Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (829)

Search Parameters:
Keywords = one-pot method

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3597 KB  
Article
Green Synthesis and Characterization of Rosa roxburghii Tratt.-Mediated Gold Nanoparticles for Visual Colorimetric Assay of Tiopronin
by Dan Liu and Shilan Feng
Nanomaterials 2025, 15(19), 1513; https://doi.org/10.3390/nano15191513 - 3 Oct 2025
Abstract
This study used Rosa roxburghii Tratt. crude extract (RR) as a reducing, stabilizing, and modifying agent for the green synthesis of gold nanoparticles (RR-AuNPs) via the one-pot method for the first time and established a novel colorimetric sensor for detecting tiopronin. Initially, RR-AuNPs [...] Read more.
This study used Rosa roxburghii Tratt. crude extract (RR) as a reducing, stabilizing, and modifying agent for the green synthesis of gold nanoparticles (RR-AuNPs) via the one-pot method for the first time and established a novel colorimetric sensor for detecting tiopronin. Initially, RR-AuNPs with a uniform particle size and stable dispersion were prepared using the reducing property of RR. Upon the introduction of tiopronin, the drug binds to the surface of RR-AuNPs through Au-S bonds and hydrogen bonds, inducing a significant aggregation of RR-AuNPs. The absorbance of the RR-AuNP solution exhibited a linear relationship with the tiopronin concentration in the range of 0.17 μM to 16.67 μM (y = 1.9157 − 0.0972x), with a detection limit of 0.19 μM. The colorimetric sensor was successfully applied to detect tiopronin in urine samples. Compared with other detection methods, this approach is simple to operate and has a high sensitivity, a wide linear range, and a low detection limit. Full article
Show Figures

Figure 1

20 pages, 2914 KB  
Article
Solvent-Dependent Stabilization of Gold Nanoparticles: A Comparative Study on Polymers and the Influence of Their Molecular Weight in Water and Ethanol
by Marilyn Kaul, Rolf Lennart Vanselow, Ahmed Y. Sanin, Ulf D. Kahlert and Christoph Janiak
Chemistry 2025, 7(5), 159; https://doi.org/10.3390/chemistry7050159 - 1 Oct 2025
Abstract
Gold nanoparticles (AuNPs) are attracting more and more attention in life sciences, especially due to their versatile physicochemical properties whereby their colloidal stability in water and organic solvents is crucial. In this study, a systematic comparison of different polymers, synthesis methods and solvents [...] Read more.
Gold nanoparticles (AuNPs) are attracting more and more attention in life sciences, especially due to their versatile physicochemical properties whereby their colloidal stability in water and organic solvents is crucial. In this study, a systematic comparison of different polymers, synthesis methods and solvents was carried out. The AuNPs were synthesized using the ligand exchange reaction/postsynthetic addition reaction (PAR) and the one-pot synthesis with the polymers poly(vinyl alcohol) (PVA), poly(ethylene glycol) (PEG), poly(vinylpyrrolidone) (PVP) and poly(acrylic acid) (PAA), each with different molar weight averages. Analysis of the AuNP@Polymer conjugates by transmission electron microscopy (TEM) finds essentially unchanged gold nanoparticle core sizes of 11–18 or 11–19 nm in water and ethanol, respectively. The hydrodynamic diameter from dynamic light scattering (DLS) lies largely in the range from 20 to 70 nm and ultraviolet-visible spectroscopy (UV-Vis) showed gold plasmon resonance band maxima between 517 and 531 nm over both synthesis methods and solvents for most samples. The polymer PVA showed the best colloidal stability in both synthesis methods, both in water and after transfer to ethanol. An increased instability in ethanol could only be noted for the PEG coated samples. For the polymers PVP and PAA, the stability depended more specifically on the combination of synthesis method, polymer molecular weight and solvent. Full article
(This article belongs to the Section Chemistry at the Nanoscale)
Show Figures

Graphical abstract

26 pages, 3750 KB  
Article
Engineering Robust, Porous Guar Gum Hydrogels by One-Step Mild Synthesis: Impact of Porogen Choice on Rheology and Sustained Gastroretentive Amoxicillin Delivery
by Fátima Díaz-Carrasco, M.-Violante De-Paz, Matea Katavić, Estefanía García-Pulido, Álvaro Santos-Medina, Lucía Muíña-Ramil, M.-Gracia García-Martín and Elena Benito
Gels 2025, 11(10), 785; https://doi.org/10.3390/gels11100785 - 1 Oct 2025
Abstract
This study introduces a single-step method to synthesize guar gum-based interpenetrating polymer network (IPN) hydrogels, achieving simultaneous Diels–Alder crosslinking and amoxicillin (AMOX) encapsulation under mild conditions. To evaluate the influence of porogen addition on IPN structure, drug loading and release, twenty-one formulations were [...] Read more.
This study introduces a single-step method to synthesize guar gum-based interpenetrating polymer network (IPN) hydrogels, achieving simultaneous Diels–Alder crosslinking and amoxicillin (AMOX) encapsulation under mild conditions. To evaluate the influence of porogen addition on IPN structure, drug loading and release, twenty-one formulations were developed, including AMOX loading (25% or 40% w/w relative to the polymer) and biocompatible porogens incorporation [polyethylene glycol (PEG) or sucrose at 5%, 10%, or 50% w/w]. All crosslinked IPN hydrogels formed robust gels, unlike non-crosslinked controls. Porogen choice strongly influenced hydrogel performance: PEG quadrupled the swelling index while enhancing storage modulus (up to 10,054 Pa) and complex viscosity (up to 1302 Pa·s), whereas high sucrose concentrations produced soft, ductile networks with critical strains above 20% and swelling indices up to 1895%. All hydrogels released AMOX at levels above MIC50 for H. pylori. PEG-based IPN provided superior drug delivery profiles, with extended AMOX release (t50 up to 15.5 h at pH 5.0), while sucrose-rich matrices exhibited faster burst release and disintegration. Single-step (pre-loading) AMOX during synthesis improved release control compared to post-loading. These findings highlight the potential of one-pot IPN synthesis with porogen modulation offering a promising gastroretentive platforms for sustained AMOX delivery against H. pylori. Full article
(This article belongs to the Special Issue Recent Advances in Gels for Pharmaceutical Application)
Show Figures

Graphical abstract

16 pages, 3518 KB  
Article
Transparent Polyurethane Elastomers with Excellent Foamability and Self-Healing Property via Molecular Design and Dynamic Covalent Bond Regulation
by Rongli Zhu, Mingxi Linghu, Xueliang Liu, Liang Lei, Qi Yang, Pengjian Gong and Guangxian Li
Polymers 2025, 17(19), 2639; https://doi.org/10.3390/polym17192639 - 30 Sep 2025
Abstract
Microcellular thermoplastic polyurethane (TPU) foams with dynamic covalent bonds demonstrating exceptional self-healing capabilities, coupled with precisely controlled micron-scale cellular architectures, present a promising solution for developing advanced materials that simultaneously achieve damage recovery and low density. In this study, a series of self-healable [...] Read more.
Microcellular thermoplastic polyurethane (TPU) foams with dynamic covalent bonds demonstrating exceptional self-healing capabilities, coupled with precisely controlled micron-scale cellular architectures, present a promising solution for developing advanced materials that simultaneously achieve damage recovery and low density. In this study, a series of self-healable materials (named as PU-S) with high light transmittance possessing two dynamic covalent bonds (oxime bond and disulfide bond) in different ratios were fabricated by the one-pot method, and then the prepared PU-S were foamed utilizing the green and efficient supercritical carbon dioxide (scCO2) foaming technology. The PU-S foams possess multiple dynamic covalent bonds as well as porous structures, and the effect of the dynamic covalent bonds endows the materials with excellent self-healing properties and recyclability. Owing to the tailored design of dynamic covalent bonding synergies and micron-sized porous structures, PU-S5 exhibits hydrophobicity (97.5° water contact angle), low temperature flexibility (Tg = −30.1 °C), high light transmission (70.6%), and light weight (density of 0.12 g/cm3) together with high expansion ratio (~10 folds) after scCO2 foaming. Furthermore, PU-S5 achieves damage recovery under mild thermal conditions (60 °C). Accordingly, self-healing PU-S based on multiple dynamic covalent bonds will realize a wide range of potential applications in biomedical, new energy automotive, and wearable devices. Full article
(This article belongs to the Special Issue Advances in Cellular Polymeric Materials)
Show Figures

Figure 1

20 pages, 3126 KB  
Review
Integrated Pretreatment and Microbial Matching for PHA Production from Lignocellulosic Agro-Forestry Residues
by Dongna Li, Shanshan Liu, Qiang Wang, Xiaojun Ma and Jianing Li
Fermentation 2025, 11(10), 563; https://doi.org/10.3390/fermentation11100563 - 29 Sep 2025
Abstract
Lignocellulosic agro-forestry residues (LARs), such as rice straw, sugarcane bagasse, and wood wastes, are abundant and low-cost feedstocks for polyhydroxyalkanoate (PHA) bioplastics. However, their complex cellulose–hemicellulose–lignin matrix requires integrated valorization strategies. This review presents a dual-framework approach: “pretreatment–co-substrate compatibility” and “pretreatment–microbial platform matching”, [...] Read more.
Lignocellulosic agro-forestry residues (LARs), such as rice straw, sugarcane bagasse, and wood wastes, are abundant and low-cost feedstocks for polyhydroxyalkanoate (PHA) bioplastics. However, their complex cellulose–hemicellulose–lignin matrix requires integrated valorization strategies. This review presents a dual-framework approach: “pretreatment–co-substrate compatibility” and “pretreatment–microbial platform matching”, to align advanced pretreatment methods (including deacetylation–microwave integration, deep eutectic solvents, and non-sterilized lignin recovery) with engineered or extremophilic microbial hosts. A “metabolic interaction” perspective on co-substrate fermentation, encompassing dynamic carbon flux allocation, synthetic consortia cooperation, and one-pot process coupling, is used to elevate PHA titers and tailor copolymer composition. In addition, we synthesize comprehensive kinetic analyses from the literature that elucidate microbial growth, substrate consumption, and dynamic carbon flux allocation under feast–famine conditions, thereby informing process optimization and scalability. Microbial platforms are reclassified as broad-substrate, process-compatible, or product-customized categories to emphasize adaptive evolution, CRISPR-guided precision design, and consortia engineering. Finally, next-generation techno-economic analyses, embracing multi-product integration, regional adaptation, and carbon-efficiency metrics, are surveyed to chart viable paths for scaling LAR-to-PHA into circular bioeconomy manufacturing. Full article
Show Figures

Figure 1

15 pages, 2431 KB  
Article
One-Pot Synthesis for Doped Amorphous Carbon-Based Compounds: Influence of ZnO Dopant on the Charge Transfer Efficiency
by Bernardo Alberto Vargas-Vidal, Esperanza Baños-López, María del Rosario Munguía-Fuentes, Yazmín Mariela Hernández-Rodríguez and Oscar Eduardo Cigarroa-Mayorga
Nanomaterials 2025, 15(19), 1486; https://doi.org/10.3390/nano15191486 - 29 Sep 2025
Abstract
Amorphous carbon (a-C) materials have attracted significant attention for environmental remediation due to their chemical stability and high surface area; however, their photocatalytic activity remains limited by rapid electron–hole recombination. In this study, ZnO-doped amorphous carbon (a-C@ZnO) composites were synthesized via a one-pot [...] Read more.
Amorphous carbon (a-C) materials have attracted significant attention for environmental remediation due to their chemical stability and high surface area; however, their photocatalytic activity remains limited by rapid electron–hole recombination. In this study, ZnO-doped amorphous carbon (a-C@ZnO) composites were synthesized via a one-pot hydrothermal method to enhance charge separation and photocatalytic performance. The synthesis involved the carbonization of glucose and the incorporation of zinc species under controlled conditions, resulting in composites with varying ZnO contents. The physical and chemical properties of the materials were thoroughly characterized by SEM, Raman spectroscopy, and X-ray photoelectron spectroscopy, confirming the successful integration of ZnO within the carbon matrix and the formation of Zn–O–C chemical bonds. Photocatalytic tests, evaluated through the degradation of rhodamine 6G under UV irradiation, demonstrated that ZnO doping significantly improved photocatalytic efficiency, with the a-C@ZnO0.75 sample achieving a 72% degradation rate and the highest kinetic rate constant. The enhancement was attributed to improved charge transfer and reactive oxygen species generation facilitated by the ZnO–a-C interface. These findings highlight the potential of ZnO-doped amorphous carbon composites as effective, low-cost photocatalysts for water purification applications. Full article
Show Figures

Graphical abstract

24 pages, 6190 KB  
Article
Benzoxazine–Purine Hybrids as Antiproliferative Agents: Rational Design and Divergent Mechanisms of Action
by Houria Boulaiz, Yaiza Jiménez-Martínez, Francisco Franco-Montalbán, Jesús Peña-Martín, Ana Conejo-García and M. Dora Carrión
Pharmaceutics 2025, 17(10), 1260; https://doi.org/10.3390/pharmaceutics17101260 - 26 Sep 2025
Abstract
Background/Objectives: Targeted cancer therapies increasingly rely on modulating specific cell death pathways and kinase signaling. Due to their structural versatility and potential to induce mechanistically distinct cytotoxic responses, benzoxazine–purine hybrids represent a promising scaffold for anticancer drug development. The objective of this study [...] Read more.
Background/Objectives: Targeted cancer therapies increasingly rely on modulating specific cell death pathways and kinase signaling. Due to their structural versatility and potential to induce mechanistically distinct cytotoxic responses, benzoxazine–purine hybrids represent a promising scaffold for anticancer drug development. The objective of this study was to design and evaluate novel benzoxazine–purine derivatives for their antiproliferative activity and elucidate their underlying mechanisms of action. Methods: A series of benzoxazine–purine compounds was synthesized via a modular and efficient approach. The synthetic route involved a one-pot cyclization of substituted 2-aminophenols with epichlorohydrin, followed by tosylation and subsequent Mitsunobu coupling with halogenated purines. Their antiproliferative activity was assessed in MCF-7 (breast) and HCT-116 (colon) cancer cell lines using MTT assays. Selected compounds were evaluated further for kinase inhibition, effects on the cell cycle, membrane integrity (Annexin V/PI staining), ultrastructural changes (SEM), and caspase activation (Western blot). In silico ADMET profiling was also performed. Results: Compounds 9 and 12 exhibited the most potent antiproliferative activity, with low micromolar IC50 values. Compound 12 showed dual HER2/JNK1 kinase inhibition and induced caspase-8-dependent pyroptosis-like cell death, characterized by membrane rupture and inflammatory features. In contrast, compound 8 lacked kinase inhibition and promoted S-phase arrest with apoptotic-like morphology. Both compounds demonstrated favorable physicochemical and ADMET profiles, including high intestinal absorption and an absence of mutagenicity. Conclusions: The rational design of benzoxazine–purine hybrids resulted in the discovery of compounds with distinct mechanisms of action. Compound 12 induces inflammatory cell death by modulating kinases, while compound 9 acts through a kinase-independent apoptotic pathway. These results underscore the therapeutic potential of scaffold-based diversification for developing targeted anticancer agents. Full article
(This article belongs to the Special Issue Recent Advances in Inhibitors for Targeted Therapies)
Show Figures

Figure 1

22 pages, 7468 KB  
Article
Laponite®-Based Smart Hydrogels for Sustained Topical Delivery of Silver Sulfadiazine: A Strategy for the Treatment of Contaminated or Biofilm-Forming Wounds
by Jonas Lira do Nascimento, Michely Conceição Viana da Costa, Leticia Farias de Macêdo, Luiz Henrique Chaves de Macêdo, Ricardo Olímpio de Moura, Tomás Jeferson Alves de Mélo, Wilma Raianny Vieira da Rocha, Ana Cristina Figueiredo de Melo Costa, José Lamartine Soares-Sobrinho and Dayanne Tomaz Casimiro da Silva
Pharmaceutics 2025, 17(9), 1234; https://doi.org/10.3390/pharmaceutics17091234 - 22 Sep 2025
Viewed by 324
Abstract
Background/Objectives: Silver sulfadiazine (AgSD) is widely used in the topical treatment of burns and infected wounds, but its conventional formulations present drawbacks such as poor water solubility, the need for multiple daily applications, and patient discomfort. To overcome these limitations, this study [...] Read more.
Background/Objectives: Silver sulfadiazine (AgSD) is widely used in the topical treatment of burns and infected wounds, but its conventional formulations present drawbacks such as poor water solubility, the need for multiple daily applications, and patient discomfort. To overcome these limitations, this study aimed to develop and evaluate Laponite® (LAP)-based hydrogels loaded with AgSD for controlled release and enhanced antimicrobial and antibiofilm efficacy, offering a promising alternative for the treatment of contaminated or biofilm-forming wounds. Methods: Laponite®-based hydrogels containing 1% and 1.2% AgSD (LAP@AgSD) were prepared using a one-pot method. The formulations were characterized rheologically, thermally, and structurally. In vitro drug release was assessed using Franz diffusion cells, and mathematical modeling was applied to determine release kinetics. Antibacterial and antibiofilm activities were evaluated against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa using standardized microbiological methods. Results: LAP@AgSD hydrogels exhibited pseudoplastic behavior, high structural integrity, and enhanced thermal stability. In vitro release assays revealed a sustained release profile, best fitted by the Weibull model, indicating diffusion-controlled mechanisms. Antibacterial assays demonstrated concentration-dependent activity, with LAP@AgSD 1.2% showing superior efficacy over LAP@AgSD 1% and comparable performance to the commercial silver sulfadiazine cream (CC-AgSD). Biofilm inhibition was significant for all formulations, with CC-AgSD 1% exhibiting the highest immediate activity, while LAP@AgSD 1.2% provided sustained antibiofilm potential. Conclusions: LAP-based hydrogels are promising smart delivery systems for AgSD, combining mechanical robustness, controlled drug release, and effective antibacterial and antibiofilm activities. These findings support their potential use in topical therapies for infected and chronic wounds, particularly where biofilm formation is a challenge. Full article
(This article belongs to the Special Issue Hydrogels-Based Drug Delivery System for Wound Healing)
Show Figures

Graphical abstract

16 pages, 2686 KB  
Article
Rapid Visual Detection of Senecavirus A Based on RPA-CRISPR/Cas12a System with Canonical or Suboptimal PAM
by Xinrui Zhao, Genghong Jiang, Qinyi Ruan, Yunjie Qu, Xiaoyu Yang, Yongyan Shi, Dedong Wang, Jianwei Zhou, Jue Liu and Lei Hou
Viruses 2025, 17(9), 1264; https://doi.org/10.3390/v17091264 - 18 Sep 2025
Viewed by 253
Abstract
Senecavirus A (SVA) is an emerging pathogen responsible for vesicular lesions and neonatal mortality in swine. In the absence of effective vaccines or therapeutics, early and accurate diagnosis is essential for controlling SVA outbreaks. Although nucleic acid-based detection methods are commonly employed, there [...] Read more.
Senecavirus A (SVA) is an emerging pathogen responsible for vesicular lesions and neonatal mortality in swine. In the absence of effective vaccines or therapeutics, early and accurate diagnosis is essential for controlling SVA outbreaks. Although nucleic acid-based detection methods are commonly employed, there remains a pressing need for rapid, convenient, highly sensitive, and specific diagnostic tools. Here, we developed a two-pot assay combining recombinase polymerase amplification (RPA) with CRISPR/Cas12a containing crRNA targeting canonical protospacer adjacent motifs (PAMs) for simple, rapid, and visual identification of SVA in clinical samples. Subsequently, we successfully streamlined this system into a one-pot assay by selecting a specially designed crRNA targeting suboptimal PAM and integrating RPA amplification reagents and CRISPR/Cas12a detection components into a single reaction system in one tube. The developed methods exhibited diagnostic specificity, showing no cross-reactivity with four major swine viruses, while showing remarkable sensitivity with a lower detection limit of just two copies. Clinical validation in field samples using these two methods revealed perfect agreement (100% concordance) with conventional quantitative PCR (qPCR) results (sample size, n = 28), with both assays completing detection within 30 min. These results demonstrate that both the one-pot and two-pot RPA-CRISPR/Cas12a assays offer a reliable and efficient method for detecting SVA in this pilot study. Despite the limited sample size, the assays combine rapid reaction time with high sensitivity and specificity, showing great potential for future diagnostic applications. Full article
(This article belongs to the Section General Virology)
Show Figures

Figure 1

42 pages, 3339 KB  
Review
Bimetallic Gold--Platinum (AuPt) Nanozymes: Recent Advances in Synthesis and Applications for Food Safety Monitoring
by Shipeng Gao, Xinhao Xu, Xueyun Zheng, Yang Zhang and Xinai Zhang
Foods 2025, 14(18), 3229; https://doi.org/10.3390/foods14183229 - 17 Sep 2025
Viewed by 286
Abstract
The growing global demand for rapid, sensitive, and cost-effective food safety monitoring has driven the development of nanozyme-based biosensors as alternatives to natural enzyme-based methods. Among various nanozymes, bimetallic gold–platinum (AuPt) nanozymes show superior catalytic performance compared to monometallic and other Au-based bimetallic [...] Read more.
The growing global demand for rapid, sensitive, and cost-effective food safety monitoring has driven the development of nanozyme-based biosensors as alternatives to natural enzyme-based methods. Among various nanozymes, bimetallic gold–platinum (AuPt) nanozymes show superior catalytic performance compared to monometallic and other Au-based bimetallic hybrids. This is due to their synergistic colorimetric, catalytic, geometric, and ensemble properties. This review systematically evaluates AuPt nanozymes in food safety applications, focusing on their synthesis, structural design, and practical uses. Various structural types are highlighted, including plain, magnetic, porous nanomaterial-labeled, and flexible nanomaterial-loaded AuPt hybrids. Key synthesis methods such as seed-mediated growth and one-pot procedures with different reducing agents are summarized. Detection modes covered include colorimetric, electrochemical, and multimodal sensing, demonstrating efficient detection of important food contaminants. Key innovations include core–shell designs for enhanced catalytic activity, new synthesis strategies for improved structural control, and combined detection modes to increase reliability and reduce false positives. Challenges and future opportunities are discussed, such as standardizing synthesis protocols, scaling up production, and integration with advanced sensing platforms. This review aims to accelerate the translation of AuPt nanozyme technology into practical food safety monitoring solutions that improve food security and public health. Full article
(This article belongs to the Special Issue Mycotoxins and Heavy Metals in Food)
Show Figures

Figure 1

59 pages, 6467 KB  
Review
Recent Advances in One-Pot Multicomponent Reactions for the Synthesis of Substituted Quinazolin-4(3H)-ones
by Zbigniew Malinowski
Molecules 2025, 30(18), 3729; https://doi.org/10.3390/molecules30183729 - 13 Sep 2025
Viewed by 907
Abstract
Quinazolin-4(3H)-ones are nitrogen heterocycles that have attracted considerable interest over many years due to their important biological and pharmacological properties. It has been shown that quinazolinone derivatives exhibit, e.g., analgesic, anti-inflammatory, antibacterial, anticonvulsant, antifungal, and antitumor activities. Some of these compounds [...] Read more.
Quinazolin-4(3H)-ones are nitrogen heterocycles that have attracted considerable interest over many years due to their important biological and pharmacological properties. It has been shown that quinazolinone derivatives exhibit, e.g., analgesic, anti-inflammatory, antibacterial, anticonvulsant, antifungal, and antitumor activities. Some of these compounds have found applications in medicine; for instance, Zydelig (Idelalisib) has been approved for the treatment of several types of blood cancers. Furthermore, the quinazolinone skeleton is an important structural moiety present in many naturally occurring alkaloids, such as Febrifugine, a potent anti-malarial agent. To date, numerous synthetic methods have been developed for the synthesis of quinazolinone derivatives. Among them, multicomponent reactions (MCRs) have emerged as a powerful tool, allowing for the rapid and straightforward construction of the quinazolinone scaffold from readily available substrates. This review article presents a concise overview of selected strategies for synthesizing quinazolinone frameworks via one-pot MCRs. The reported methods are categorized into three main groups: metal-catalyzed reactions; isatoic-anhydride-based strategies, utilizing isatoic anhydride as a key starting material, and alternative approaches involving, among others, the utilization of N-(2-aminobenzoyl)benzotriazoles or aryldiazonium salts as efficient building materials. Full article
Show Figures

Graphical abstract

13 pages, 8209 KB  
Article
Influence of Mixing Conditions on the Strength and Microstructure of Cement Paste
by Yufan Wan, Hongbo Cao, Guangqiao Zhang, Xue Lu, Yanru Gao, Jintao Niu, Chuang He and Xiaolei Lu
Buildings 2025, 15(18), 3277; https://doi.org/10.3390/buildings15183277 - 11 Sep 2025
Viewed by 285
Abstract
The conventional “one-pot” mixing method employed in concrete production restricts both efficiency and quality optimization. This study systematically investigates the effects of mixing duration and rotational speed on the compressive strength and microstructure of cement paste by varying these parameters. Results indicate that [...] Read more.
The conventional “one-pot” mixing method employed in concrete production restricts both efficiency and quality optimization. This study systematically investigates the effects of mixing duration and rotational speed on the compressive strength and microstructure of cement paste by varying these parameters. Results indicate that appropriately extending mixing duration and increasing rotational speed enhances the strength of cementitious paste. However, excessive duration or overly high speeds adversely affect strength. When the rotational speed is 250 r/min and the mixing time is 100 s, the compressive strength of the hardened cementitious pastes at all curing ages is good, with strengths of 50.1 MPa, 61.1 MPa, and 77.0 MPa at 3 days, 7 days, and 28 days, respectively. Microstructural analysis further reveals that this mixing condition produced lower porosity, denser morphology, and increased hydration product formation, collectively explaining the superior mechanical properties. Full article
Show Figures

Figure 1

44 pages, 14233 KB  
Review
Janus Hydrogels: Design, Properties, and Applications
by Wei Guo, Mahta Mirzaei and Lei Nie
Gels 2025, 11(9), 717; https://doi.org/10.3390/gels11090717 - 8 Sep 2025
Viewed by 592
Abstract
Janus hydrogels have attracted significant attention in materials science and biomedicine owing to their anisotropic dual-faced architecture. Unlike conventional homogeneous hydrogels, these heterogeneous systems exhibit structural and functional asymmetry, endowing them with remarkable adaptability to dynamic environmental stimuli. Their inherent biocompatibility, biodegradability, and [...] Read more.
Janus hydrogels have attracted significant attention in materials science and biomedicine owing to their anisotropic dual-faced architecture. Unlike conventional homogeneous hydrogels, these heterogeneous systems exhibit structural and functional asymmetry, endowing them with remarkable adaptability to dynamic environmental stimuli. Their inherent biocompatibility, biodegradability, and unique “adhesion–antiadhesion” duality have demonstrated exceptional potential in biomedical applications ranging from advanced wound healing and internal tissue adhesion prevention to cardiac tissue regeneration. Furthermore, “hydrophilic–hydrophobic” Janus configurations, synergistically integrated with tunable conductivity and stimuli-responsiveness, showcase the great potential in emerging domains, including wearable biosensing, high-efficiency desalination, and humidity regulation systems. This review systematically examines contemporary synthesis strategies for Janus hydrogels using various technologies, including layer-by-layer, self-assembly, and one-pot methods. We elucidate the properties and applications of Janus hydrogels in biomedicine, environmental engineering, and soft robotics, and we emphasize recent developments in this field while projecting future trajectories and challenges. Full article
(This article belongs to the Special Issue Structure and Properties of Functional Hydrogels (2nd Edition))
Show Figures

Figure 1

17 pages, 4006 KB  
Article
A Simple, Rapid, and Contamination-Free Ultra-Sensitive Cronobacter sakazakii Visual Diagnostic Platform Based on RPA Combined with CRISPR/Cas12a
by Yan Liu, Yu Xie, Zhangli Wang, Zuoqi Gai, Xu Zhang, Jiahong Chen, Hongtao Lei, Zhenlin Xu and Xing Shen
Foods 2025, 14(17), 3120; https://doi.org/10.3390/foods14173120 - 6 Sep 2025
Viewed by 475
Abstract
CRISPR/Cas systems have made significant progress in the field of molecular diagnostics in recent years. To overcome the aerosol contamination problem brought on by amplicon transfer in the common two-step procedure, the “one-pot method” has become a major research hotspot in this field. [...] Read more.
CRISPR/Cas systems have made significant progress in the field of molecular diagnostics in recent years. To overcome the aerosol contamination problem brought on by amplicon transfer in the common two-step procedure, the “one-pot method” has become a major research hotspot in this field. However, these methods usually rely on specially designed devices or additional chemical modifications. In this study, a novel “one-pot” strategy was developed to detect the foodborne pathogen Cronobacter sakazakii (C. sakazakii). A specific sequence was screened out from the virulence gene ompA of C. sakazakii as the detection target. Combining with the recombinase polymerase amplification (RPA), a rapid detection platform for C. sakazakii based on the CRISPR/Cas12a system was established for the first time. The sensitivity of this method was determined from three different levels, which are 10−4 ng/μL for genomic DNA (gDNA), 1.43 copies/μL for target DNA, and 6 CFU/mL for pure bacterial culture. Without any microbial enrichment, the detection limits for artificially contaminated cow and goat milk powder samples were 4.65 CFU/mL and 4.35 CFU/mL, respectively. To address the problem brought on by aerosol contamination in the common RPA-CRISPR/Cas12a two-step method, a novel pipette tip-in-tube (PTIT) method for simple and sensitive one-pot nucleic acid detection was further developed under the inspiration of the capillary principle. The RPA and CRISPR/Cas systems were isolated from each other by the force balance of the solution in a pipette tip before amplification. The detection limits of the PTIT method in pure bacterial culture and the spiked samples were exactly the same as that of the two-step method, but with no false positive cases caused by aerosol contamination at all. Compared with other existing one-pot methods, the PTIT method requires no additional or specially designed devices, or any chemical modifications on crRNA and nucleic acid probes. Therefore, the PTIT method developed in this study provides a novel strategy for realizing one-pot CRISPR/Cas detection easily and holds significant potential for the rapid point-on-care testing (POCT) application. Full article
(This article belongs to the Special Issue Food Safety Detection Analysis and Sensors)
Show Figures

Figure 1

15 pages, 2814 KB  
Article
Functionalized Graphene Quantum Dots for Thin-Film Illuminator and Cell Dyeing Applications
by Ruey-Shin Juang, Yi-Ru Li, Chun-Chieh Fu and Chien-Te Hsieh
Inventions 2025, 10(5), 81; https://doi.org/10.3390/inventions10050081 - 3 Sep 2025
Viewed by 490
Abstract
Graphene quantum dots (GQDs) have emerged as promising nanomaterials due to their unique optical properties, high biocompatibility, and tunable surface functionalities. In this work, GQDs were synthesized via a one-pot hydrothermal method and further functionalized using polyethylene glycol (PEG) of various molecular weights [...] Read more.
Graphene quantum dots (GQDs) have emerged as promising nanomaterials due to their unique optical properties, high biocompatibility, and tunable surface functionalities. In this work, GQDs were synthesized via a one-pot hydrothermal method and further functionalized using polyethylene glycol (PEG) of various molecular weights and sodium hydroxide to tailor their photoluminescence (PL) behavior and enhance their applicability in thin-film illumination and biological staining. PEG-modified GQDs exhibited a pronounced red-shift and intensified fluorescence response due to aggregation-induced emission, with GQD-PEG (molecular weight: 300,000) achieving up to eight-fold enhancement in PL intensity compared to pristine GQDs. The influence of solvent environments on PL behavior was studied, revealing solvent-dependent shifts and emission intensities. Transmission electron microscopy confirmed the formation of core–shell GQD clusters, while Raman spectroscopy suggested improved structural ordering upon modification. The prepared GQD thin films demonstrated robust fluorescence stability under prolonged water immersion, indicating strong adhesion to glass substrates. Furthermore, the modified GQDs effectively labeled E. coli, Gram-positive, and Gram-negative bacteria, with GQD-PEG and GQD-NaOH displaying red and green emissions, respectively, at optimal concentrations. This study highlights the potential of surface-functionalized GQDs as versatile materials for optoelectronic devices and fluorescence-based bioimaging. Full article
Show Figures

Figure 1

Back to TopTop