Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (491)

Search Parameters:
Keywords = numerical modal analysis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 6555 KB  
Article
Finite Element Model Updating of Axisymmetric Structures
by Pavol Lengvarský, Martin Hagara, Lenka Hagarová and Jaroslav Briančin
Appl. Sci. 2025, 15(21), 11407; https://doi.org/10.3390/app152111407 (registering DOI) - 24 Oct 2025
Abstract
Creating the most accurate numerical models with the same dynamic behavior as real structures plays an important role in the development process of various facilities. This article deals with the use of experimental methods, particularly experimental modal analysis (EMA), scanning, detection, spectral analysis, [...] Read more.
Creating the most accurate numerical models with the same dynamic behavior as real structures plays an important role in the development process of various facilities. This article deals with the use of experimental methods, particularly experimental modal analysis (EMA), scanning, detection, spectral analysis, and mechanical testing in combination with the optimization techniques of the ANSYS 2024 R1 software to calibrate numerical models of axisymmetric structures. The proposed methodology was tested on a steel pipe whose geometric and material properties were both available. Within the updating of finite element models (FEMU) with one or two design variables, the influence of the range of feasible values on the accuracy of the observed parameters was examined. The updating process led to the acquisition of such a pipe model, which natural frequencies differed by less than 1.5% from the results estimated in EMA, and its weight also differed only minimally. The proposed methodology was then used for the FEMU of a pressure vessel whose contour was obtained by a 3D scanning method; material properties were investigated, and all wall thicknesses, i.e., eleven design variables, were unknown and thus determined by an iterative optimization technique. Using the Multi-Objective Genetic Algorithm (MOGA) method, the dimensions of the vessel were first updated for their shell model and subsequently for the 3D model. The resulting natural frequencies of the model with applied internal pressures of 0 bar, 40 bar, and 80 bar differed from those estimated experimentally by less than 1.2%. Full article
(This article belongs to the Section Acoustics and Vibrations)
32 pages, 6947 KB  
Article
Duct Metamaterial Muffler with Composite Acoustic Porous Media: Acoustic Optimization via Periodic Arrangement, Particle Swarm Optimization and Experimental Validation
by Ziyi Liu, An Wang, Chi Cai, Xiao Wang, Qiyuan Fan, Bin Huang, Chengwen Liu and Yizhe Huang
Materials 2025, 18(21), 4873; https://doi.org/10.3390/ma18214873 (registering DOI) - 24 Oct 2025
Abstract
This study proposes a composite acoustic porous duct metamaterial muffler composed of a perforated tortuous channel and an externally wrapped porous layer, integrating both structural resonance and material damping effects. Theoretical models for the perforated plate, tortuous channel, and porous material were established, [...] Read more.
This study proposes a composite acoustic porous duct metamaterial muffler composed of a perforated tortuous channel and an externally wrapped porous layer, integrating both structural resonance and material damping effects. Theoretical models for the perforated plate, tortuous channel, and porous material were established, and analytical formulas for the total acoustic impedance and transmission loss of the composite structure were derived. Finite element simulations verified the accuracy of the models. A systematic parametric study was then performed on the effects of porous material type, thickness, and width on acoustic performance, showing that polyester fiber achieves the best results at a thickness of 30 mm and a width of 5 mm. Further analysis of periodic distribution modes revealed that axial periodic arrangement significantly enhances the peak noise attenuation, radial periodic arrangement broadens the effective bandwidth, and multi-frequency parallel configurations further expand the operating range. Considering practical duct conditions, a single-layer multi-cell array was constructed, and its modal excitation mechanism was clarified. By employing the Particle Swarm Optimization (PSO) algorithm for multi-parameter optimization, the average transmission loss was improved from 26.493 dB to 29.686 dB, corresponding to an increase of approximately 12.05%. Finally, physical samples were fabricated via 3D printing, and four-sensor impedance tube experiments confirmed good agreement among theoretical, numerical, and experimental results. The composite structure exhibited an average experimental transmission loss of 24.599 dB, outperforming the configuration without porous material. Overall, this work highlights substantial scientific and practical advances in sound energy dissipation mechanisms, structural optimization design, and engineering applicability, providing an effective approach for broadband and high-efficiency duct noise reduction. Full article
(This article belongs to the Section Materials Physics)
Show Figures

Figure 1

28 pages, 8199 KB  
Article
Vibration Characteristics of a Beam with Elastic Time-Varying Stiffness Boundaries
by Zhiwei Guo, Yu Zhang, Meiping Sheng, Leilei Liu and Yinling Li
Appl. Sci. 2025, 15(21), 11365; https://doi.org/10.3390/app152111365 - 23 Oct 2025
Abstract
In a conventional elastic beam with steady boundary stiffness, vibrational energy tends to concentrate at specific modal frequencies, often resulting in significant resonance phenomena. To address this issue, a novel control strategy is proposed in this study, in which the stiffness of boundary [...] Read more.
In a conventional elastic beam with steady boundary stiffness, vibrational energy tends to concentrate at specific modal frequencies, often resulting in significant resonance phenomena. To address this issue, a novel control strategy is proposed in this study, in which the stiffness of boundary springs is dynamically modulated to alter the resonance characteristics of the beam. The Newmark–Beta method is employed to compute the transient response of the beam with time-varying stiffness in the time domain. A series of numerical simulations is conducted to analyze the vibration behavior of the structure under single-model frequency, multimodal frequency, narrowband, and broadband random excitations. The results indicate that time-varying stiffness effectively redistributes energy from resonance frequencies to other frequency bands, thereby suppressing resonance peaks and reducing displacement amplitudes. Furthermore, parametric analysis reveals that increasing the range of stiffness variation enhances spectral dispersion and improves vibration attenuation performance, and increasing the average stiffness level helps improve energy dispersion; however, it may lead to a slight increase in vibration response at low frequencies. Full article
(This article belongs to the Special Issue Novel Advances in Noise and Vibration Control)
Show Figures

Figure 1

21 pages, 16021 KB  
Article
Modal Analysis of Vortex-Induced Vibration of Marine Risers Under Dual-Flow Conditions
by Zihan Wen, Yijun Shen, Yongqi Ma, Yanlian Du, Hu Liu and Meng Li
Appl. Sci. 2025, 15(20), 11119; https://doi.org/10.3390/app152011119 - 16 Oct 2025
Viewed by 198
Abstract
Marine risers are susceptible to vortex-induced vibrations (VIV) in complex ocean current environments, posing significant risks to structural safety and fatigue life. This study, conducted on the Ansys Workbench platform, establishes a three-dimensional numerical model using bidirectional fluid–structure interaction (FSI) methods. Wet modal [...] Read more.
Marine risers are susceptible to vortex-induced vibrations (VIV) in complex ocean current environments, posing significant risks to structural safety and fatigue life. This study, conducted on the Ansys Workbench platform, establishes a three-dimensional numerical model using bidirectional fluid–structure interaction (FSI) methods. Wet modal analysis is employed to extract the riser’s natural frequencies, followed by a systematic comparison of vibration responses under uniform flow and linear shear flow conditions. The findings indicate that as the vortex shedding frequency approaches the structural natural frequency, the system exhibits pronounced frequency lock-in. Spectral analysis confirms that VIV dominates the dynamic response. Notably, under initial conditions (uniform flow velocity = 0.5 m/s; shear flow velocity = 0.05 m/s, Gradient = 0.025), shear flow induces larger vibration amplitudes. However, as flow velocity increases, uniform flow surpasses shear flow in both amplitude (maximum 0.03 D) and frequency (maximum 0.02 D). Modal analysis demonstrates that uniform flow excites the fourth-order mode, whereas shear flow confines the system in the second-order mode. Additional controlled simulations highlight the critical influence of the shear flow’s initial velocity on vibration modes, providing a theoretical basis for VIV suppression. Full article
(This article belongs to the Section Marine Science and Engineering)
Show Figures

Figure 1

18 pages, 4222 KB  
Article
Analytical and Numerical Investigation of Vibration Characteristics in Shear-Deformable FGM Beams
by Murat Çelik, Erol Demirkan and Ahmet Feyzi Yıldırım
J. Compos. Sci. 2025, 9(10), 567; https://doi.org/10.3390/jcs9100567 - 15 Oct 2025
Viewed by 386
Abstract
In this study, the free vibration characteristics of a functionally graded (FG) shear-deformable Timoshenko beam were investigated both analytically and numerically. The work is notable for its significant contribution to the literature, particularly in addressing analytically challenging problems related to complex FGM structures [...] Read more.
In this study, the free vibration characteristics of a functionally graded (FG) shear-deformable Timoshenko beam were investigated both analytically and numerically. The work is notable for its significant contribution to the literature, particularly in addressing analytically challenging problems related to complex FGM structures using advanced computer-aided finite element methods. For the analytical approach, the governing equations and associated boundary conditions were derived using Hamilton’s principle of minimum potential energy. These equations were then solved using the Navier solution method to determine the natural frequencies of the beam. In the numerical analysis, a 3D FG beam model was developed in the ABAQUS finite element software (2023, Dassault Systèmes, Providence, RI, USA)using the second-order hexahedral (HEX20/C3D20) and 1D three-node quadratic beam (B32) elements. The material gradation was defined layer-by-layer along the thickness direction in accordance with the rule of mixtures. Modal analysis was subsequently performed to extract the natural frequency values. The results show a high level of agreement between the analytical and numerical solutions. and were consistent with previously published studies in the literature. Full article
(This article belongs to the Special Issue Composite Materials for Civil Engineering Applications)
Show Figures

Figure 1

28 pages, 4782 KB  
Article
Computer Simulation of Whole-Body Vibration in Port Container Handling Machine Operators
by Ricardo Luís Alves Silva, Kleber Gonçalves Alves, José Ângelo Peixoto da Costa, Alvaro Antonio Villa Ochoa, Roberto Nobuyoshi Junior Yamada, Paula Suemy Arruda Michima, Gustavo de Novaes Pires Leite and Álvaro Augusto Soares Lima
Sensors 2025, 25(20), 6346; https://doi.org/10.3390/s25206346 - 14 Oct 2025
Viewed by 370
Abstract
This study aimed to evaluate the effect of whole-body vibrations (WBV) on ergonomics related to static posture during the operation of container handling machines (Portainer). A 3D numerical model of a seated man was developed using modal and harmonic analysis based on the [...] Read more.
This study aimed to evaluate the effect of whole-body vibrations (WBV) on ergonomics related to static posture during the operation of container handling machines (Portainer). A 3D numerical model of a seated man was developed using modal and harmonic analysis based on the finite element method (FEM), and implemented on the ANSYS platform to achieve this. Quantitative analyses of whole-body vibrations were carried out in actual workplaces at a port terminal in northeastern Brazil, considering the interaction between the human and the machine. A comparison was made between the real data collected at the operating sites and the values obtained from the developed model. Concerning vibration exposure, the results revealed a critical situation: in 86.2% of cases, the Acceleration of Resulting Normalized Exposure—A(8)—exceeded the alert level, and in 96.6% of cases, the Resulting Vibration Dose Value (VDV) also surpassed this threshold. Similarly, an alert level was exceeded in 97.0% of cases. According to the maximum limits established by Brazilian legislation, the acceleration from normalized exposure did not exceed the limit, while the resulting vibration dose value was surpassed in 20% of cases. The modal analysis results helped identify the critical directions of vibration response, thus supporting the assessment of human exposure effects and the structural performance of the system analyzed. The harmonic analysis showed good agreement between the model and the real acceleration data in the frequency range of 3 to 4 Hz. Full article
Show Figures

Figure 1

26 pages, 6383 KB  
Article
Dynamic Response Calculation of Inertial Coupled Nonlinear Systems Based on Real Modal Analysis and P-T Method
by Linyan Li, Yundong Li, Yumei Luo and Zhongxiang Li
Mathematics 2025, 13(20), 3278; https://doi.org/10.3390/math13203278 - 14 Oct 2025
Viewed by 165
Abstract
The development of efficient and accurate numerical methods forms a crucial foundation for revealing complex dynamic evolution in nonlinear dynamical systems. Focusing on nonlinear inertia-coupled systems, this paper constructs a semi-analytical method that integrates the mathematical framework of real modal analysis with the [...] Read more.
The development of efficient and accurate numerical methods forms a crucial foundation for revealing complex dynamic evolution in nonlinear dynamical systems. Focusing on nonlinear inertia-coupled systems, this paper constructs a semi-analytical method that integrates the mathematical framework of real modal analysis with the piecewise constant arguments and Taylor series (P-T) method. This method first conducts symmetric preprocessing on the second-order term coefficient matrix of the system to construct the proportional damping decoupling form. Then, it realizes the linear term decoupling corresponding to this proportional damping form by using the mathematical framework of real modal analysis. Finally, the P-T method is applied to solve the dynamic response of the nonlinear system. Numerical validation using a two-dimensional aeroelastic system demonstrates that, under the premise of achieving the same computational accuracy as the time-domain minimum residual method (TMRM), the computational efficiency of the proposed method is significantly better than that of TMRM. Full article
Show Figures

Figure 1

27 pages, 4891 KB  
Article
Practical Design of Lattice Cell Towers on Compact Foundations in Mountainous Terrain
by Oleksandr Kozak, Andrii Velychkovych and Andriy Andrusyak
Eng 2025, 6(10), 269; https://doi.org/10.3390/eng6100269 - 8 Oct 2025
Viewed by 394
Abstract
Cell towers play a key role in providing telecommunications infrastructure, especially in remote mountainous regions. This paper presents an approach to the efficient design of 42-metre-high cell towers intended to install high-power equipment in remote mountainous regions of the Carpathians (750 m above [...] Read more.
Cell towers play a key role in providing telecommunications infrastructure, especially in remote mountainous regions. This paper presents an approach to the efficient design of 42-metre-high cell towers intended to install high-power equipment in remote mountainous regions of the Carpathians (750 m above sea level). The region requires rapid deployment of many standardized towers adapted to geographical features. The main design challenges were the limited space available for the base, the impact of extreme weather conditions, and the need for a fast project implementation due to the critical importance of ensuring stable communication. Special methodological attention is given to how the transition between pyramidal and prismatic segments in cell tower shafts influences overall structural performance. The effect of this geometric boundary on structural efficiency and material usage has not been addressed in previous studies. A dedicated investigation shows that positioning the transition at a height of 33 m yields the best compromise between stiffness and weight, minimizing a generalized penalty function that accounts for both the horizontal displacement of the tower top and its total mass. Modal analysis confirms that the chosen configuration maintains a natural frequency of 1.68 Hz, ensuring a safe margin from resonance. For the final analysis of the behavior of towers with elements of different cross-sectional shapes, finite element modeling was used for a detailed numerical study of their structural and performance characteristics. This allowed us to assess the impact of geometric constraints of structures and take into account the most unfavorable combinations of static and dynamic loads. The study yields a concise rule of thumb for towers with compact foundations, namely that the pyramidal-to-prismatic transition should be placed at roughly 78–80% of the total tower height. Full article
(This article belongs to the Section Chemical, Civil and Environmental Engineering)
Show Figures

Figure 1

47 pages, 892 KB  
Review
Utilization of Stem Cells in Medicine: A Narrative Review
by Banu Ismail Mendi, Rahim Hirani, Alyssa Sayegh, Mariah Hassan, Lauren Fleshner, Banu Farabi, Mehmet Fatih Atak and Bijan Safai
Int. J. Mol. Sci. 2025, 26(19), 9659; https://doi.org/10.3390/ijms26199659 - 3 Oct 2025
Viewed by 620
Abstract
Regenerative medicine holds significant promise for addressing diseases and irreversible damage that are challenging to treat with conventional methods, making it a prominent research focus in modern medicine. Research on stem cells, a key area within regenerative medicine due to their self-renewal capabilities, [...] Read more.
Regenerative medicine holds significant promise for addressing diseases and irreversible damage that are challenging to treat with conventional methods, making it a prominent research focus in modern medicine. Research on stem cells, a key area within regenerative medicine due to their self-renewal capabilities, is expanding, positioning them as a novel therapeutic option. Stem cells, utilized in various treatments, are categorized based on their differentiation potential and the source tissue. The term ‘stem cell’ encompasses a broad spectrum of cells, which can be derived from embryonic tissues, adult tissues, or generated by reprogramming differentiated cells. These cells, applied across numerous medical disciplines including cardiovascular, neurological, and hematological disorders, as well as wound healing, demonstrate varying therapeutic applications based on their differentiation capacities, each presenting unique advantages and limitations. Nevertheless, the existing literature lacks a comprehensive synthesis examining stem cell therapy and its cellular subtypes across different medical specialties. This review addresses this lacuna by collectively categorizing contemporary stem cell research according to medical specialty and stem cell classification, offering an exhaustive analysis of their respective benefits and constraints, thereby elucidating multifaceted perspectives on the clinical implementation of this therapeutic modality. Full article
Show Figures

Figure 1

15 pages, 1938 KB  
Article
Low-Loss and Stable Light Transmission in Nano-Core Plus Node-Free Anti-Resonant Hollow-Core Fiber
by Yuyi Yin, Tingwu Ge, Tong Zhang and Zhiyong Wang
Nanomaterials 2025, 15(18), 1458; https://doi.org/10.3390/nano15181458 - 22 Sep 2025
Viewed by 569
Abstract
Anti-resonant hollow-core fibers (AR-HCFs) are emerging as highly promising candidates for high-power laser transmission and low-loss optical communication. Despite their advantages, issues such as scattering loss and core-mode instability remain significant obstacles for their practical implementation. In this study, we propose a novel [...] Read more.
Anti-resonant hollow-core fibers (AR-HCFs) are emerging as highly promising candidates for high-power laser transmission and low-loss optical communication. Despite their advantages, issues such as scattering loss and core-mode instability remain significant obstacles for their practical implementation. In this study, we propose a novel hybrid fiber structure, the nano-core plus node-free anti-resonant hollow-core fiber (NPNANF), which integrates a solid, high-index nano-core within a six-tube node-free anti-resonant cladding. This hybrid design effectively enhances optical confinement while minimizing scattering losses, without relying solely on anti-resonant guidance. Numerical simulations employing the beam propagation method (BPM) and finite element analysis (FEA) demonstrate that an optimal nano-core diameter of 600 nm leads to a remarkable reduction in transmission loss to 0.025 dB/km at 1550 nm, representing a 99.8% decrease compared to conventional NANF designs. A comprehensive loss model is developed, incorporating contributions from confinement, scattering, and absorption losses in both the hollow cladding and the solid core. Parametric studies further illustrate the tunability of the fiber’s design for various high-performance applications. The proposed NPNANF achieves an ultra-low transmission loss of 0.025 dB/km, representing a >99.8% reduction compared to conventional NANF, while confining more than 92% of optical power within the nano-core. Its resistance to bending loss, strong modal stability, and balance between hollow-core and solid-core guidance highlight the advantages of NPNANF for long-haul optical communication and high-power photonics. Full article
(This article belongs to the Section Theory and Simulation of Nanostructures)
Show Figures

Graphical abstract

26 pages, 43661 KB  
Article
Numerical Investigation of Atwood Number Effects on Shock-Driven Single-Mode Stratified Heavy Fluid Layers
by Salman Saud Alsaeed, Satyvir Singh and Nouf A. Alrubea
Mathematics 2025, 13(18), 3032; https://doi.org/10.3390/math13183032 - 19 Sep 2025
Cited by 1 | Viewed by 331
Abstract
This work presents a numerical investigation of Richtmyer–Meshkov instability (RMI) in shock-driven single-mode stratified heavy fluid layers, with emphasis on the influence of the Atwood number. High-order modal discontinuous Galerkin simulations are carried out for Atwood numbers ranging from A=0.30 to [...] Read more.
This work presents a numerical investigation of Richtmyer–Meshkov instability (RMI) in shock-driven single-mode stratified heavy fluid layers, with emphasis on the influence of the Atwood number. High-order modal discontinuous Galerkin simulations are carried out for Atwood numbers ranging from A=0.30 to 0.72, allowing a systematic study of interface evolution, vorticity dynamics, and mixing. The analysis considers diagnostic quantities such as interface trajectories, normalized interface length and amplitude, vorticity extrema, circulation, enstrophy, and kinetic energy. The results demonstrate that the Atwood number plays a central role in instability development. At low A, interface deformation remains smooth and coherent, with weaker vorticity deposition and delayed nonlinear roll-up. As A increases, baroclinic torque intensifies, leading to rapid perturbation growth, stronger vortex roll-ups, and earlier onset of secondary instabilities such as Kelvin–Helmholtz vortices. Enstrophy, circulation, and interface measures show systematic amplification with increasing density contrast, while the total kinetic energy exhibits relatively weak sensitivity to A. Overall, the study highlights how the Atwood number governs the transition from linear to nonlinear dynamics, controlling both large-scale interface morphology and the formation of small-scale vortical structures. These findings provide physical insight into shock–interface interactions and contribute to predictive modeling of instability-driven mixing in multicomponent flows. Full article
(This article belongs to the Special Issue High-Order Numerical Methods and Computational Fluid Dynamics)
Show Figures

Figure 1

19 pages, 3391 KB  
Article
Ancient Solutions for Modern Challenges: Structural Analysis of Roman Ventilated Facade Systems
by Armando La Scala
Buildings 2025, 15(17), 3229; https://doi.org/10.3390/buildings15173229 - 8 Sep 2025
Viewed by 510
Abstract
The rising need for sustainable building technologies and passive ventilation strategies has sparked renewed research interest in traditional building practices. In this regard, Roman thermal buildings are notable for their incorporation of sophisticated ventilated facade systems. Nevertheless, the structural performance of these buildings [...] Read more.
The rising need for sustainable building technologies and passive ventilation strategies has sparked renewed research interest in traditional building practices. In this regard, Roman thermal buildings are notable for their incorporation of sophisticated ventilated facade systems. Nevertheless, the structural performance of these buildings remains poorly understood. This study presents a numerical analysis of Roman ventilated facade systems, focusing on the Forum Women’s Thermal Baths in Pompeii. A nonlinear finite element model is developed in Straus7 to examine the dynamic response and establish baseline dynamic properties essential for future structural performance assessments. Modal analysis identified characteristic frequencies related to the horizontal translation modes. The numerical model will give insight into the load transfer pattern between the individual tegulae and the supporting structures. The results will provide a quantitative database on dynamic characteristics for these traditional systems and set out a verified computational procedure applicable in the fields of heritage conservation and current design practice. The current study combines archaeology and engineering in order to obtain valuable insights into ventilation strategies still applicable in the design of sustainable buildings. Full article
Show Figures

Figure 1

21 pages, 5344 KB  
Article
Development and Experimental Verification of Multi-Parameter Test Bench for Linear Rolling Guide
by Yunbo Zhao, Guobiao Wang, Peng Wang, Junjun Han, Bingxian Lu, Mingming Xue and Zhongji Hao
Machines 2025, 13(9), 811; https://doi.org/10.3390/machines13090811 - 4 Sep 2025
Viewed by 487
Abstract
The linear rolling guide (LRG) is widely used in the computer numerical control machine tool industry and other industries. To accurately evaluate the performance of LRGs, a multi-parameter test bench was developed to measure motion accuracy, preload drag force (PDF), vibration, temperature rise, [...] Read more.
The linear rolling guide (LRG) is widely used in the computer numerical control machine tool industry and other industries. To accurately evaluate the performance of LRGs, a multi-parameter test bench was developed to measure motion accuracy, preload drag force (PDF), vibration, temperature rise, and fatigue life. The mechanical structure and measurement and control system of the test bench were designed based on established principles and methods. ANSYS 19.0 software was used for static analysis of the gantry, modal analysis of the upper bed, and simulation of the impact of loading block thickness on load distribution uniformity. At the same time, we used an impact hammer modal test to verify the correctness of the finite element analysis of the upper bed. The analysis results validated the structural design. To verify the test bench’s repeatability, comparative experiments were conducted with the Hilectro LGD35-type LRGs, focusing on motion accuracy, PDF, and fatigue life. The experimental results confirmed the test bench’s high repeatability and validated the derived equations for measuring motion accuracy. Full article
(This article belongs to the Section Machine Design and Theory)
Show Figures

Figure 1

23 pages, 7480 KB  
Article
A Novel Condition Monitoring Technique for Mining Ground Engagement Tools via Modal Analysis
by Shasha Chen, Bernard F. Rolfe, James Griffin, Arnaldo Delli Carri, Ping Lu and Michael P. Pereira
Eng 2025, 6(9), 220; https://doi.org/10.3390/eng6090220 - 2 Sep 2025
Viewed by 563
Abstract
Ground engaging tools (GETs) are critical consumable components on mining excavators, and their timely replacement is essential to prevent risks and excessive downtime. This paper presents a monitoring method utilising the modal properties—natural frequencies and mode shapes. The method is applied in a [...] Read more.
Ground engaging tools (GETs) are critical consumable components on mining excavators, and their timely replacement is essential to prevent risks and excessive downtime. This paper presents a monitoring method utilising the modal properties—natural frequencies and mode shapes. The method is applied in a test case to show how the GETs on an excavator bucket could be monitored. Modal analysis and dynamic analysis are conducted with ANSYS to verify the effectiveness of the proposed method. The finite element analysis models are validated by experimental vibration experiments. The results demonstrate a strong correlation between changes in natural frequencies and the conditions of the teeth on the excavator bucket, when comparing the intact to the worn-out condition. In conclusion, the presented method offers a promising approach for real-time monitoring of the GETs on mining excavators and similar equipment. It will contribute to efficient maintenance interventions and enhancing operational efficiency and safety. Full article
Show Figures

Figure 1

15 pages, 2426 KB  
Article
Damping Ratio Estimation of Heavily Damped Structures Using State-Space Modal Responses
by Jungtae Noh, Jae-Seung Hwang and Maria Rosa Valluzzi
Sensors 2025, 25(17), 5416; https://doi.org/10.3390/s25175416 - 2 Sep 2025
Viewed by 552
Abstract
Vibration control systems are extensively utilized in structures to enhance their resilience against earthquakes and wind forces. However, structures with significant damping exhibit atypical damping behaviors, which impose constraints on the effectiveness of traditional modal analysis methods for discerning modal responses and estimating [...] Read more.
Vibration control systems are extensively utilized in structures to enhance their resilience against earthquakes and wind forces. However, structures with significant damping exhibit atypical damping behaviors, which impose constraints on the effectiveness of traditional modal analysis methods for discerning modal responses and estimating properties. To surmount this challenge, a novel State-Space-Based Modal Decomposition approach is proposed in this study. The State-Space-Based Modal Decomposition technique adeptly extracts modal responses and identifies modal attributes from acquired data of highly damped structures. The approach accurately calculates damping ratios and natural frequencies by scrutinizing the power spectrum within the deconstructed modal response. The validity of this method is confirmed through a numerical simulation with a three-degree-of-freedom system equipped with oil dampers and experimentation of a structure outfitted with a tuned mass damper system. The findings underscore that the transfer function of the modal response in state-space encompasses both displacement and velocity transfer functions. The results demonstrate that precise estimation of modal parameters can be accomplished by suitably evaluating the participation ratio of the two response components. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

Back to TopTop