, and stromal fibrosis. Twenty-one adult female Wistar albino rats were randomized into three groups: control, cisplatin-treated, and cisplatin + krill oil-treated. Ovarian toxicity was induced via intraperitoneal injection of cisplatin (2.5 mg/kg, twice weekly for four weeks). Krill oil (4 mL/kg/day) was administered orally during the same period. Ovarian histopathology, follicle counts (primordial, primary, secondary, tertiary), stromal fibrosis, and biochemical markers, including plasma anti-Müllerian hormone (AMH), malondialdehyde (MDA), tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), and ovarian levels of nuclear factor erythroid 2-related factor 2 (Nrf2), Toll-like receptor 4 (TLR4), TNF-α, NOD-like receptor family pyrin domain containing 3 (NLRP3), and IL-1β were evaluated. Cisplatin significantly reduced primordial, primary, secondary, and tertiary follicle counts while increasing stromal fibrosis (p < 0.001). Krill oil co-treatment notably ameliorated follicular depletion—improving follicle counts by 38.16%, 54.74%, 62.5%, 40.43%, respectively—and reduced fibrosis (p = 0.017). Biochemically, cisplatin decreased AMH levels and Nrf2 expression while elevating MDA, TNF-α, TLR4, NLRP3, and IL-1β levels (p < 0.001). Krill oil supplementation restored AMH (p = 0.002) and Nrf2 (p = 0.003) levels, while reducing MDA (p = 0.009), NLRP3 (p < 0.001), ovarian IL-1β (p = 0.005), plasma IL-1β (p < 0.001), TLR4 (p = 0.001), plasma TNF-α (p = 0.001), and ovarian TNF-α (p < 0.001), compared to the cisplatin group. Krill oil exerts significant antioxidant and anti-inflammatory effects, offering a promising strategy to mitigate cisplatin-induced ovarian damage and preserve fertility in young cancer patients. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Graphical abstract

16 pages, 1128 KB  
Article
CK2α Overexpression in Colorectal Cancer: Evidence for Sex- and Age-Linked Differences
by Jana Romy Friedrich, Clara Meier, Guido Plotz, Stefan Zeuzem, Angela Brieger and Sarah J. Overby
Cancers 2025, 17(17), 2857; https://doi.org/10.3390/cancers17172857 (registering DOI) - 30 Aug 2025
Abstract
Background/Objectives: Colorectal cancer (CRC) remains a leading cause of cancer-related deaths, with notable sex-specific differences in its incidence, diagnosis, and outcomes. Our previous work identified casein kinase 2 alpha (CK2α) as being capable of impairing DNA mismatch repair (MMR) via phosphorylation of MLH1, [...] Read more.
Background/Objectives: Colorectal cancer (CRC) remains a leading cause of cancer-related deaths, with notable sex-specific differences in its incidence, diagnosis, and outcomes. Our previous work identified casein kinase 2 alpha (CK2α) as being capable of impairing DNA mismatch repair (MMR) via phosphorylation of MLH1, thereby increasing the tumor mutational burden. This study aimed to investigate sex-specific differences in CK2α protein expression in CRC. Methods: Immunohistochemical (IHC) analysis was performed on 161 CRC tumors and adjacent normal tissues to quantify the CK2α protein levels. A multi-cohort meta-analysis of proteomic and clinical data was conducted to validate our findings and assess the correlations with age, sex, and relevant signaling pathways. Results: Female CRC patients exhibited significantly higher CK2α expression than male patients, which was confirmed in two independent cohorts. Additionally, CK2α expression was positively correlated with age in female but not male patients. Cross-cohort correlation analyses linked CK2α levels with key proteins involved in estrogen receptor signaling and aging, including DEAD-box helicase 5 (DDX5), histone deacetylase 1 (HDAC1), proliferating cell nuclear antigen (PCNA), prohibitin-2 (PHB2), H/ACA ribonucleoprotein complex subunit 2 (NHP2), and dual-specificity mitogen-activated protein kinase kinase 3 (MAP2K3). Conclusions: CK2α is significantly overexpressed in the tumor tissue of female CRC patients and shows a strong age-related correlation. These findings suggest a sex- and age-specific regulatory mechanism potentially influenced by estrogen signaling or menopause. Such dimorphisms underscore the need for sex-specific strategies in CRC biomarker development and therapy. Full article
(This article belongs to the Section Cancer Immunology and Immunotherapy)
Show Figures

Graphical abstract

30 pages, 58453 KB  
Article
Time- and Dose-Dependent Effects of Irradiation on Endothelial and Tumor Endothelial Cells: Transcriptional, Molecular, and Functional Changes Driving Activation In Vitro and In Vivo
by Iva Santek, Gregor Sersa and Bostjan Markelc
Cancers 2025, 17(17), 2842; https://doi.org/10.3390/cancers17172842 - 29 Aug 2025
Viewed by 92
Abstract
Background: Irradiation (IR) targets cancer cells, but also the tumor microenvironment, including the tumor’s blood vessels. In addition to tumor endothelial cell (TEC) apoptosis, IR can lead to TEC activation, potentially increasing immune cell infiltration. However, the changes underlying the IR-induced activation of [...] Read more.
Background: Irradiation (IR) targets cancer cells, but also the tumor microenvironment, including the tumor’s blood vessels. In addition to tumor endothelial cell (TEC) apoptosis, IR can lead to TEC activation, potentially increasing immune cell infiltration. However, the changes underlying the IR-induced activation of endothelial cells (ECs) are poorly understood. This study investigated dose- and time-dependent molecular and functional responses of murine and human EC lines to IR in vitro and TECs in vivo in murine tumor models of colorectal carcinoma. Methods: HUVEC, EA.hy926, and Hulec5a, as well as murine bEND.3, 2H11, and SVEC4-10 EC lines, were irradiated with single doses of 2–10 Gy. EC proliferation and survival after IR were assessed by staining all nuclei (Hoechst 33342) and dead cells (propidium iodide) every 24 h for 5 days using the Cytation 1 Cell Imaging Multi-Mode Reader. RNA sequencing analysis of HUVECs irradiated with 2 Gy and 5 Gy at 24 h and 72 h after IR was conducted, focusing on processes related to EC activation. To validate the RNA sequencing results, immunofluorescence staining for proteins related to EC activation, including Stimulator of Interferon Response cGAMP Interactor 1 (STING), Nuclear factor kappa B (NF-κβ), and Vascular cell adhesion molecule 1 (VCAM-1), was performed. To validate the in vitro results, the response of TEC in vivo was analyzed using publicly available RNA sequencing data of TECs isolated from MC38 colon carcinoma irradiated with a single dose of 15 Gy. Finally, murine CT26 colon carcinoma tumors were immunofluorescently stained for STING and NF-κβ 24 and 48 h after IR with a clinically relevant fractionated regimen of 5 × 5 Gy. Results: Doses of 2, 4, 6, 8, and 10 Gy led to a dose-dependent decrease in proliferation and increased death of ECs. RNA sequencing analysis showed that the effects on the transcriptome of HUVECs were most pronounced 72 h after IR with 5 Gy, with 1014 genes (661 down-regulated and 353 up-regulated) being significantly differentially expressed. Irradiation with 5 Gy resulted in HUVEC activation, with up-regulation of the immune system and extracellular matrix genes, such as STING1 (log2FC = 0.81) and SELE (log2FC = 1.09), respectively; and down-regulation of cell cycle markers. Furthermore, IR led to the up-regulation of immune response- and extracellular matrix (ECM)-associated signaling pathways, including NF-κβ signaling and ECM–receptor interaction, which was also observed in the transcriptome of irradiated murine TECs in vivo. This was confirmed at the protein level with higher expressions of the EC activation-associated proteins STING, NF-κβ, and VCAM-1 in irradiated HUVECs and irradiated TECs in vivo. Conclusions: IR induces changes in ECs and TECs, supporting their activation in dose- and time-dependent manners, potentially contributing to the anti-tumor immune response, which may potentially increase the infiltration of immune cells into the tumor and thus, improve the overall efficacy of RT, especially in combination with immune checkpoint inhibitors. Full article
(This article belongs to the Special Issue Radiosensitivity and Radiotoxicity in Cancer)
Show Figures

Figure 1

13 pages, 3078 KB  
Article
A Unique Trimeric Assembly of Human Dishevelled 1 PDZ Domain in Crystal: Implication of Homo- and Hetero-Oligomerization During Wnt Signaling Process
by Shotaro Yasukochi, Nobutaka Numoto, Kiminori Hori, Takeshi Tenno, Emi Hibino, Nobutoshi Ito and Hidekazu Hiroaki
Molecules 2025, 30(17), 3538; https://doi.org/10.3390/molecules30173538 - 29 Aug 2025
Viewed by 167
Abstract
Wnt/β-catenin signaling is hyper-activated in several cancer cells and cancer stem cells. Dishevelled/Dvl is a key adapter protein that acts as a bridge between the Wnt receptor Frizzled (Fzd) and other cytosolic factors. In detail, the C-terminal cytosolic region is the ligand of [...] Read more.
Wnt/β-catenin signaling is hyper-activated in several cancer cells and cancer stem cells. Dishevelled/Dvl is a key adapter protein that acts as a bridge between the Wnt receptor Frizzled (Fzd) and other cytosolic factors. In detail, the C-terminal cytosolic region is the ligand of the PSD-95, disks large, and zonula occludens-1 (PDZ) domain of Dvl. Therefore, the PDZ domain (Dvl-PDZ) is thought to be a potential drug target. In this paper, we determined the first crystal structure of the PDZ domain of human Dvl1 (hDvl1-PDZ) at a 2.4 Å resolution. The domain was adapted into a unique trimeric form in which all the canonical ligand-binding clefts were occupied by the β2-β3 loop of the neighbor molecule, like an auto-inhibiting trimer. We used solution nuclear magnetic resonance (NMR) experiments to assess the presence of the self-associated oligomer of hDvl1-PDZ in the solution. Introducing the Ala substitution at Asp 272, the key residue of the β2-β3 loop, partly abolished the concentration-dependent chemical shift change, which suggests that this residue is one of the key residues for formation. Based on these observations, we propose an auto-inhibiting trimer formation of Dvl-PDZ in a Dvl-Axin hetero-oligomerization model of Wnt/β-catenin signal transduction. Full article
(This article belongs to the Special Issue Opportunities and Challenges in Protein Crystallography)
Show Figures

Graphical abstract

17 pages, 3785 KB  
Article
Peroxisome Proliferator-Activated Receptor Family of Lipid-Activated Nuclear Receptors Alpha Silencing Promotes Oxidative Stress and Hypertrophic Phenotype in Rat Cardiac Cells
by Marzia Bianchi, Nadia Panera, Sara Petrillo, Nicolò Cicolani, Cristiano De Stefanis, Marco Scarsella, Domenico Ciavardelli, Fiorella Piemonte, Anna Alisi and Anna Pastore
Antioxidants 2025, 14(9), 1059; https://doi.org/10.3390/antiox14091059 - 28 Aug 2025
Viewed by 123
Abstract
The peroxisome proliferator-activated receptor family of lipid-activated nuclear receptors (PPARs) plays a critical role in the regulation of cellular lipid metabolism. In cardiac muscle, PPARα is highly expressed and regulates genes involved in fatty acid oxidation, but its activity is downregulated in hypertrophic [...] Read more.
The peroxisome proliferator-activated receptor family of lipid-activated nuclear receptors (PPARs) plays a critical role in the regulation of cellular lipid metabolism. In cardiac muscle, PPARα is highly expressed and regulates genes involved in fatty acid oxidation, but its activity is downregulated in hypertrophic hearts; however, the consequences of chronic PPARα deficiency on the cardiac contractile apparatus remain unclear. This study aimed to investigate the PPARα role in hypertrophic phenotype and to evaluate the potential effects of the antioxidant Ebselen (Ebs) treatment on changes associated with PPARα depletion. We thus generated an in vitro model of cardiac hypertrophy by stable silencing of the PPARA gene in H9c2 rat cardiomyoblasts. We observed that PPARα silencing induces a hypertrophic phenotype, characterized by increased NPPB and decreased FBXO32 expression, mitochondrial dysregulation, impaired lipid metabolism, oxidative stress, and ferroptosis-related alterations. Epigenetically, H3K27ac levels increased while H3K27me3 decreased. Moreover, miR-34a, miR-132, and miR-331 were downregulated, implicating a miRNA-mediated mechanism in PPARα-linked cardiac hypertrophy. Treatment with Ebs, a redox-active compound with inhibitory effects on ferroptosis and epigenetics, reversed hypertrophic phenotype and restored miRNA levels. In conclusion, we found that PPARα depletion promotes oxidative stress and hypertrophic phenotype and that Ebs may act as a potential therapeutic agent. Full article
Show Figures

Figure 1

20 pages, 936 KB  
Review
The Mediator Complex: A Regulatory Hub for Transcriptional Activity of Nuclear Receptors
by Liming Zhou, Manhan Zhao, Yifei Zhai and Qiong Lin
Cells 2025, 14(17), 1335; https://doi.org/10.3390/cells14171335 - 28 Aug 2025
Viewed by 246
Abstract
The Mediator complex plays a key role in gene transcription. In particular, the interaction of the Mediator complex with nuclear receptors, the known transcription factors, regulates multiple nuclear receptor-mediated gene transcription pathways and associated cellular functions. Dysregulation of the interaction of the Mediator [...] Read more.
The Mediator complex plays a key role in gene transcription. In particular, the interaction of the Mediator complex with nuclear receptors, the known transcription factors, regulates multiple nuclear receptor-mediated gene transcription pathways and associated cellular functions. Dysregulation of the interaction of the Mediator complex with nuclear receptors results in many pathological processes, such as cancer, metabolic and neuronal diseases. Thus, understanding of the mechanism by which the Mediator complex regulates the nuclear receptor-mediated transcriptional activity and biological function is crucial for therapy of both the Mediator complex- and nuclear receptor-associated diseases. In this review article, we attempt to summarize current research progress in the interaction of the Mediator complex with nuclear receptors and the associated nuclear receptor transcriptional signaling pathways, explore the clinical potential of the Mediator complex as a therapeutic target, and provide new perspectives for the treatment of diseases associated with the Mediator complex and nuclear receptors. Full article
Show Figures

Figure 1

20 pages, 2753 KB  
Article
Preclinical Study of Pain Neuropeptide Expression in Murine Sensory Neurons Induced by Irradiated Osteoclasts in the Context of Stereotactic Body Radiation Therapy
by Sun H. Park, Megan Peters, Caleb Aguayo, Michael K. Farris, Ryan T. Hughes, Joseph Moore, Michael T. Munley, Kaitlyn E. Reno, Jeffrey A. Foster, Jean Gardin, George W. Schaaf, J. Mark Cline, Christopher M. Peters and Jeffrey S. Willey
Cells 2025, 14(17), 1324; https://doi.org/10.3390/cells14171324 - 27 Aug 2025
Viewed by 307
Abstract
Stereotactic body radiation therapy (SBRT) for lung tumors near the chest wall often causes significant chest wall pain (CWP), negatively impacting patients’ quality of life. The mechanisms behind SBRT-induced CWP remain unclear and may involve multiple factors. We investigated crosstalk between radiation-activated osteoclasts [...] Read more.
Stereotactic body radiation therapy (SBRT) for lung tumors near the chest wall often causes significant chest wall pain (CWP), negatively impacting patients’ quality of life. The mechanisms behind SBRT-induced CWP remain unclear and may involve multiple factors. We investigated crosstalk between radiation-activated osteoclasts and sensory neurons, focusing on osteoclast-derived factors in CWP. Using murine pre-osteoclast cell line Raw264.7, we induced differentiation with Receptor Activator of Nuclear Factor kappa-beta Ligand (RANKL), followed by 10 Gy gamma-irradiation. Conditioned media (C.M) from irradiated osteoclasts was used to treat sensory neuronal cultures from mouse dorsal root ganglia. Neuronal cultures were also exposed to 10 Gy radiation, with and without osteoclast co-culture. Osteoclast markers and pain-associated neuropeptides were analyzed using RT-qPCR and histochemical staining. Osteoclasts differentiation and activity were inhibited using osteoprotegerin (OPG) and risedronate. High-dose radiation significantly increased the size of tartrate-resistant-acid-phosphatase (TRAP)-positive osteoclasts (1.36-fold) and activity biomarkers (Ctsk, 1.35-fold, Mmp9, 1.76-fold). Neurons treated with C.M from irradiated osteoclasts showed ~1.5-fold increase in Calca (calcitonin gene-related peptide) and Tac1 (substance P) expression, which was mitigated by osteoclast inhibitors. These findings suggest that radiation enhances osteoclast activity and promotes pain signaling. Osteoclast inhibitors may represent a therapeutic strategy to reduce CWP and improve quality of life. Full article
(This article belongs to the Section Cell Signaling)
Show Figures

Graphical abstract

13 pages, 2140 KB  
Communication
Low-Dose Dimethyl Sulfoxide (DMSO) Suppresses Androgen Receptor (AR) and Its Splice Variant AR-V7 in Castration-Resistant Prostate Cancer (CRPC) Cells
by Namrata Khurana, Hogyoung Kim, Talal Khan, Shohreh Kahhal, Amar Bukvic, Asim B. Abdel-Mageed, Debasis Mondal and Suresh C. Sikka
Therapeutics 2025, 2(3), 15; https://doi.org/10.3390/therapeutics2030015 - 27 Aug 2025
Viewed by 190
Abstract
Background: The outgrowth of castration-resistant prostate cancer (CRPC) dictates patient morbidity and mortality. Recurrence of prostate cancer (PC) following androgen-deprivation therapy (ADT) often occurs due to constitutively active androgen receptor (AR) splice variants (AR-Vs), primarily AR-V7. Therefore, safe and effective therapies enabling [...] Read more.
Background: The outgrowth of castration-resistant prostate cancer (CRPC) dictates patient morbidity and mortality. Recurrence of prostate cancer (PC) following androgen-deprivation therapy (ADT) often occurs due to constitutively active androgen receptor (AR) splice variants (AR-Vs), primarily AR-V7. Therefore, safe and effective therapies enabling the suppression of both full-length AR (AR-FL) and AR-Vs are urgently needed. The natural compound dimethyl sulfoxide (DMSO) has negligible cytotoxicity at concentrations below 5% and has anticancer potential. DMSO has been broadly used in biomedical research as a solvent for pharmaceuticals, as a cryoprotectant for cells, and as a topical treatment to suppress pain and inflammation. We investigated the effect of low-dose DMSO on AR expression, cell viability, and metastatic ability in PC cell lines expressing both AR-FL and AR-V7 (e.g., 22Rv1) and those expressing only AR-FL (e.g., C4-2B). Methods: MTT cell viability assays were performed to measure DMSO-induced cytotoxicity. Wound-healing assays were conducted to monitor the effect of DMSO on the migratory phenotype of cancer cells. Western blot analyses were performed to study the efficacy of DMSO in suppressing the protein levels of AR-FL and AR-V7, and expression of heterogeneous nuclear ribonucleoprotein H1 (hnRNPH1) was measured as a possible mechanism. Results: At concentrations of 0.1–1% (v/v), DMSO treatment showed minimal cytotoxicity, whereas the highest concentration used (2.5%) showed approximately 20% cytotoxicity at 96 h. Interestingly, however, DMSO treatment at concentrations of 1.0 and 2.5% significantly inhibited the migration of PC cells. Treatment with DMSO led to a dose-dependent inhibition of both AR-FL and AR-V7. Notably, in 22Rv1 cells, DMSO potently downregulated the expression of hnRNPH1, a splicing factor often associated with AR expression and signaling. Conclusions: Our findings suggest that low concentrations of DMSO may have potential as an effective anticancer agent, both at the initial and later stages when PC cells become castration resistant. Full article
Show Figures

Figure 1

23 pages, 1339 KB  
Review
Current State of Knowledge on Amiodarone (AMD)-Induced Reactive Oxygen Species (ROS) Production in In Vitro and In Vivo Models
by Konrad A. Szychowski
Oxygen 2025, 5(3), 16; https://doi.org/10.3390/oxygen5030016 - 26 Aug 2025
Viewed by 458
Abstract
Amiodarone (AMD) is an effective antiarrhythmic drug whose long-term use is limited by multi-organ toxicities linked to oxidative stress. This review synthesizes current evidence on how AMD induces reactive oxygen species (ROS) generation in vitro and in vivo, and the mechanistic pathways involved. [...] Read more.
Amiodarone (AMD) is an effective antiarrhythmic drug whose long-term use is limited by multi-organ toxicities linked to oxidative stress. This review synthesizes current evidence on how AMD induces reactive oxygen species (ROS) generation in vitro and in vivo, and the mechanistic pathways involved. AMD promotes ROS production through both direct and indirect mechanisms. Directly, AMD accumulates in mitochondria and impairs the electron transport chain, leading to electron leakage and superoxide formation. It also undergoes redox cycling, forming radical intermediates that trigger lipid peroxidation and deplete cellular antioxidants. AMD and its metabolites inhibit antioxidant enzymes (SOD, CAT, GPx) expression and/or activities and reduce glutathione level, compounding oxidative injury. Indirectly, AMD activates signaling pathways that exacerbate ROS generation. This compound can induce pro-inflammatory mediators such as TNF-α and modulate nuclear receptors such as AhR, PXR, CAR, and PPARs, altering the expression of metabolic enzymes and endogenous antioxidants. These processes are time- and dose-dependent: short exposures at low concentrations may transiently scavenge radicals, whereas chronic or higher-dose exposures consistently lead to net ROS accumulation. The oxidative effects of AMD vary by tissue and experimental models. In chronic models, organs such as the lung and liver show pronounced ROS-mediated injury, whereas acute or cell-based systems typically exhibit subtler changes. AMD-induced toxicity arises from multifactorial oxidative stress involving mitochondrial dysfunction, increased radical formation, depletion of antioxidant defenses, and activation of pro-oxidant signaling pathways. Recognizing these pathways suggests that antioxidant and mitochondria-targeted co-therapies could ameliorate the side effects of AMD. Full article
(This article belongs to the Special Issue Feature Papers in Oxygen Volume III)
Show Figures

Figure 1

20 pages, 1214 KB  
Review
Aged Garlic Extract and Its Bioactive Molecules S-Allyl-Cysteine and S1-Propenyl-Cysteine: A Review Focusing on Evidences Supporting Their Use for Mitigating the Effects of Cigarette Smoking
by Roberto Gambari and Alessia Finotti
Molecules 2025, 30(17), 3496; https://doi.org/10.3390/molecules30173496 - 26 Aug 2025
Viewed by 527
Abstract
One of the major social issues worldwide is tobacco dependency and cigarette smoking (CS) abuse. Given the significant impact of cigarette smoking on human health and diseases, extensive tobacco use and cigarette smoking abuse are certainly a form of drug addiction and should [...] Read more.
One of the major social issues worldwide is tobacco dependency and cigarette smoking (CS) abuse. Given the significant impact of cigarette smoking on human health and diseases, extensive tobacco use and cigarette smoking abuse are certainly a form of drug addiction and should be considered a serious threat to human health. Notably, healthcare spending attributable to cigarette smoking is very high. In this regard, a significant number of biomolecules of natural origin have been described as capable of mitigating the adverse effects of cigarette smoking. In this review, (a) we discuss the impact that the habit of smoking tobacco has on human health and (b) we describe products of natural origin capable of mitigating the effects of cigarette smoke. The conclusion of this review article is that the available information strongly indicates a possible use of the anti-inflammatory aged garlic extract (AGE) and its bioactive components for mitigating the detrimental effects of cigarette smoke on human tissues. The key reasons for proposing this application are that AGE and its key components S-allyl-cysteine and S1-propenyl-cysteine are potent anti-inflammatory agents, bind to Toll-like Receptor-4, inhibit Nuclear Factor-κB, inhibit the expression of pro-inflammatory genes, revert apoptosis induced by cigarette smoke in several cellular model systems and are strong inhibitors of Reactive Oxygen Species (ROS) formation. Full article
(This article belongs to the Special Issue Anti-Inflammatory Natural Compounds)
Show Figures

Graphical abstract

13 pages, 1802 KB  
Article
NR3C1/GLMN-Mediated FKBP12.6 Ubiquitination Disrupts Calcium Homeostasis and Impairs Mitochondrial Quality Control in Stress-Induced Myocardial Damage
by Jingze Cong, Lihui Liu, Rui Shi, Mengting He, Yuchuan An, Xiaowei Feng, Xiaoyu Yin, Yingmin Li, Bin Cong and Weibo Shi
Int. J. Mol. Sci. 2025, 26(17), 8245; https://doi.org/10.3390/ijms26178245 - 25 Aug 2025
Viewed by 504
Abstract
Excessive stress disrupts cardiac homeostasis via complex and multifactorial mechanisms, resulting in cardiac dysfunction, cardiovascular disease, or even sudden cardiac death, yet the underlying molecular mechanisms remain poorly understood. Accordingly, we aimed to elucidate how stress induces calcium dysregulation and contributes to cardiac [...] Read more.
Excessive stress disrupts cardiac homeostasis via complex and multifactorial mechanisms, resulting in cardiac dysfunction, cardiovascular disease, or even sudden cardiac death, yet the underlying molecular mechanisms remain poorly understood. Accordingly, we aimed to elucidate how stress induces calcium dysregulation and contributes to cardiac dysfunction and injury through the nuclear receptor subfamily 3 group c member 1 (NR3C1)/Glomulin (GLMN)/FK506-binding protein 12.6 (FKBP12.6) signaling pathway. Using mouse models of acute and chronic restraint stress, we observed that stress-exposed mice exhibited reduced left ventricular ejection fraction, ventricular wall thickening, elevated serum and myocardial cTnI levels, along with pathological features of myocardial ischemia and hypoxia, through morphological, functional, and hormonal assessments. Using transmission electron microscopy and Western blotting, we found that stress disrupted mitochondrial quality control in cardiomyocytes, evidenced by progressive mitochondrial swelling, cristae rupture, decreased expression of fusion proteins (MFN1/OPA1) and biogenesis regulator PGC-1α, along with aberrant accumulation of fission protein (FIS1) and autophagy marker LC3. At the cellular level, ChIP-qPCR and siRNA knockdown confirmed that stress activates the glucocorticoid receptor NR3C1 to repress its downstream target GLMN, thereby preventing FKBP12.6 ubiquitination and degradation, resulting in calcium leakage and overload, which ultimately impairs mitochondrial quality control and damages cardiomyocytes. In conclusion, our findings reveal that stress induces myocardial damage through NR3C1/GLMN-mediated FKBP12.6 ubiquitination, disrupting calcium homeostasis and mitochondrial quality control, and lay a theoretical foundation for dissecting the intricate molecular network of stress-induced cardiomyopathy. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Figure 1

22 pages, 5113 KB  
Article
Populus ussuriensis PuWRKY22 Transcription Factor Activates the ABA Receptor PYL4 to Enhance Drought Resistance
by Qiuhui Wang, Danni Li, Lihua Yang, Yu Yang, Shuchao Huang, Yipeng Zhao and Qingjie Guan
Plants 2025, 14(17), 2621; https://doi.org/10.3390/plants14172621 - 23 Aug 2025
Viewed by 306
Abstract
Drought stress poses a significant threat to tree growth, making the development of drought-resistant species essential for ecological restoration. WRKY transcription factors are critical regulators of plant drought responses; however, the role of WRKY22 in the woody species Populus ussuriensis K. remains unclear. [...] Read more.
Drought stress poses a significant threat to tree growth, making the development of drought-resistant species essential for ecological restoration. WRKY transcription factors are critical regulators of plant drought responses; however, the role of WRKY22 in the woody species Populus ussuriensis K. remains unclear. In this study, the PuWRKY22 gene was cloned from P. ussuriensis via homologous cloning and was found to be highly expressed in leaves and responsive to abscisic acid (ABA) signaling. Subcellular localization confirmed that PuWRKY22 is a nuclear protein. Using fluorescein enzyme complementation assays, PuWRKY22 was shown to bind specifically to W-box cis-elements, indicating its function as a transcriptional regulator. Under ABA and osmotic (sorbitol) stress, the seed germination rate, root growth, and biomass of tobacco and Populus davidiana × Populus bolleana strains overexpressing PuWRKY22 were significantly increased. Additionally, these overexpressed strains exhibited a reduction in reactive oxygen species (ROS) accumulation and a decrease in membrane lipid peroxidation. Transcriptomic analyses revealed that PuWRKY22 activates expression of the ABA receptor gene Ptr.PYL4 (Potri.006G104100.v4.1), which regulates stomatal closure to minimize water loss. Consistent with this, stomatal observations and photosynthetic measurements demonstrated that PuWRKY22 enhances drought tolerance by protecting photosystem II and preserving chlorophyll content. Collectively, this study elucidates the molecular mechanism by which PuWRKY22 enhances drought resistance in woody plants through ABA signaling, providing a foundation for breeding drought-tolerant forest species. Full article
(This article belongs to the Special Issue Drought Responses and Adaptation Mechanisms in Plants, 2nd Edition)
Show Figures

Figure 1

13 pages, 1207 KB  
Article
Evaluation of Cyclotron Solid Target Produced Gallium-68 Chloride for the Labeling of [68Ga]Ga-PSMA-11 and [68Ga]Ga-DOTATOC
by Michał Jagodziński, Jakub Boratyński, Paulina Hamankiewicz, Łukasz Cheda, Witold Uhrynowski, Agnieszka Girstun, Joanna Trzcińska-Danielewicz, Zbigniew Rogulski and Marek Pilch-Kowalczyk
Molecules 2025, 30(17), 3458; https://doi.org/10.3390/molecules30173458 - 22 Aug 2025
Viewed by 542
Abstract
Gallium-68 is a widely used positron-emitting radionuclide in nuclear medicine, traditionally obtained from 68Ge/68Ga generators. However, increasing clinical demand has driven interest in alternative production methods, such as medical cyclotrons equipped with solid targets. This study evaluates the functional equivalence [...] Read more.
Gallium-68 is a widely used positron-emitting radionuclide in nuclear medicine, traditionally obtained from 68Ge/68Ga generators. However, increasing clinical demand has driven interest in alternative production methods, such as medical cyclotrons equipped with solid targets. This study evaluates the functional equivalence of gallium-68 chloride obtained from cyclotron solid target and formulated to be equivalent to the eluate from a germanium-gallium generator, aiming to determine whether this production method can serve as a reliable alternative for PET radiopharmaceutical applications. Preparations of [68Ga]Ga-PSMA-11 and [68Ga]Ga-DOTATOC, labeled with cyclotron-derived gallium-68 chloride, were subjected to quality control analysis using radio thin layer chromatography and radio high performance liquid chromatography. Subsequently, biodistribution studies were performed in mouse oncological models of expression of PSMA antigen and SSTR receptor to compare uptake of preparations produced with generator and cyclotron-derived isotopes. All tested formulations met the required radiochemical purity specifications. Moreover, tumor accumulation of the radiolabeled compounds was comparable regardless of the isotope source. The results support the conclusion that gallium-68 produced via cyclotron is functionally equivalent to that obtained from a generator, demonstrating its potential for interchangeable use in clinical and research radiopharmaceutical applications. Full article
Show Figures

Figure 1

38 pages, 1248 KB  
Review
Targeting Inflammation with Natural Products: A Mechanistic Review of Iridoids from Bulgarian Medicinal Plants
by Rositsa Mihaylova, Viktoria Elincheva, Reneta Gevrenova, Dimitrina Zheleva-Dimitrova, Georgi Momekov and Rumyana Simeonova
Molecules 2025, 30(17), 3456; https://doi.org/10.3390/molecules30173456 - 22 Aug 2025
Viewed by 502
Abstract
Chronic, low-grade inflammation is a key contributor to the development of numerous non-communicable diseases (NCDs), including cardiovascular, metabolic, and neurodegenerative disorders. Conventional anti-inflammatory drugs, such as nonsteroidal anti-inflammatory drugs (NSAIDs) and corticosteroids, often present safety concerns with prolonged use, highlighting the need for [...] Read more.
Chronic, low-grade inflammation is a key contributor to the development of numerous non-communicable diseases (NCDs), including cardiovascular, metabolic, and neurodegenerative disorders. Conventional anti-inflammatory drugs, such as nonsteroidal anti-inflammatory drugs (NSAIDs) and corticosteroids, often present safety concerns with prolonged use, highlighting the need for safer, multi-targeted therapeutic options. Iridoids, a class of monoterpenoid compounds abundant in several medicinal plants, have emerged as promising bioactive agents with diverse pharmacological properties. They exert anti-inflammatory and metabolic regulatory effects by modulating key signaling pathways, including nuclear factor kappa B (NF-κB), mitogen-activated protein kinase (MAPK), Janus kinase/signal transducer and activator of transcription (JAK/STAT), adenosine monophosphate-activated protein kinase (AMPK), and peroxisome proliferator-activated receptor (PPAR) pathways. This review provides a comprehensive summary of the major iridoid metabolites derived from ten Bulgarian medicinal plant species, along with mechanistic insights from in vitro and in vivo studies. Documented biological activities include anti-inflammatory, antioxidant, immunomodulatory, antifibrotic, organoprotective, antibacterial, antiviral, analgesic, and metabolic effects. By exploring their phytochemical profiles and pharmacodynamics, we underscore the therapeutic potential of iridoid-rich Bulgarian flora in managing inflammation-related and metabolic diseases. These findings support the relevance of iridoids as complementary or alternative agents to conventional therapies and highlight the need for further translational and clinical research. Full article
(This article belongs to the Special Issue Role of Natural Products in Inflammation)
Show Figures

Figure 1

48 pages, 2121 KB  
Review
Bone-Derived Factors: Regulating Brain and Treating Alzheimer’s Disease
by Qiao Guan, Yanting Cao, Jun Zou and Lingli Zhang
Biology 2025, 14(9), 1112; https://doi.org/10.3390/biology14091112 - 22 Aug 2025
Viewed by 371
Abstract
In recent years, the bidirectional regulatory mechanism of the bone-brain axis has become a hotspot for interdisciplinary research. In this paper, we systematically review the anatomical and functional links between bone and the central nervous system, focusing on the regulation of brain function [...] Read more.
In recent years, the bidirectional regulatory mechanism of the bone-brain axis has become a hotspot for interdisciplinary research. In this paper, we systematically review the anatomical and functional links between bone and the central nervous system, focusing on the regulation of brain function by bone-derived signals and their clinical translational potential. At the anatomical level, the blood–brain barrier permeability mechanism and the unique structure of the periventricular organs establish the anatomical basis for bone-brain information transmission. Innovative discoveries indicate that the bone cell network (bone marrow mesenchymal stem cells, osteoblasts, osteoclasts, and bone marrow monocytes) directly regulates neuroplasticity and the inflammatory microenvironment through the secretion of factors such as osteocalcin, lipid transporter protein 2, nuclear factor κB receptor-activating factor ligand, and fibroblast growth factor 23, as well as exosome-mediated remote signaling. Clinical studies have revealed a bidirectional vicious cycle between osteoporosis and Alzheimer’s disease: reduced bone density exacerbates Alzheimer’s disease pathology through pathways such as PDGF-BB, while AD-related neurodegeneration further accelerates bone loss. The breakthrough lies in the discovery that anti-osteoporotic drugs, such as bisphosphonates, improve cognitive function. In contrast, neuroactive drugs modulate bone metabolism, providing new strategies for the treatment of comorbid conditions. Additionally, whole-body vibration therapy shows potential for non-pharmacological interventions by modulating bone-brain interactions through the mechano-osteoclast signaling axis. In the future, it will be essential to integrate multiple groups of biomarkers to develop early diagnostic tools that promote precise prevention and treatment of bone-brain comorbidities. This article provides a new perspective on the mechanisms and therapeutic strategies of neuroskeletal comorbidities. Full article
(This article belongs to the Special Issue Bone Cell Biology)
Show Figures

Figure 1

Back to TopTop