Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = oculo-neurological syndrome

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2937 KB  
Article
Frameshift Variant in AMPD2 in Cirneco dell’Etna Dogs with Retinopathy and Tremors
by Leonardo Murgiano, Jessica K. Niggel, Leontine Benedicenti, Matteo Cortellari, Arianna Bionda, Paola Crepaldi, Luigi Liotta, Geoffrey K. Aguirre, William A. Beltran and Gustavo D. Aguirre
Genes 2024, 15(2), 238; https://doi.org/10.3390/genes15020238 - 13 Feb 2024
Cited by 1 | Viewed by 2658
Abstract
While the manifestations of many inherited retinal disorders are limited to loss of vision, others are part of a syndrome that affects multiple tissues, particularly the nervous system. Most syndromic retinal disorders are thought to be recessively inherited. Two dogs out of a [...] Read more.
While the manifestations of many inherited retinal disorders are limited to loss of vision, others are part of a syndrome that affects multiple tissues, particularly the nervous system. Most syndromic retinal disorders are thought to be recessively inherited. Two dogs out of a litter of Cirneco dell′ Etna dogs, both males, showed signs of retinal degeneration, along with tremors and signs described as either atypical seizures or paroxysmal dyskinesias, while the other two male littermates were normal. We named this oculo-neurological syndrome CONS (Cirneco oculo-neurological syndrome), and undertook homozygosity mapping and whole-genome sequencing to determine its potential genetic etiology. Notably, we detected a 1-bp deletion in chromosome 6 that was predicted to cause a frameshift and premature stop codon within the canine AMPD2 gene, which encodes adenosine monophosphate deaminase, an enzyme that converts adenosine 5′-monophosphate (AMP) to inosine 5’-monophosphate (IMP). Genotyping of the available Cirneco population suggested perfect segregation between cases and controls for the variant. Moreover, this variant was absent in canine genomic databases comprised of thousands of unaffected dogs. The AMPD2 genetic variant we identified in dogs presents with retinal manifestations, adding to the spectrum of neurological manifestations associated with AMPD2 variants in humans. Full article
(This article belongs to the Topic Animal Models of Human Disease 2.0)
Show Figures

Figure 1

Back to TopTop