Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (160)

Search Parameters:
Keywords = oligomerizing peptides

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1831 KB  
Article
Saccharomyces boulardii CNCM I-745 Supernatant Improves Markers of Gut Barrier Function and Inflammatory Response in Small Intestinal Organoids
by Louisa Filipe Rosa, Steffen Gonda, Nadine Roese and Stephan C. Bischoff
Pharmaceuticals 2025, 18(8), 1167; https://doi.org/10.3390/ph18081167 - 6 Aug 2025
Viewed by 847
Abstract
Objectives: Saccharomyces boulardii CNCM I-745, a probiotic yeast, is effectively used for the treatment of acute diarrhea as well as for the prevention and treatment of traveller‘s diarrhea and diarrhea under tube feeding. The underlying mechanisms are not fully elucidated. Both antitoxic [...] Read more.
Objectives: Saccharomyces boulardii CNCM I-745, a probiotic yeast, is effectively used for the treatment of acute diarrhea as well as for the prevention and treatment of traveller‘s diarrhea and diarrhea under tube feeding. The underlying mechanisms are not fully elucidated. Both antitoxic and regulatory effects on the intestinal barrier, mediated either by the yeast or yeast-derived substrates, have been discussed. Methods: To examine the effects of Saccharomyces boulardii released substrates (S.b.S) on gastrointestinal (GI) barrier function, a murine small intestinal organoid cell model under stress was used. Stress was induced by lipopolysaccharide (LPS) exposure or withdrawal of growth factors from cell culture medium (GFRed). Stressed organoids were treated with S.b.S (200 µg/mL), and markers of GI barrier and inflammatory response were assessed. Results: GFRed-induced stress was characterized by disturbances in selected tight junction (TJ) (p < 0.05), adherent junction (AJ) (p < 0.001), and mucin (Muc) formation (p < 0.01), measured by gene expressions, whereby additional S.b.S treatment was found to reverse these effects by increasing Muc2 (from 0.22 to 0.97-fold change, p < 0.05), Occludin (Ocln) (from 0.37 to 3.5-fold change, p < 0.0001), and Claudin (Cldn)7 expression (from 0.13 ± 0.066-fold change, p < 0.05) and by decreasing Muc1, Cldn2, Cldn5, and junctional adhesion molecule A (JAM-A) expression (all p < 0.01). Further, S.b.S normalized expression of nucleotide binding oligomerization domain (Nod)2- (from 44.5 to 0.51, p < 0.0001) and matrix metalloproteinase (Mmp)7-dependent activation (from 28.3 to 0.02875 ± 0.0044 ** p < 0.01) of antimicrobial peptide defense and reduced the expression of several inflammatory markers, such as myeloid differentiation primary response 88 (Myd88) (p < 0.01), tumor necrosis factor α (Tnfα) (p < 0.01), interleukin (IL)-6 (p < 0.01), and IL-1β (p < 0.001). Conclusions: Our data provide new insights into the molecular mechanisms by which Saccharomyces boulardii CNCM I-745-derived secretome attenuates inflammatory responses and restores GI barrier function in small intestinal organoids. Full article
(This article belongs to the Topic Probiotics: New Avenues)
Show Figures

Graphical abstract

22 pages, 7007 KB  
Article
Functionalization of Two-Component Gelatinous Peptide/Reactive Oligomer Hydrogels with Small Molecular Amines for Enhanced Cellular Interaction
by Caroline Kohn-Polster, Benno M. Müller, Jan Krieghoff, Awais Nawaz, Iram Maqsood, Annett Starke, Kirsten Haastert-Talini, Michaela Schulz-Siegmund and Michael Christian Hacker
Int. J. Mol. Sci. 2025, 26(11), 5316; https://doi.org/10.3390/ijms26115316 - 31 May 2025
Viewed by 644
Abstract
A platform of two-component cross-linked hydrogel (cGEL) based on gelatinous peptides and anhydride-containing cross-linkers (oPNMA, oPDMA) is extended for use in peripheral nerve regeneration. Hybrid composites with bio-/chemical cues for enhanced biophysical and biochemical properties were fabricated by covalently grafting small molecular, heterobifunctional [...] Read more.
A platform of two-component cross-linked hydrogel (cGEL) based on gelatinous peptides and anhydride-containing cross-linkers (oPNMA, oPDMA) is extended for use in peripheral nerve regeneration. Hybrid composites with bio-/chemical cues for enhanced biophysical and biochemical properties were fabricated by covalently grafting small molecular, heterobifunctional amines including the nerve growth factor mimetic LM11A-31 to the oligomeric cross-linkers prior to hydrogel formation. The cytocompatibility and growth-supportive conditions within the matrix are confirmed for pristine and modified hydrogels using L929 mouse fibroblasts and human adipose-derived stem cells (hASCs). For hASCs, cell behavior depends on the type of cross-linker and integrated amine. In a subsequent step, neonatal rat Schwann cells (SCs) are seeded on pristine and functionalized cGEL to investigate the materials’ capabilities to support SC growth and morphology. Within all formulations, cell viability, adherence, and cell extension are maintained though the cell elongation and orientation vary compared to the two-dimensional control. It is possible to merge adjustable two-component hydrogels with amines as biochemical signals, leading to improved nervous cell proliferation and activity. This indicates the potential of tunable bioactive cGEL as biomaterials in nerve implants, suggesting their use as a foundational component for nerve conduits. Full article
Show Figures

Figure 1

26 pages, 4306 KB  
Article
Metformin-Induced Apoptosis Is Mediated Through Mitochondrial VDAC1
by Anna Shteinfer-Kuzmine, Meital M. Moyal, Aditya Karunanithi Nivedita, Sweta Trishna, Almog Nadir, Shubhandra Tripathi and Varda Shoshan-Barmatz
Pharmaceuticals 2025, 18(5), 757; https://doi.org/10.3390/ph18050757 - 20 May 2025
Viewed by 822
Abstract
Background: Besides diabetes mellitus, metformin has been identified as a potential therapeutic agent for treating various other conditions that include various cancers, cardiovascular diseases, neurodegenerative diseases, and aging. In cancer, metformin increased apoptotic cell death, while inhibiting it in neurodegenerative diseases. Thus, different [...] Read more.
Background: Besides diabetes mellitus, metformin has been identified as a potential therapeutic agent for treating various other conditions that include various cancers, cardiovascular diseases, neurodegenerative diseases, and aging. In cancer, metformin increased apoptotic cell death, while inhibiting it in neurodegenerative diseases. Thus, different modes of metformin action at the molecular level have been proposed. Methods: In this study, we present the mitochondria and the VDAC1 (voltage-dependent anion channel) as a potential target of metformin. Results: Metformin induces VDAC1 overexpression, its oligomerization, and subsequent apoptosis. Metformin analogs phenformin and buformin at much lower concentrations also induce VDAC1 overexpression, oligomerization, and cell death. We demonstrate the interaction of metformin with purified VDAC1, which inhibited its channel conduction in a voltage-dependent manner. Metformin bound to the synthetic VDAC1-N-terminal peptide and binding to this domain was also found by its molecular docking with VDAC1. Moreover, we demonstrated metformin binding to purified hexokinases (HK-I) with a 400-fold lower metformin concentration than that required for cell death induction. In cells, metformin induced HK-I detachment from the mitochondrial VDAC1. Lastly, metformin increased the expression of NLRP3 and ASC and induced their co-localization, suggesting inflammasome activation. Conclusions: The results suggest that VDAC1 is a target for metformin and its analogs, and this is associated with metformin’s adverse effects on many diseases. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

26 pages, 5961 KB  
Article
Structural Features Underlying the Mismatch Between Catalytic and Cytostatic Properties in L-Asparaginase from Rhodospirillum rubrum
by Igor D. Zlotnikov, Anastasia N. Shishparyonok, Marina V. Pokrovskaya, Svetlana S. Alexandrova, Dmitry D. Zhdanov and Elena V. Kudryashova
Catalysts 2025, 15(5), 476; https://doi.org/10.3390/catal15050476 - 12 May 2025
Cited by 1 | Viewed by 582
Abstract
The underlying structural features of the mismatch between catalytic and cytostatic properties in L-asparaginase from Rhodospirillum rubrum (RrA) and three of its mutants were investigated. The rationale for selecting the specific mutations (RrAA64V, E67K; RrAR118H, G120R; RrAE149R, V150P, [...] Read more.
The underlying structural features of the mismatch between catalytic and cytostatic properties in L-asparaginase from Rhodospirillum rubrum (RrA) and three of its mutants were investigated. The rationale for selecting the specific mutations (RrAA64V, E67K; RrAR118H, G120R; RrAE149R, V150P, F151T) is to elucidate the role of inter-subunit interaction in RrA and its impact on catalytic efficiency and stability. Bioinformatic modeling revealed a predominantly negative surface charge on RrA with limited positive charge clusters in the vicinity of the interface region. Thus, some negatively charged groups were replaced with positively charged ones to enhance the electrostatic interactions and stabilize the enzyme quaternary structure. RrAA64V, E67K and RrAR118H, G120R additionally contained an N-terminal 17-amino acid capsid peptide derived from the bacteriophage T7 (MASMTGGQQMGRGSSRQ), which could potentially affect the conformational stability of theenzymes. Circular dichroism (CD) spectroscopy was applied to the kinetic parameters analysis of Asn hydrolysis and showed that native RrA displayed a Vmax of 30 U/mg and a KM of 4.5 ± 0.5 mM. RrAE149R, V150P, and F151T exhibited a substantially increased Vmax of 57 U/mg. The catalytic efficiency of Vmax/KM also improved compared to the native enzyme: the Vmax/KM increased from approximately 7 U/mg × mM−1 (for the native enzyme) to 9 U/mg × mM−1 for Mut3. Other mutants exhibited less pronounced changes. Thermo-denaturation studies allowed us to determine the phase transition parameters of the RrA variants in comparison with commercial reference sample EcA. RrAA64V, E67K and RrAR118H, G120R exhibited the most favorable phase transition parameters, with melting temperatures (Tm) of 60.3 °C and 59.4 °C, respectively, exceeding that of the wild-type RrA (54.6 °C) and RrAE149R, V150P, F151T (52 °C). The EcA demonstrated a slightly superior thermal stability, with a Tm of 62 °C. The mutations showed a significant effect on protein stability during trypsinolysis. Therefore, RrAE149R, V150P, F151T showed higher resistance (45% activity remaining after 30 min of trypsin exposure) compared to the native RrA retained 20% activity. EcA preparations exhibited lower stability to trypsinolysis (losing over 90% activity in 15 min). The cytostatic effects were evaluated using MTT assays against K562 (leukemic) and A549 (lung carcinoma) cell lines. The MTT assays with K562 cells revealed that RrAE149R, V150P, F151T (IC50 of 10 U/mL) and RrAR118H, G120R (IC50 of 11.5 U/mL) exhibited superior antiproliferative activity compared to native enzymes RrA (IC50 of 15 U/mL) and EcA (24 U/mL). RrAE149R, V150P, F151T showed the most significant improvement in cytostatic activity. The results obtained indicate that the substitutions in RrAE149R, V150P, F151T resulted in the improvement of the enzyme biocatalytic properties and an increase in the resistance to aggregation and trypsinolysis. This highlights the role of electrostatic interactions in stabilizing the oligomeric structure of the enzyme, which eventually translates into an improvement in cytostatic efficiency and antiproliferative forces. Full article
(This article belongs to the Section Biocatalysis)
Show Figures

Figure 1

23 pages, 18738 KB  
Article
Interaction Between Glucagon-like Peptide 1 and Its Analogs with Amyloid-β Peptide Affects Its Fibrillation and Cytotoxicity
by Ekaterina A. Litus, Marina P. Shevelyova, Alisa A. Vologzhannikova, Evgenia I. Deryusheva, Alina V. Chaplygina, Victoria A. Rastrygina, Andrey V. Machulin, Valeria D. Alikova, Aliya A. Nazipova, Maria E. Permyakova, Victor V. Dotsenko, Sergei E. Permyakov and Ekaterina L. Nemashkalova
Int. J. Mol. Sci. 2025, 26(9), 4095; https://doi.org/10.3390/ijms26094095 - 25 Apr 2025
Viewed by 1306
Abstract
Clinical data as well as animal and cell studies indicate that certain antidiabetic drugs, including glucagon-like peptide 1 receptor agonists (GLP-1RAs), exert therapeutic effects in Alzheimer’s disease (AD) by modulating amyloid-β peptide (Aβ) metabolism. Meanwhile, the direct interactions between GLP-1RAs and Aβ and [...] Read more.
Clinical data as well as animal and cell studies indicate that certain antidiabetic drugs, including glucagon-like peptide 1 receptor agonists (GLP-1RAs), exert therapeutic effects in Alzheimer’s disease (AD) by modulating amyloid-β peptide (Aβ) metabolism. Meanwhile, the direct interactions between GLP-1RAs and Aβ and their functional consequences remain unexplored. In this study, the interactions between monomeric Aβ40/Aβ42 of GLP-1(7-37) and its several analogs (semaglutide (Sema), liraglutide (Lira), exenatide (Exen)) were studied using biolayer interferometry and surface plasmon resonance spectroscopy. The quaternary structure of GLP-1RAs was investigated using dynamic light scattering. The effects of GLP-1RAs on Aβ fibrillation were assessed using the thioflavin T assay and electron microscopy. The impact of GLP-1RAs on Aβ cytotoxicity was evaluated via the MTT assay. Monomeric Aβ40 and Aβ42 directly bind to GLP-1(7-37), Sema, Lira, and Exen, with the highest affinity for Lira (the lowest estimates of equilibrium dissociation constants were 42–60 nM). GLP-1RAs are prone to oligomerization, which may affect their binding to Aβ. GLP-1(7-37) and Exen inhibit Aβ40 fibrillation, whereas Sema promotes it. GLP-1 analogs decrease Aβ cytotoxicity toward SH-SY5Y cells, while GLP-1(7-37) enhances Aβ40 cytotoxicity without affecting the cytotoxic effect of Aβ42. Overall, GLP-1RAs interact with Aβ and differentially modulate its fibrillation and cytotoxicity, suggesting the need for further studies of our observed effects in vivo. Full article
Show Figures

Figure 1

13 pages, 6449 KB  
Article
Characterization and Functional Analysis of RhHsfA7, a Heat Stress Transcription Factor in Roses (Rosa hybrid ‘Samantha’)
by Yaqi Sun, Sudan Li, Xiang Wu, Jiao Zhu, Fei Dong, Zhaoshun Pei, Zhenguo Li, Shanxing Zhao and Chengpeng Wang
Plants 2025, 14(8), 1155; https://doi.org/10.3390/plants14081155 - 8 Apr 2025
Cited by 1 | Viewed by 690
Abstract
Heat stress transcription factors (Hsfs) are crucial transcription factors (TFs) in plants, playing pivotal roles in responding to abiotic stresses. However, their specific functions in regulating heat stress responses in roses are not yet fully elucidated. Here, we cloned an Hsf gene, RhHsfA7 [...] Read more.
Heat stress transcription factors (Hsfs) are crucial transcription factors (TFs) in plants, playing pivotal roles in responding to abiotic stresses. However, their specific functions in regulating heat stress responses in roses are not yet fully elucidated. Here, we cloned an Hsf gene, RhHsfA7, from the rose variety Rosa hybrid ‘Samantha’. This gene contains a coding sequence (CDS) of 1086 bp, encoding 361 amino acids. The RhHsfA7 protein has a molecular weight of 41.21 kDa, an isoelectric point of 5.41, and no signal peptide or transmembrane structure. Phylogenetic analyses revealed that RhHsfA7 is most closely related to AtHsfA7a, AtHsfA7b, and AtHsfA6b in Arabidopsis thaliana, and is phylogenetically closer to Rosaceae species compared to other species. The RhHsfA7 protein possesses conserved domains, including an oligomerization domain (OD), a nuclear localization signal (NLS), a DNA-binding domain (DBD), and a nuclear export signal (NES), as well as the HsfA subfamily-specific transcriptional activation domain (AHA). RhHsfA7 was localized in the nucleus and exhibited transcriptional activation activity. Expression analysis revealed that RhHsfA7 was highly expressed in roots and leaves, and its expression was heat-specific. In rose leaves, through silencing and transient overexpression experiments, we discovered that silencing RhHsfA7 resulted in heat sensitivity, whereas transient overexpression of RhHsfA7 increased heat tolerance. Collectively, our findings suggest that RhHsfA7 positively regulates tolerance to heat stress in roses. Full article
(This article belongs to the Special Issue Ornamental Plants and Urban Gardening II)
Show Figures

Figure 1

45 pages, 9857 KB  
Review
Plant-Based Inhibitors of Protein Aggregation
by Olha Zhytniakivska, Tanmay Chaturvedi and Mette Hedegaard Thomsen
Biomolecules 2025, 15(4), 481; https://doi.org/10.3390/biom15040481 - 25 Mar 2025
Cited by 2 | Viewed by 2318
Abstract
The assembly of amyloidogenic proteins and peptides into toxic oligomeric and fibrillar aggregates is closely connected to the onset and progression of more than 50 protein diseases, such as Alzheimer’s disease, Parkinson’s disease, prion disease, and type 2 diabetes, to name only a [...] Read more.
The assembly of amyloidogenic proteins and peptides into toxic oligomeric and fibrillar aggregates is closely connected to the onset and progression of more than 50 protein diseases, such as Alzheimer’s disease, Parkinson’s disease, prion disease, and type 2 diabetes, to name only a few. Considerable research efforts at identifying the therapeutic strategies against these maladies are currently focused on preventing and inhibiting pathogenic protein aggregation by various agents. Plant-based extracts and compounds have emerged as promising sources of potential inhibitors due to their dual role as nutraceuticals as part of healthy diets and as specific pharmaceuticals when administered at higher concentrations. In recent decades, several plant extracts and plant-extracted compounds have shown potential to modulate protein aggregation. An ever-growing body of research on plant-based amyloid inhibitors requires a detail analysis of existing data to identify potential knowledge gaps. This review summarizes the recent progress in amyloid inhibition using 17 flavonoids, 11 polyphenolic non-flavonoid compounds, 23 non-phenolic inhibitors, and 59 plant extracts, with the main emphasis on directly modulating the fibrillation of four amyloid proteins, namely amyloid-β peptide, microtubule-associated protein tau, α-synuclein, and human islet amyloid polypeptide. Full article
Show Figures

Figure 1

26 pages, 6566 KB  
Review
The B30.2/SPRY-Domain: A Versatile Binding Scaffold in Supramolecular Assemblies of Eukaryotes
by Peer R. E. Mittl and Hans-Dietmar Beer
Crystals 2025, 15(3), 281; https://doi.org/10.3390/cryst15030281 - 19 Mar 2025
Viewed by 979
Abstract
B30.2 domains, sometimes referred to as PRY/SPRY domains, were originally identified by sequence profiling methods at the gene level. The B30.2 domain comprises a concanavalin A-like fold consisting of two twisted seven-stranded anti-parallel β-sheets. B30.2 domains are present in about 150 human and [...] Read more.
B30.2 domains, sometimes referred to as PRY/SPRY domains, were originally identified by sequence profiling methods at the gene level. The B30.2 domain comprises a concanavalin A-like fold consisting of two twisted seven-stranded anti-parallel β-sheets. B30.2 domains are present in about 150 human and 700 eukaryotic proteins, usually fused to other domains. The B30.2 domain represents a scaffold, which, through six variable loops, binds different unrelated peptides or endogenous low-molecular-weight compounds. At the cellular level, B30.2 proteins engage in supramolecular assemblies with important signaling functions. In humans, B30.2 domains are often found in E3-ligases, such as tripartite motif (Trim) proteins, SPRY domain-containing SOCS box proteins, Ran binding protein 9 and −10, Ret-finger protein-like, and Ring-finger proteins. The B30.2 protein recognizes the target and recruits the E2-conjugase by means of the fused domains, often involving specific adaptor proteins. Further well-studied B30.2 proteins are the methyltransferase adaptor protein Ash2L, some butyrophilins, and Ryanodine Receptors. Although the affinity of an isolated B30.2 domain to its ligand might be weak, it can increase strongly due to avidity effects upon recognition of oligomeric targets or in the context of macromolecular machines. Full article
(This article belongs to the Special Issue Protein Crystallography: The State of the Art)
Show Figures

Graphical abstract

21 pages, 2283 KB  
Review
Mental Health Disorders Due to Gut Microbiome Alteration and NLRP3 Inflammasome Activation After Spinal Cord Injury: Molecular Mechanisms, Promising Treatments, and Aids from Artificial Intelligence
by Pranav Kalaga and Swapan K. Ray
Brain Sci. 2025, 15(2), 197; https://doi.org/10.3390/brainsci15020197 - 14 Feb 2025
Viewed by 1747
Abstract
Aside from its immediate traumatic effects, spinal cord injury (SCI) presents multiple secondary complications that can be harmful to those who have been affected by SCI. Among these secondary effects, gut dysbiosis (GD) and the activation of the NOD (nucleotide-binding oligomerization domain) like [...] Read more.
Aside from its immediate traumatic effects, spinal cord injury (SCI) presents multiple secondary complications that can be harmful to those who have been affected by SCI. Among these secondary effects, gut dysbiosis (GD) and the activation of the NOD (nucleotide-binding oligomerization domain) like receptor-family pyrin-domain-containing three (NLRP3) inflammasome are of special interest for their roles in impacting mental health. Studies have found that the state of the gut microbiome is thrown into disarray after SCI, providing a chance for GD to occur. Metabolites such as short-chain fatty acids (SCFAs) and a variety of neurotransmitters produced by the gut microbiome are hampered by GD. This disrupts healthy cognitive processes and opens the door for SCI patients to be impacted by mental health disorders. Additionally, some studies have found an increased presence and activation of the NLRP3 inflammasome and its respective parts in SCI patients. Preclinical and clinical studies have shown that NLRP3 inflammasome plays a key role in the maturation of pro-inflammatory cytokines that can initiate and eventually aggravate mental health disorders after SCI. In addition to the mechanisms of GD and the NLRP3 inflammasome in intensifying mental health disorders after SCI, this review article further focuses on three promising treatments: fecal microbiome transplants, phytochemicals, and melatonin. Studies have found these treatments to be effective in combating the pathogenic mechanisms of GD and NLRP3 inflammasome, as well as alleviating the symptoms these complications may have on mental health. Another area of focus of this review article is exploring how artificial intelligence (AI) can be used to support treatments. AI models have already been developed to track changes in the gut microbiome, simulate drug-gut interactions, and design novel anti-NLRP3 inflammasome peptides. While these are promising, further research into the applications of AI for the treatment of mental health disorders in SCI is needed. Full article
(This article belongs to the Section Molecular and Cellular Neuroscience)
Show Figures

Graphical abstract

19 pages, 2543 KB  
Review
Effect of N-Acetyl Cysteine as an Adjuvant Treatment in Alzheimer’s Disease
by Sarah Monserrat Lomelí Martínez, Fermín Paul Pacheco Moisés, Oscar Kurt Bitzer-Quintero, Javier Ramírez-Jirano, Daniela L. C. Delgado-Lara, Irán Cortés Trujillo, Juan Heriberto Torres Jasso, Joel Salazar-Flores and Erandis Dheni Torres-Sánchez
Brain Sci. 2025, 15(2), 164; https://doi.org/10.3390/brainsci15020164 - 7 Feb 2025
Cited by 6 | Viewed by 4206
Abstract
Oxidative stress levels are exacerbated in Alzheimer’s disease (AD). This phenomenon feeds back into the overactivation of oxidase enzymes, mitochondrial dysfunction, and the formation of advanced glycation end-products (AGEs), with the stimulation of their receptors (RAGE). These factors stimulate Aβ peptide aggregation and [...] Read more.
Oxidative stress levels are exacerbated in Alzheimer’s disease (AD). This phenomenon feeds back into the overactivation of oxidase enzymes, mitochondrial dysfunction, and the formation of advanced glycation end-products (AGEs), with the stimulation of their receptors (RAGE). These factors stimulate Aβ peptide aggregation and tau hyperphosphorylation through multiple pathways, which are addressed in this paper. The aim of this study was to evaluate the regulatory effect of N-acetyl cysteine (NAC) on oxidant/antioxidant balance as an adjuvant treatment in patients with AD. The results obtained showed that NAC supplementation produced improved cognitive performance, decreased levels of oxidative stress markers, lowered activities of oxidase enzymes, increased antioxidant responses, and attenuated inflammatory and apoptotic markers. Moreover, NAC reversed mitochondrial dysfunction, lowered AGEs-RAGE formation, attenuated Aβ peptide oligomerization, and reduced phosphorylation of tau, thereby halting the formation of neurofibrillary tangles and the progression of AD. Full article
Show Figures

Figure 1

13 pages, 885 KB  
Communication
Cholesterol Attenuates the Pore-Forming Capacity of CARC-Containing Amphipathic Peptides
by Ilya P. Oleynikov, Alexander M. Firsov, Natalia V. Azarkina and Tatiana V. Vygodina
Int. J. Mol. Sci. 2025, 26(2), 533; https://doi.org/10.3390/ijms26020533 - 10 Jan 2025
Viewed by 838
Abstract
Artificial peptides P4, A1 and A4 are homologous to amphipathic α-helical fragments of the influenza virus M1 protein. P4 and A4 contain the cholesterol recognition sequence CARC, which is absent in A1. As shown previously, P4 and A4 but not A1 have cytotoxic [...] Read more.
Artificial peptides P4, A1 and A4 are homologous to amphipathic α-helical fragments of the influenza virus M1 protein. P4 and A4 contain the cholesterol recognition sequence CARC, which is absent in A1. As shown previously, P4 and A4 but not A1 have cytotoxic effects on some eukaryotic and bacterial cells. This might be caused by the dysfunction of cholesterol-dependent cellular structures, inhibition of the respiratory chain, or disruption of the membrane. Here, we analyzed the latter hypothesis by studying the uncoupling effect of the peptides on asolectin membranes. The influence of A4 on Δψ pre-formed either by the valinomycin-dependent K+ diffusion or by the activity of membrane-built cytochrome c oxidase (CcO) was studied on (proteo)liposomes. Also, we investigated the effect of P4, A1 and A4 on liposomes loaded with calcein. It is found that A4 in a submicromolar range causes an immediate and complete dissipation of diffusion Δψ across the liposomal membrane. Uncoupling of the CcO-containing proteoliposomes requires an order of magnitude of higher peptide concentration, which may indicate the sorption of A4 on the enzyme. The presence of cholesterol in the membrane significantly weakens the uncoupling. Submicromolar A4 and P4 cause the release of calcein from liposomes, indicating the formation of membrane pores. The process develops in minutes and is significantly decelerated by cholesterol. Micromolar A1 induces pore formation in a cholesterol-independent manner. We conclude that the peptides P4, A4 and, in higher concentrations, A1 form pores in the asolectin membrane. The CARC-mediated interaction of A4 and P4 with cholesterol impedes the peptide oligomerization necessary for pore formation. The rapid uncoupling effect of A4 is apparently caused by an increase in the proton conductivity of the membrane without pore formation. Full article
(This article belongs to the Special Issue Structural and Functional Analysis of Amino Acids and Proteins)
Show Figures

Figure 1

18 pages, 3842 KB  
Article
Co-Localized in Amyloid Plaques Cathepsin B as a Source of Peptide Analogs Potential Drug Candidates for Alzheimer’s Disease
by Marilena K. Theodoropoulou, Konstantina D. Vraila, Nikos C. Papandreou, Georgia I. Nasi and Vassiliki A. Iconomidou
Biomolecules 2025, 15(1), 28; https://doi.org/10.3390/biom15010028 - 30 Dec 2024
Viewed by 1083
Abstract
Alzheimer’s disease (AD) is a complex neurodegenerative disorder characterized by extracellular amyloid plaques, predominantly consisting of amyloid-β (Aβ) peptides. The oligomeric form of Aβ is acknowledged as the most neurotoxic, propelling the pathological progression of AD. Interestingly, besides A [...] Read more.
Alzheimer’s disease (AD) is a complex neurodegenerative disorder characterized by extracellular amyloid plaques, predominantly consisting of amyloid-β (Aβ) peptides. The oligomeric form of Aβ is acknowledged as the most neurotoxic, propelling the pathological progression of AD. Interestingly, besides Aβ, other proteins are co-localized within amyloid plaques. Peptide analogs corresponding to the “aggregation-prone” regions (APRs) of these proteins could exhibit high-affinity binding to Aβ and significant inhibitory potential against the Aβ oligomerization process. The peptide analogs of co-localized protease, Cathepsin B, may act as such potent inhibitors. In silico studies on the complexes of the oligomeric state of Aβ and Cathepsin B peptide analogs were performed utilizing molecular docking and molecular dynamics simulations, revealing that these analogs disrupt the β-sheet-rich core of Aβ oligomers, a critical structural feature of their stability. Of the four peptide analogs evaluated, two demonstrated considerable potential by effectively destabilizing oligomers while maintaining low self-aggregation propensity, i.e., a crucial consideration for therapeutic safety. These findings point out the potential of APR-derived peptide analogs from co-localized proteins as innovative agents against AD, paving the way for further exploration in peptide-based therapeutic development. Full article
(This article belongs to the Special Issue Amyloid-Beta and Alzheimer’s Disease)
Show Figures

Figure 1

31 pages, 5017 KB  
Review
Structures of Oligomeric States of Tau Protein, Amyloid-β, α-Synuclein and Prion Protein Implicated in Alzheimer’s Disease, Parkinson’s Disease and Prionopathies
by Ondrej Cehlar, Stefana Njemoga, Marian Horvath, Erik Cizmazia, Zuzana Bednarikova and Exequiel E. Barrera
Int. J. Mol. Sci. 2024, 25(23), 13049; https://doi.org/10.3390/ijms252313049 - 4 Dec 2024
Cited by 4 | Viewed by 3526
Abstract
In this review, we focus on the biophysical and structural aspects of the oligomeric states of physiologically intrinsically disordered proteins and peptides tau, amyloid-β and α-synuclein and partly disordered prion protein and their isolations from animal models and human brains. These protein states [...] Read more.
In this review, we focus on the biophysical and structural aspects of the oligomeric states of physiologically intrinsically disordered proteins and peptides tau, amyloid-β and α-synuclein and partly disordered prion protein and their isolations from animal models and human brains. These protein states may be the most toxic agents in the pathogenesis of Alzheimer’s and Parkinson’s disease. It was shown that oligomers are important players in the aggregation cascade of these proteins. The structural information about these structural states has been provided by methods such as solution and solid-state NMR, cryo-EM, crosslinking mass spectrometry, AFM, TEM, etc., as well as from hybrid structural biology approaches combining experiments with computational modelling and simulations. The reliable structural models of these protein states may provide valuable information for future drug design and therapies. Full article
(This article belongs to the Special Issue Protein Folding: 2nd Edition)
Show Figures

Figure 1

15 pages, 1433 KB  
Article
Advances in the Regulation of Periostin for Osteoarthritic Cartilage Repair Applications
by Sunny Y. Shih, Michael P. Grant, Laura M. Epure, Muskan Alad, Sophie Lerouge, Olga L. Huk, Stephane G. Bergeron, David J. Zukor, Géraldine Merle, Hee-Jeong Im, John Antoniou and Fackson Mwale
Biomolecules 2024, 14(11), 1469; https://doi.org/10.3390/biom14111469 - 18 Nov 2024
Viewed by 1516
Abstract
Emerging evidence indicates periostin (POSTN) is upregulated in patients with OA, and studies have shown that it can induce the activation of inflammatory cytokines and catabolic enzymes, making it a potential therapeutic target. Link N (LN) is a peptide fragment derived from the [...] Read more.
Emerging evidence indicates periostin (POSTN) is upregulated in patients with OA, and studies have shown that it can induce the activation of inflammatory cytokines and catabolic enzymes, making it a potential therapeutic target. Link N (LN) is a peptide fragment derived from the link protein and has been demonstrated as an anabolic-like factor and anti-catabolic and anti-inflammatory factors both in vitro and in vivo. This study aims to determine if LN can regulate POSTN expression and function in OA cartilage. Articular cartilage was recovered from donors undergoing total knee replacements to isolate chondrocytes and prepare osteochondral explants. Cells and explants were treated with POSTN and LN (1 and 100 μg) and measured for changes in POSTN expression and various matrix proteins, catabolic and proinflammatory factors, and signaling. To determine the effects of POSTN expression in vivo, a rabbit OA model was used. Immunoprecipitation and in silico modeling were used to determine peptide/POSTN interactions. Western blotting, PCR, and immunohistochemistry demonstrated that LN decreased POSTN expression both in vitro and in vivo. LN was also able to directly inhibit POSTN signaling in OA chondrocytes. In silico docking suggested the direct interaction of LN with POSTN at residues responsible for its oligomerization. Immunoprecipitation experiments confirmed the direct interaction of LN with POSTN and the destabilization of its oligomerization. This study demonstrates the ability of a peptide, LN, to suppress the overexpression and function of POSTN in OA cartilage. Full article
(This article belongs to the Section Biological Factors)
Show Figures

Figure 1

16 pages, 4732 KB  
Article
Beta-Amyloid and Its Asp7 Isoform: Morphological and Aggregation Properties and Effects of Intracerebroventricular Administration
by Valeriya Ushakova, Yana Zorkina, Olga Abramova, Regina Kuanaeva, Evgeny Barykin, Alexander Vaneev, Roman Timoshenko, Peter Gorelkin, Alexander Erofeev, Eugene Zubkov, Marat Valikhov, Olga Gurina, Vladimir Mitkevich, Vladimir Chekhonin and Anna Morozova
Brain Sci. 2024, 14(10), 1042; https://doi.org/10.3390/brainsci14101042 - 21 Oct 2024
Cited by 1 | Viewed by 1432
Abstract
Background/Objectives: One of the hallmarks of Alzheimer’s disease (AD) is the accumulation of aggregated beta-amyloid (Aβ) protein in the form of senile plaques within brain tissue. Senile plaques contain various post-translational modifications of Aβ, including prevalent isomerization of Asp7 residue. The Asp7 isomer [...] Read more.
Background/Objectives: One of the hallmarks of Alzheimer’s disease (AD) is the accumulation of aggregated beta-amyloid (Aβ) protein in the form of senile plaques within brain tissue. Senile plaques contain various post-translational modifications of Aβ, including prevalent isomerization of Asp7 residue. The Asp7 isomer has been shown to exhibit increased neurotoxicity and induce amyloidogenesis in brain tissue of transgenic mice. The toxicity of Aβ peptides may be partly mediated by their structure and morphology. In this respect, in this study we analyzed the structural and aggregation characteristics of the Asp7 isoform of Aβ42 and compared them to those of synthetic Aβ42. We also investigated the effects of intracerebroventricular (i.c.v.) administration of these peptides, a method often used to induce AD-like symptoms in rodent models. Methods: Atomic force microscopy (AFM) was conducted to compare the morphological and aggregation properties of Aβ42 and Asp7 iso-Aβ42. The effects of i.c.v. stereotaxic administration of the proteins were assessed via behavioral analysis and reactive oxygen species (ROS) estimation in vivo using a scanning ion-conductance microscope with a confocal module. Results: AFM measurements revealed structural differences between the two peptides, most notably in their soluble toxic oligomeric forms. The i.c.v. administration of Asp7 iso-Aβ42 induced spatial memory deficits in rats and elevated oxidative stress levels in vivo, suggesting a potential of ROS in the pathogenic mechanism of the peptide. Conclusions: The findings support the further investigation of Asp7 iso-Aβ42 in translational research on AD and suggest its involvement in neurodegenerative processes. Full article
(This article belongs to the Section Neuropharmacology and Neuropathology)
Show Figures

Figure 1

Back to TopTop