Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (478)

Search Parameters:
Keywords = old-growth forest

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2194 KB  
Article
The Age-Dependent Response of Carbon Coordination in the Organs of Pinus yunnanensis Seedlings Under Shade Stress
by Juncheng Han, Yuanxi Liu, Wenhao Zhang, Guihe Duan, Jialan Chen, Weisong Zhu and Junwen Wu
Plants 2025, 14(17), 2679; https://doi.org/10.3390/plants14172679 - 27 Aug 2025
Viewed by 242
Abstract
To elucidate shade adaptation mechanisms in Pinus yunnanensis seedlings across different ages, this study established five light gradients (100% full sunlight as control or CK, 80% as L1, 45% as L2, 30% as L3, and 5% as L4) for experimental treatments on one- [...] Read more.
To elucidate shade adaptation mechanisms in Pinus yunnanensis seedlings across different ages, this study established five light gradients (100% full sunlight as control or CK, 80% as L1, 45% as L2, 30% as L3, and 5% as L4) for experimental treatments on one- and three-year-old seedlings. By analyzing dynamic changes in non-structural carbohydrates (NSCs) and their components within needles, stems, and roots—combined with a phenotypic plasticity assessment, a correlation analysis, and a principal component analysis—we explored the carbon metabolic adaptations under shade stress. The key results demonstrate the following: (1) Increasing shade intensity significantly reduced the NSCs in the needles and roots of both age groups. The stem NSCs markedly decreased under L1 and L2, indicating “carbon limitation.” However, under severe shade (L3 and L4), the stem NSCs stabilized while the stem soluble sugars gradually increased. In three-year-old Pinus yunnanensis seedlings under the L3 treatment, the ratio of soluble sugars to starch in the stems reached as high as 5.772 g·kg−1, yet the stem NSC content showed no significant change. This pattern exhibited “growth stagnation-carbon enrichment” characteristics. This reveals a physiological strategy for maintaining stem carbon homeostasis through a “structure–metabolism” trade-off under carbon limitation. (2) Shade adaptations diverged by age: one-year-old seedlings employed a short-term “needle–root source–sink reallocation” strategy, whereas three-year-old seedlings developed a “root–stem–needle closed-loop homeostasis regulation” mechanism. (3) Age-specific shade thresholds were identified: one-year-old seedlings required >80% full light to maintain a carbon balance, while three-year-old seedlings exhibited enhanced root carbon storage under moderate shade (45–80% full light). This study clarifies the physiological mechanisms by which P. yunnanensis seedlings of varying ages optimize shade adaptation through organ-specific carbon allocation, providing a theoretical foundation for shade management in artificial forests and understory seedling conservation. Full article
(This article belongs to the Special Issue Abiotic Stress Responses in Plants—Second Edition)
Show Figures

Figure 1

18 pages, 12490 KB  
Article
Differences in Soil CO2 Emissions Between Managed and Unmanaged Stands of Quercus robur L. in the Republic of Serbia
by Velisav Karaklić, Miljan Samardžić, Saša Orlović, Igor Guzina, Milica Kovač, Zoran Novčić and Zoran Galić
Forests 2025, 16(9), 1369; https://doi.org/10.3390/f16091369 - 23 Aug 2025
Viewed by 370
Abstract
Soils act as sources or sinks for three major greenhouse gases (CO2, CH4, and N2O). Approximately 20% of global CO2 emissions are released from soils through the soil respiration process. Soil respiration (soil CO2 emission) [...] Read more.
Soils act as sources or sinks for three major greenhouse gases (CO2, CH4, and N2O). Approximately 20% of global CO2 emissions are released from soils through the soil respiration process. Soil respiration (soil CO2 emission) can account for over 85% of ecosystem respiration. The aim of this study was to compare managed and unmanaged stands of pedunculate oak (Quercus robur L.) in order to investigate the impact of forest management on soil CO2 emissions. We selected one managed and two unmanaged stands. The first stand (S1) represents a managed middle-aged stand, which is the optimal stage of development. The second stand (S2) belongs to the over-mature stage of development in an old-growth oak forest, while the third stand (S3) belongs to the decay stage of development in an old-growth oak forest. The closed chambers method was used for air sampling and the air samples were analyzed using gas chromatography (GC). Multiple regression models that include soil temperature (ST), soil moisture (SM), and their interaction provide a better explanation for variation in soil CO2 emission (SCDE) (higher R2 values) compared to regression models that only involve two variables (ST and SM). The study showed that SCDE in the decay stage of old-growth forest (S3) was significantly lower (p < 0.001) compared to the other two stands (S1 and S2). S3 is characterized by very low canopy cover and intensive natural regeneration, unlike S1 and S2. However, there were no significant differences in SCDE between the managed middle-aged stand (S1) and the over-mature (old-growth) stand (S2). Over a long-term rotation period in pedunculate oak forests, forest management practices that involve the periodic implementation of moderate silvicultural interventions can be deemed acceptable in terms of maintaining the carbon balance in the soil. Full article
Show Figures

Figure 1

25 pages, 5843 KB  
Article
Scaling Plant Functional Strategies from Species to Communities in Regenerating Amazonian Forests: Insights for Restoration in Deforested Landscapes
by Carlos H. Rodríguez-León, Armando Sterling, Dorman D. Daza-Giraldo, Yerson D. Suárez-Córdoba and Lilia L. Roa-Fuentes
Diversity 2025, 17(8), 570; https://doi.org/10.3390/d17080570 - 14 Aug 2025
Viewed by 358
Abstract
Understanding how main plant functional strategies scale from species to communities is critical for guiding restoration in tropical disturbed areas by unsustainable livestock grazing; yet, the patterns and drivers of functional trait space along successional trajectories remain poorly understood. Here, we investigated functional [...] Read more.
Understanding how main plant functional strategies scale from species to communities is critical for guiding restoration in tropical disturbed areas by unsustainable livestock grazing; yet, the patterns and drivers of functional trait space along successional trajectories remain poorly understood. Here, we investigated functional trait space using principal component analyses (PCAs) based on eight traits related to leaf, stem, and seed morphology across 226 tree species and 33 forest communities along a chronosequence of natural regeneration following cattle ranching abandonment in deforested landscapes of the Colombian Amazon. We identified three species-level functional axes—namely, the ‘Structural–Reproductive Allocation Axis’, the ‘Mechanical Support and Tissue Investment Axis’, and the ‘Leaf Economics Axis’—and two community-level axes: the ‘Colonization–Longevity Axis’ and the ‘Persistence–Acquisition Axis’. These axes aligned with the life-history strategies of short-lived pioneers, long-lived pioneers, and old-growth species, and reflected their relationships with key environmental drivers. Community-level functional composition reflected species-level patterns, but was also shaped by soil properties, microclimate, and tree species richness. Forest age and precipitation promoted conservative strategies, while declining soil fertility suggested a decoupling between above- and belowground recovery. Functional richness and divergence were highest in mid-successional forests dominated by long-lived pioneers. Our findings highlight the role of environmental and successional filters in shaping functional trait space and emphasize the value of functionally diverse communities. Particularly, our results indicate that long-lived pioneers (LLP) such as Astrocaryum chambira Burret and Pouteria campanulata Baehni, with traits like large height, intermediate wood density, and larger seed size, represent ideal candidates for early enrichment strategies due to their facilitation roles in succession supporting restoration efforts in regenerating Amazonian forests. Full article
Show Figures

Figure 1

13 pages, 1201 KB  
Article
Post-Fire Succession in an Old-Growth Coast Redwood (Sequoia sempervirens) Forest
by Mojgan Mahdizadeh and Will Russell
Fire 2025, 8(8), 322; https://doi.org/10.3390/fire8080322 - 14 Aug 2025
Viewed by 546
Abstract
In 2020, a high-intensity wildfire burned over 35,000 ha in the Santa Cruz Mountains of California, including over 1700 ha of old-growth coast redwood forest. This event created a unique opportunity to evaluate post-fire succession. We compared vegetation recovery in high versus low/moderate [...] Read more.
In 2020, a high-intensity wildfire burned over 35,000 ha in the Santa Cruz Mountains of California, including over 1700 ha of old-growth coast redwood forest. This event created a unique opportunity to evaluate post-fire succession. We compared vegetation recovery in high versus low/moderate severity burned areas using data collected one year and four years following the fire. Random plot sampling was conducted at Big Basin Redwoods State Park to assess the regeneration of trees, shrubs, and herbaceous species. Descriptive and inferential statistical analyses were used to assess recovery over time and across burn severities. Results indicate significant increases in shrub cover and richness over time, with a positive association between shrub recruitment and high-severity fire. Notably, the fire-adapted species blue blossom (Ceanothus thyrsiflorus Eschsch.), which was not recorded one year following the fire, dominated the shrub layer after four years, particularly in higher severity areas. Herbaceous species also exhibited an increase in cover and richness over time, though a substantial portion of that increase was based on non-native species recruitment. Analysis did not indicate a significant relationship between fire severity and herbaceous species recovery, however. The regeneration of tree species occurred both through seedling recruitment and basal sprouting. The recruitment of basal sprouts was prolific following the fire, particularly for coast redwood. The number of basal sprouts declined significantly during the time frame of this study, as the sprouts became larger and began to self-thin. Seedling abundance, on the other hand, exhibited an approximately 30-fold increase. Seedling recruitment was primarily driven by coast redwood (Sequoia sempervirens [Lamb. ex D.Don] Endl) and Douglas fir (Pseudotsuga menziesii [Mirb.] Franco) and was positively correlated with low/moderate fire severity. These findings underscore the complex interactions shaping post-fire forest dynamics and highlight the importance of understanding such patterns to inform management strategies that support the resiliency of coast redwood forests in an era of increasing wildfires. Full article
Show Figures

Figure 1

20 pages, 2116 KB  
Article
Effects of Different Soil Phosphorus Levels on the Physiological and Growth Characteristics of Phyllostachys edulis (Moso Bamboo) Seedlings
by Zhenya Yang and Benzhi Zhou
Plants 2025, 14(16), 2473; https://doi.org/10.3390/plants14162473 - 9 Aug 2025
Viewed by 425
Abstract
Soil phosphorus (P) availability is a critical factor affecting the productivity of Phyllostachys edulis (moso bamboo) forests. However, the mechanisms underlying the physiological and growth responses of moso bamboo to varying soil P conditions remain poorly understood. The aim of this study was [...] Read more.
Soil phosphorus (P) availability is a critical factor affecting the productivity of Phyllostachys edulis (moso bamboo) forests. However, the mechanisms underlying the physiological and growth responses of moso bamboo to varying soil P conditions remain poorly understood. The aim of this study was to elucidate the adaptive mechanisms of moso bamboo to different soil P levels from the perspectives of root morphological and architectural plasticity, as well as the allocation strategies of nutrient elements and photosynthates. One-year-old potted seedlings of moso bamboo were subjected to four P addition treatments (P1: 0, P2: 25 mg·kg−1, P3: 50 mg·kg−1, P4: 100 mg·kg−1) for one year. The biomass of different seedling organs, root morphological and architectural indices, and the contents of nitrogen (N), P, and non-structural carbohydrates in the roots, stems, and leaves were measured in July and December. P addition increased the root length (by 113.8%), root surface area (by 146.5%), root average diameter (by 14.8%), root length ratio of thicker roots (diameter > 0.9 mm), number of root tips (by 31.9%), fractal dimension (by 5.6%), P accumulation (by 235.8%), and contents of starch (ST) and soluble sugars (SS), while it decreased the specific root length (by 31.7%), root branching angle (by 1.9%), root topological index (by 4.8%), root length ratio of finer roots (diameter ≤ 0.3 mm), SS/ST, and N/P. The root–shoot ratio showed a downward trend in July and an upward trend in December. Our results indicated that moso bamboo seedlings tended to form roots with a small diameter, high absorption efficiency, and minimal internal competition to adapt to soil P deficiency and carbon limitation caused by low P. Under low-P conditions, moso bamboo prioritized allocating photosynthates and P to roots, promoting the conversion of starch to soluble sugars to support root morphological and architectural plasticity and maintain root growth and physiological functions. Sole P addition eliminated the constraints of low P on moso bamboo growth and nutrient accumulation but caused imbalances in the N/P. Full article
Show Figures

Figure 1

16 pages, 3127 KB  
Article
Change Patterns of Understory Vegetation Diversity and Rhizosphere Soil Microbial Community Structure in a Chronosequence of Phellodendron chinense Plantations
by Chuan Xie, Peng Song, Zhiyu Zhang, Qiuping Gong, Jiaojiao Wu and Zhipeng Sun
Forests 2025, 16(8), 1298; https://doi.org/10.3390/f16081298 - 8 Aug 2025
Viewed by 320
Abstract
The effects of Phellodendron chinense plantations on soil properties, microbial characteristics, and the plant diversity across forest age remain poorly understood. In this study, four forest ages (2-, 5-, 8-, and 12-year-old) were examined to compare soil nutrient status, rhizosphere microbial community composition, [...] Read more.
The effects of Phellodendron chinense plantations on soil properties, microbial characteristics, and the plant diversity across forest age remain poorly understood. In this study, four forest ages (2-, 5-, 8-, and 12-year-old) were examined to compare soil nutrient status, rhizosphere microbial community composition, and plant diversity. Our results showed that understory vegetation comprised 56 plant species from 29 families, with species richness significantly increasing with forest age. Rhizosphere soils showed a marked decline in pH and a significant increase in organic carbon, while nutrient dynamics followed distinct trends: P and Mg exhibited continuous accumulation; N displayed unimodal patterns; and K and Ca initially decreased before rising. Microbial community structure shifted significantly with forest age—the dominant bacterial phylum transitioned from Proteobacteria in young stands to Acidobacteriota in mature forests, whereas fungal communities underwent a successional sequence from Basidiomycota (2a) to Ascomycota (5–8a) and finally to Rozellomycota (12a). Correlation analyses demonstrated that plant diversity (S index) was positively correlated with P, K, Ca, and Mg, whereas fungal Shannon diversity was primarily driven by soil N and pH. These findings indicate that forest age mediates plant–soil-microbe interactions through rhizosphere environmental changes. For sustainable plantation management, we recommend (1) dynamically optimizing understory vegetation composition, (2) regulating soil pH and moisture during key growth stages, and (3) selecting compatible companion plants to enhance rhizosphere conditions. Full article
(This article belongs to the Section Forest Soil)
Show Figures

Figure 1

14 pages, 2574 KB  
Article
Assessing the Effect of Undirected Forest Restoration and Flooding on the Soil Quality in an Agricultural Floodplain
by Addison Wessinger, Anna Juarez and Clayton J. Williams
Soil Syst. 2025, 9(3), 88; https://doi.org/10.3390/soilsystems9030088 - 7 Aug 2025
Viewed by 346
Abstract
This study investigated the impacts of land-use history and an episodic flood event on the soil quality of a riverine floodplain ecosystem, providing long-term and short-term disturbance perspectives. The study took place in the Saint Michael’s College Natural Area, which has over a [...] Read more.
This study investigated the impacts of land-use history and an episodic flood event on the soil quality of a riverine floodplain ecosystem, providing long-term and short-term disturbance perspectives. The study took place in the Saint Michael’s College Natural Area, which has over a hundred-year history of land-use change. Based on aerial orthoimagery, three zones (a recently abandoned farm field, a new-growth forest, and an old-growth forest) were selected that reflected different land-use histories. Two plots were selected per zone and pooled soil samples were collected from each before and after a major flooding event. Surface soil quality before flooding was often similar among the new- and old-growth forested areas (1.4 mg-P/g-soil, 6.8% soil organic matter (SOM), 0.79 humification index (HIX), and 13% Peak T) but differed from that found in the recently abandoned farm field, which had higher phosphorus levels (1.6 mg-P/g-soil), lower SOM content (3.9%), more microbial-like SOM (0.65 HIX and 17% Peak T), and drier soils. Flooding caused SOM to better resemble that of a forest rather than an agricultural field, and it lowered phosphorus levels. The results of our study suggest that episodic flooding events could help accelerate the restoration of soil organic matter conditions. Full article
(This article belongs to the Special Issue Research on Soil Management and Conservation: 2nd Edition)
Show Figures

Figure 1

15 pages, 1685 KB  
Article
Wildfires and Palm Species Response in a Terra Firme Amazonian Social Forest
by Tinayra T. A. Costa, Vynicius B. Oliveira, Maria Fabíola Barros, Fernando W. C. Andrade, Marcelo Tabarelli and Ima C. G. Vieira
Forests 2025, 16(8), 1271; https://doi.org/10.3390/f16081271 - 3 Aug 2025
Viewed by 504
Abstract
Tropical forests continue to experience high levels of habitat loss and degradation, with wildfires becoming a frequent component of human-modified landscapes. Here we investigate the response of palm species to the conversion of old-growth forests to successional mosaics, including forest patches burned during [...] Read more.
Tropical forests continue to experience high levels of habitat loss and degradation, with wildfires becoming a frequent component of human-modified landscapes. Here we investigate the response of palm species to the conversion of old-growth forests to successional mosaics, including forest patches burned during wildfires. Palms (≥50 cm height) were recorded once in 2023–2024, across four habitat classes: terra firme old-growth stands, regenerating forest stands associated with slash-and-burn agriculture, old-growth stands burned once and twice, and active cassava fields, in the Tapajós-Arapiuns Extractive Reserve, in the eastern Brazilian Amazon. The flammability of palm leaf litter and forest litter were also examined to assess the potential connections between palm proliferation and wildfires. A total of 10 palm species were recorded in this social forest (including slash-and-burn agriculture and resulting successional mosaics), with positive, negative, and neutral responses to land use. Species richness did not differ among forest habitats, but absolute palm abundance was greatest in disturbed habitats. Only Attalea spectabilis Mart. (curuá) exhibited increased relative abundance across disturbed habitats, including active cassava field. Attalea spectabilis accounted for almost 43% of all stems in the old-growth forest, 89% in regenerating forests, 90% in burned forests, and 79% in crop fields. Disturbed habitats supported a five-to-ten-fold increment in curuá leaves as a measure of habitat flammability. Although curuá litter exhibited lower flame temperature and height, its lower carbon and higher volatile content is expected to be more sensitive to fire ignition and promote the spread of wildfires. The conversion of old-growth forests into social forests promotes the establishment of palm-dominated forests, increasing the potential for a forest transition further fueled by wildfires, with effects on forest resilience and social reproduction still to be understood. Full article
(This article belongs to the Special Issue Ecosystem-Disturbance Interactions in Forests)
Show Figures

Figure 1

16 pages, 1526 KB  
Article
Effects of Different Phosphorus Addition Levels on Physiological and Growth Traits of Pinus massoniana (Masson Pine) Seedlings
by Zhenya Yang and Hui Wang
Forests 2025, 16(8), 1265; https://doi.org/10.3390/f16081265 - 2 Aug 2025
Viewed by 344
Abstract
Soil phosphorus (P) availability is an important determinant of productivity in Pinus massoniana (Masson pine) forests. The mechanistic bases governing the physiological and growth responses of Masson pine to varying soil P conditions remain insufficiently characterized. This study aims to decipher the adaptive [...] Read more.
Soil phosphorus (P) availability is an important determinant of productivity in Pinus massoniana (Masson pine) forests. The mechanistic bases governing the physiological and growth responses of Masson pine to varying soil P conditions remain insufficiently characterized. This study aims to decipher the adaptive strategies of Masson pine to different soil P levels, focusing on root morphological–architectural plasticity and the allocation dynamics of nutrient elements and photosynthetic assimilates. One-year-old potted Masson pine seedlings were exposed to four P addition treatments for one year: P0 (0 mg kg−1), P1 (25 mg kg−1), P2 (50 mg·kg−1), and P3 (100 mg kg−1). In July and December, measurements were conducted on seedling organ biomass, root morphological indices [root length (RL), root surface area (RSA), root diameter (RD), specific root length (SRL), and root length ratio (RLR) for each diameter grade], root architectural indices [number of root tips (RTs), fractal dimension (FD), root branching angle (RBA), and root topological index (TI)], as well as the content of nitrogen (N), phosphorus (P), carbon (C), and non-structural carbohydrates (NSCs) in roots, stems, and leaves. Compared with the P0 treatment, P2 and P3 significantly increased root biomass, root–shoot ratio, RL, RSA, RTs, RLR of finer roots (diameter ≤ 0.4 mm), nutrient accumulation ratio in roots, and starch (ST) content in roots, stems and leaves. Meanwhile, they decreased soluble sugar (SS) content, SS/ST ratio, C and N content, and N/P and C/P ratios in stems and leaves, as well as nutrient accumulation ratio in leaves. The P3 treatment significantly reduced RBA and increased FD and SRL. Our results indicated that Masson pine adapts to low P by developing shallower roots with a reduced branching intensity and promoting the conversion of ST to SS. P’s addition effectively alleviates growth limitations imposed by low P, stimulating root growth, branching, and gravitropism. Although a sole P addition promotes short-term growth and P uptake, it triggers a substantial consumption of N, C, and SS, leading to significant decreases in N/P and C/P ratios and exacerbating N’s limitation, which is detrimental to long-term growth. Under high-P conditions, Masson pine strategically prioritizes allocating limited N and SS to roots, facilitating the formation of thinner roots with low C costs. Full article
Show Figures

Figure 1

19 pages, 1721 KB  
Article
Demography and Biomass Productivity in Colombian Sub-Andean Forests in Cueva de los Guácharos National Park (Huila): A Comparison Between Primary and Secondary Forests
by Laura I. Ramos, Cecilia M. Prada and Pablo R. Stevenson
Forests 2025, 16(8), 1256; https://doi.org/10.3390/f16081256 - 1 Aug 2025
Viewed by 947
Abstract
Understanding species composition and forest dynamics is essential for predicting biomass productivity and informing conservation in tropical montane ecosystems. We evaluated floristic, demographic, and biomass changes in eighteen 0.1 ha permanent plots in the Colombian Sub-Andean forest, including both primary (ca. 60 y [...] Read more.
Understanding species composition and forest dynamics is essential for predicting biomass productivity and informing conservation in tropical montane ecosystems. We evaluated floristic, demographic, and biomass changes in eighteen 0.1 ha permanent plots in the Colombian Sub-Andean forest, including both primary (ca. 60 y old) and secondary forests (ca. 30 years old). Two censuses of individuals (DBH ≥ 2.5 cm) were conducted over 7–13 years. We recorded 516 species across 202 genera and 89 families. Floristic composition differed significantly between forest types (PERMANOVA, p = 0.001), and black oak (Trigonobalanus excelsa Lozano, Hern. Cam. & Henao) forests formed distinct assemblages. Demographic rates were higher in secondary forests, with mortality (4.17% yr), recruitment (4.51% yr), and relative growth rate (0.02% yr) exceeding those of primary forests. The mean aboveground biomass accumulation and the rate of annual change were higher in primary forests (447.5 Mg ha−1 and 466.8 Mg ha−1 yr−1, respectively) than in secondary forests (217.2 Mg ha−1 and 217.2 Mg ha−1 yr−1, respectively). Notably, black oak forests showed the greatest biomass accumulation and rate of change in biomass. Annual net biomass production was higher in secondary forests (8.72 Mg ha−1 yr−1) than in primary forests (5.66 Mg ha−1 yr−1). These findings highlight the ecological distinctiveness and recovery potential of secondary Sub-Andean forests and underscore the value of multitemporal monitoring to understand forest resilience and assess vulnerability to environmental change. Full article
(This article belongs to the Special Issue Forest Inventory: The Monitoring of Biomass and Carbon Stocks)
Show Figures

Figure 1

21 pages, 3109 KB  
Article
Effects of Forest Age and Invasive Shrubs on Mycophilous Coleoptera Communities in a Temperate Deciduous Woodland
by Jeffrey M. Brown and John O. Stireman
Insects 2025, 16(7), 735; https://doi.org/10.3390/insects16070735 - 18 Jul 2025
Viewed by 501
Abstract
Forests in the Eastern and Midwestern U.S. have been profoundly affected by human use over the last 150 years, with few old growth forests remaining. Such mature forests may harbor distinct communities and high biodiversity, particularly detritivores and their associated food webs. These [...] Read more.
Forests in the Eastern and Midwestern U.S. have been profoundly affected by human use over the last 150 years, with few old growth forests remaining. Such mature forests may harbor distinct communities and high biodiversity, particularly detritivores and their associated food webs. These communities, however, have been surveyed only rarely in comparisons of diversity and community composition between old and young forests. Here, we compare the mycophilous beetle communities of young and old deciduous forest stands in Southwestern Ohio (U.S.A.). We assess how the abundance and diversity of beetles associated with fungal sporocarps varies with forest age, downed woody debris, and invasive honeysuckle density. We surveyed fungus-associated beetles with baited traps at eight wooded parklands centered around Dayton, Ohio, conducting sampling three times over a growing season. In contrast to expectation, we found no clear effect of forest age on mycophilous beetle communities, but infestation by invasive honeysuckle (Lonicera maackii) negatively affected beetle abundance and diversity. Beetle abundance, richness, and community composition also strongly varied across seasonal sampling periods. Our surveys of mycophilous beetles in a Midwestern U.S. forest represent an initial step toward understanding how these communities are shaped by forest age and invasive species. Such information is crucial in managing forests to preserve biodiversity and ecosystem services. Full article
(This article belongs to the Special Issue The Richness of the Forest Microcosmos)
Show Figures

Figure 1

17 pages, 1455 KB  
Article
Effects of Simulated Nitrogen Deposition on the Physiological and Growth Characteristics of Seedlings of Two Typical Subtropical Tree Species
by Zhenya Yang and Benzhi Zhou
Plants 2025, 14(14), 2153; https://doi.org/10.3390/plants14142153 - 11 Jul 2025
Viewed by 549
Abstract
Amid global environmental change, the intensification of nitrogen (N) deposition exerts critical impacts on the growth of forest vegetation and the structure and function of ecosystems in subtropical China. However, the physiological and growth response mechanisms of subtropical tree species remain poorly understood. [...] Read more.
Amid global environmental change, the intensification of nitrogen (N) deposition exerts critical impacts on the growth of forest vegetation and the structure and function of ecosystems in subtropical China. However, the physiological and growth response mechanisms of subtropical tree species remain poorly understood. This study explored adaptive mechanisms of typical subtropical tree species to N deposition, analyzing biomass accumulation, root plasticity, and nutrient/photosynthate allocation strategies. One-year-old potted seedlings of Phyllostachys edulis (moso bamboo) and Cunninghamia lanceolata (Chinese fir) were subjected to four N-addition treatments (N0: 0, N1: 6 g·m−2·a−1, N2: 12 g·m−2·a−1, N3: 18 g·m−2·a−1) for one year. In July and December, measurements were conducted on seedling organ biomass, root morphological and architectural traits, as well as nutrient elements (N and phosphorus(P)) and non-structural carbohydrate (soluble sugars and starch) contents in roots, stems, and leaves. Our results demonstrate that the Chinese fir exhibits stronger tolerance to N deposition and greater root morphological plasticity than moso bamboo. It adapts to N deposition by developing root systems with a higher finer root (diameter ≤ 0.2 mm) ratio, lower construction cost, greater branching intensity and angle, and architecture approaching dichotomous branching. Although N deposition promotes short-term biomass and N accumulation in both species, it reduces P and soluble sugars contents, leading to N/P imbalance and adverse effects on long-term growth. Under conditions of P and photosynthate scarcity, the Chinese fir preferentially allocates soluble sugars to leaves, while moso bamboo prioritizes P and soluble sugars to roots. In the first half of the growing season, moso bamboo allocates more biomass and N to aboveground parts, whereas in the second half, it allocates more biomass and P to roots to adapt to N deposition. This study reveals that Chinese fir enhances its tolerance to N deposition through the plasticity of root morphology and architecture, while moso bamboo exhibits dynamic resource allocation strategies. The research identifies highly adaptive root morphological and architectural patterns, demonstrating that optimizing the allocation of elements and photosynthates and avoiding elemental balance risks represent critical survival mechanisms for subtropical tree species under intensified N deposition. Full article
Show Figures

Figure 1

16 pages, 3044 KB  
Article
Not Only Heteromorphic Leaves but Also Heteromorphic Twigs Determine the Growth Adaptation Strategy of Populus euphratica Oliv.
by Yujie Xue, Benmo Li, Shuai Shao, Hang Zhao, Shuai Nie, Zhijun Li and Jingwen Li
Forests 2025, 16(7), 1131; https://doi.org/10.3390/f16071131 - 9 Jul 2025
Viewed by 281
Abstract
The distinctive leaf and twig heteromorphism in Euphrates poplar (Populus euphratica Oliv.) reflects its adaptive strategies to cope with arid environments across ontogenetic stages. In the key distribution area of P. euphratica forests in China, we sampled P. euphratica twigs (which grow [...] Read more.
The distinctive leaf and twig heteromorphism in Euphrates poplar (Populus euphratica Oliv.) reflects its adaptive strategies to cope with arid environments across ontogenetic stages. In the key distribution area of P. euphratica forests in China, we sampled P. euphratica twigs (which grow in the current year) at different age classes (1-, 3-, 5-, 8-, and 11-year-old trees), then analyzed their morphological traits, biomass allocation, as well as allometric relationships. Results revealed significant ontogenetic shifts: seedlings prioritized vertical growth by lengthening stems (32.06 ± 10.28 cm in 1-year-olds) and increasing stem biomass allocation (0.36 ± 0.14 g), while subadult trees developed shorter stems (6.80 ± 2.42 cm in 11-year-olds) with increasesd petiole length (2.997 ± 0.63 cm) and lamina biomass (1.035 ± 0.406 g). Variance partitioning showed that 93%–99% of the trait variation originated from age and individual differences. Standardized major axis analysis demonstrated a consistent “diminishing returns” allometry in biomass allocation (lamina–stem slope = 0.737, lamina–petiole slope = 0.827), with age-modulated intercepts reflecting developmental adjustments. These patterns revealed an evolutionary trade-off strategy where subadult trees optimized photosynthetic efficiency through compact architecture and enhanced hydraulic safety, while seedlings prioritized vertical space occupation. Our findings revealed that heteromorphic twigs play a pivotal role in modular trait coordination, providing mechanistic insights into P. euphratica’s adaptation to extreme aridity throughout its lifespan. Full article
(This article belongs to the Section Forest Ecophysiology and Biology)
Show Figures

Figure 1

16 pages, 10777 KB  
Article
Afforestation of Abandoned Agricultural Land: Growth of Non-Native Tree Species and Soil Response in the Czech Republic
by Abubakar Yahaya Tama, Anna Manourova, Ragheb Kamal Mohammad and Vilém Podrázský
Forests 2025, 16(7), 1113; https://doi.org/10.3390/f16071113 - 5 Jul 2025
Viewed by 978
Abstract
Non-Native Tree Species (NNTs) play crucial roles in global and European forests. However, in the Czech Republic, NNTs represent a tiny fraction of the forested areas due to limited research on their potential use. The country is actively afforesting abandoned agricultural lands; NNTs [...] Read more.
Non-Native Tree Species (NNTs) play crucial roles in global and European forests. However, in the Czech Republic, NNTs represent a tiny fraction of the forested areas due to limited research on their potential use. The country is actively afforesting abandoned agricultural lands; NNTs which are already tested and certified could enhance the country’s forestry system. This study aimed to evaluate the initial growth of Castanea sativa, Platanus acerifolia, and Corylus colurna under three soil treatments on abandoned agricultural soil, evaluate the survival and mortality of the tree species, and further compare the soil dynamics among the three ecosystems to describe the initial state and short-term changes in the soil environment. The research plot was set in the Doubek area, 20 km East of Prague. Moreover, soil-improving materials, Humac (1.0 t·ha−1) and Alginite (1.5 t·ha−1), were established on the side of the control plot at the afforested part. The heights of plantations of tree species were measured from 2020 to 2024. Furthermore, 47 soil samples were collected at varying depths from three ecosystems (afforested soil, arable land, and old forest) in 2022. A single-factor ANOVA was run, followed by a post hoc test. The result shows that the Control-C plot (Castanea Sativa + Platanus acerifolia + Corylus colurna + agricultural soil without amendment) had the highest total growth (mean annual increment in the year 2024) for Castanea sativa (KS = 40.90 ± a21.61) and Corylus colurna (LS = 55.62 ± 59.68); Alginite-A (Castanea Sativa + Platanus acerifolia + Corylus colurna + Alginite) did best for Platanus acerifolia (PT = 39.85 ± 31.52); and Humac-B (Castanea Sativa + Platanus acerifolia + Corylus colurna + Humac) had the lowest growth. Soil dynamics among the three ecosystems showed that the old forest (plot two) significantly differs from arable soil (plot one), Humac and Platanus on afforested land (plot three), Platanus and Alginite on afforested land (plot four), and Platanus without amendment (plot five) in horizon three (the subsoil or horizon B) and in horizon four (the parent material horizon or horizon C). Results document the minor response of plantations to soil-improving matters at relatively rich sites, good growth of plantations, and initial changes in the soil characteristics in the control C plot. We recommend both sparing old forests and the afforestation of abandoned agricultural soils using a control treatment for improved tree growth and sustained soil quality. Further studies on the species’ invasiveness are needed to understand them better. Full article
(This article belongs to the Section Forest Soil)
Show Figures

Figure 1

22 pages, 4448 KB  
Article
Can Shape–Size–Increment Models Guide the Sustainable Management of Araucaria Forests? Insights from Selected Stands in Southern Brazil
by André Felipe Hess, Veraldo Liesenberg, Laryssa Demétrio, Laio Zimermann Oliveira, Marchante Olímpio Assura Ambrósio, Emanuel Arnoni Costa and Polyana da Conceição Bispo
Forests 2025, 16(7), 1105; https://doi.org/10.3390/f16071105 - 4 Jul 2025
Viewed by 359
Abstract
Sustainable Forest Management (SFM) requires the building of relationships among diameter increment, shape, and size (ISS), and increment–age variables to identify critical changes in forest structure and dynamics. This understanding is essential for maintaining forest productivity, structural and species diversity, stability, and sustainability. [...] Read more.
Sustainable Forest Management (SFM) requires the building of relationships among diameter increment, shape, and size (ISS), and increment–age variables to identify critical changes in forest structure and dynamics. This understanding is essential for maintaining forest productivity, structural and species diversity, stability, and sustainability. This study focused on measuring, reporting, and modeling these relationships for Araucaria angustifolia (Bertol.) Kuntze, across various diameters and three stands, located at different rural properties in southern Brazil. A random sample of 186 individual trees was acquired; the trees were measured for multiple dendrometric variables, and several morphometric indices were calculated. Additionally, two cores were extracted from each tree using an increment borer, enabling the measurement of growth rings and annual diameter increments. These were modeled using generalized linear models to assess the relationships among them and to quantify changes in forest structure and dynamics. The results revealed the dominance of A. angustifolia and a decline in the increment rate with increasing age, shape, and size in both old and young trees, indicating potential risks to the structure and dynamics of these unmanaged forests. Therefore, the models constructed in this study can guide conservation-by-use efforts and ensure the long-term continuity and productivity of forest remnants at selected rural properties, where A. angustifolia trees are predominant. Full article
(This article belongs to the Section Forest Inventory, Modeling and Remote Sensing)
Show Figures

Figure 1

Back to TopTop