Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (81)

Search Parameters:
Keywords = optical cavitation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1533 KB  
Article
Cascaded Cavitation Bubble Excited by a Train of Microsecond Laser Pulses
by Nadezhda A. Kudasheva, Nikita P. Kryuchkov, Arsen K. Zotov, Polina V. Aleksandrova, Oleg I. Pokhodyaev, Kseniya A. Feklisova, Yurii A. Suchkov, Anatoly L. Bondarenko, Ivan V. Simkin, Vladislav A. Samsonov, Sergey G. Ivakhnenko, Irina N. Dolganova, Stanislav O. Yurchenko, Sergey V. Garnov, Kirill I. Zaytsev, David G. Kochiev and Egor V. Yakovlev
Photonics 2025, 12(9), 927; https://doi.org/10.3390/photonics12090927 - 18 Sep 2025
Viewed by 494
Abstract
Although laser cavitation was discovered half a century ago, novel geometries and regimes to excite this effect have been vigorously explored during the past few decades. This research is driven by a variety of applications of laser cavitation in demanding branches of science [...] Read more.
Although laser cavitation was discovered half a century ago, novel geometries and regimes to excite this effect have been vigorously explored during the past few decades. This research is driven by a variety of applications of laser cavitation in demanding branches of science and technology, such as microfabrication, synthesis of nanoparticles, manipulation of cells, surgery, and lithotripsy. In this work, we combine experimental studies using high-repetition-rate imaging and numerical simulations to uncover a novel regime of the laser cavitation observed upon excitation of a liquid by a train of laser pulses with the pulse energy of 140 mJ and duration of 1.2 μs delivered through a quartz optical fiber. Once the lifetime of the initial cavitation bubble (excited by the first laser pulse) is larger than the period between pulses, which is 34.3 μs, the secondary pulses in the train pass the gas in a bubble and evaporate additional liquid. This results in the formation of a cascaded cavitation bubble of larger volume and elongated shape of 4.6 mm length compared to 3.8 mm in case of excitation by a single laser pulse. In addition, the results of acoustic measurements confirm the presence of shock waves in the applied liquid. Finally, potential applications of the uncovered laser cavitation regime are discussed. Full article
(This article belongs to the Section Lasers, Light Sources and Sensors)
Show Figures

Figure 1

20 pages, 4657 KB  
Article
Experimental and Numerical Analysis of Nozzle-Induced Cavitating Jets: Optical Instrumentation, Pressure Fluctuations and Anisotropic Turbulence Modeling
by Luís Gustavo Macêdo West, André Jackson Ramos Simões, Leandro do Rozário Teixeira, Igor Silva Moreira dos Anjos, Antônio Samuel Bacelar de Freitas Devesa, Lucas Ramalho Oliveira, Juliane Grasiela de Carvalho Gomes, Leonardo Rafael Teixeira Cotrim Gomes, Lucas Gomes Pereira, Luiz Carlos Simões Soares Junior, Germano Pinto Guedes, Geydison Gonzaga Demetino, Marcus Vinícius Santos da Silva, Vitor Leão Filardi, Vitor Pinheiro Ferreira, André Luiz Andrade Simões, Luciano Matos Queiroz and Iuri Muniz Pepe
Fluids 2025, 10(9), 223; https://doi.org/10.3390/fluids10090223 - 26 Aug 2025
Viewed by 589
Abstract
Cavitation has been widely explored to enhance physical and chemical processes across various applications. This study aimed to model the key characteristics of a cavitation jet, induced by a triangular-orifice nozzle, using both experimental and numerical methods. Optical instrumentation, a pressure transducer and [...] Read more.
Cavitation has been widely explored to enhance physical and chemical processes across various applications. This study aimed to model the key characteristics of a cavitation jet, induced by a triangular-orifice nozzle, using both experimental and numerical methods. Optical instrumentation, a pressure transducer and the Reynolds-Averaged Navier–Stokes (RANS) equations were employed. Optical instrumentation and high-speed photography detected the two-phase flow generated by water vaporization, revealing a mean decay pattern. Irradiance fluctuations and photographic evidence provided results about the light transmission dynamics through cavitating jets. Pressure fluctuations exhibited similar growth and decay, supporting optical instrumentation as a viable method for assessing cavitation intensity. Experimental data showed a strong relationship between irradiance and flow rate (R2 = 0.998). This enabled the correlation of the standard deviation of instantaneous pressure measurements and normalized flow rate (R2 = 0.977). Furthermore, vapor volume fraction and normalized flow rate reached a correlation coefficient of 0.999. On the simulation side, the SSG-RSM turbulence mode showed better agreement with experimental data, with relative deviations ranging from 2.1% to 6.6%. The numerical results suggest that vapor jet length is related to vapor fraction through a power law, enabling the development of new equations. These results demonstrated that anisotropic turbulence modeling is essential to reproduce experimental observations compared to mean flow properties. Based on the agreement between the numerical model and the experimental data for mean flow quantities, a formulation is proposed to estimate the jet length originating from the nozzle, offering a predictive approach for cavitating jet behavior. Full article
(This article belongs to the Section Turbulence)
Show Figures

Figure 1

19 pages, 4649 KB  
Article
Cavitation Erosion Performance of the INCONEL 625 Superalloy Heat-Treated via Stress-Relief Annealing
by Robert Parmanche, Olimpiu Karancsi, Ion Mitelea, Ilare Bordeașu, Corneliu Marius Crăciunescu and Ion Dragoș Uțu
Appl. Sci. 2025, 15(15), 8193; https://doi.org/10.3390/app15158193 - 23 Jul 2025
Viewed by 420
Abstract
Cavitation-induced degradation of metallic materials presents a significant challenge for engineers and users of equipment operating with high-velocity fluids. For any metallic material, the mechanical strength and ductility characteristics are controlled by the mobility of dislocations and their interaction with other defects in [...] Read more.
Cavitation-induced degradation of metallic materials presents a significant challenge for engineers and users of equipment operating with high-velocity fluids. For any metallic material, the mechanical strength and ductility characteristics are controlled by the mobility of dislocations and their interaction with other defects in the crystal lattice (such as dissolved foreign atoms, grain boundaries, phase separation surfaces, etc.). The increase in mechanical properties, and consequently the resistance to cavitation erosion, is possible through the application of heat treatments and cold plastic deformation processes. These factors induce a series of hardening mechanisms that create structural barriers limiting the mobility of dislocations. Cavitation tests involve exposing a specimen to repeated short-duration erosion cycles, followed by mass loss measurements and surface morphology examinations using optical microscopy and scanning electron microscopy (SEM). The results obtained allow for a detailed study of the actual wear processes affecting the tested material and provide a solid foundation for understanding the degradation mechanism. The tested material is the Ni-based alloy INCONEL 625, subjected to stress-relief annealing heat treatment. Experiments were conducted using an ultrasonic vibratory device operating at a frequency of 20 kHz and an amplitude of 50 µm. Microstructural analyses showed that slip bands formed due to shock wave impacts serve as preferential sites for fatigue failure of the material. Material removal occurs along these slip bands, and microjets result in pits with sizes of several micrometers. Full article
Show Figures

Figure 1

23 pages, 7235 KB  
Article
Corrosion Resistance Behavior of Mg-Zn-Ce/MWCNT Magnesium Nanocomposites Synthesized by Ultrasonication-Assisted Hybrid Stir–Squeeze Casting for Sacrificial Anode Applications
by S. C. Amith, Poovazhagan Lakshmanan, Gnanavelbabu Annamalai, Manoj Gupta and Arunkumar Thirugnanasambandam
Metals 2025, 15(6), 673; https://doi.org/10.3390/met15060673 - 17 Jun 2025
Viewed by 537
Abstract
The influence of multiwall carbon nanotube (MWCNT) reinforcements on electrochemical corrosion investigations at varying NaCl concentrations (0.4 M, 0.6 M, 0.8 M, 1 M) of Mg-Zn-Ce nanocomposites is studied in this work. The Mg-Zn-Ce/MWCNT nanocomposites were developed by using an ultrasonication-assisted hybrid stir–squeeze [...] Read more.
The influence of multiwall carbon nanotube (MWCNT) reinforcements on electrochemical corrosion investigations at varying NaCl concentrations (0.4 M, 0.6 M, 0.8 M, 1 M) of Mg-Zn-Ce nanocomposites is studied in this work. The Mg-Zn-Ce/MWCNT nanocomposites were developed by using an ultrasonication-assisted hybrid stir–squeeze (UHSS) casting method with different MWCNT concentrations (0, 0.4, 0.8, 1.2 wt.%) in a Mg-Zn-Ce magnesium alloy matrix. The microstructural characterizations shown using X-ray diffraction revealed the presence of secondary phases (MgZn2, Mg12Ce), T-phase (Mg7Zn3RE), α-Mg, and MWCNT peaks. Optical microscopy results showed grain refinement in the case of nanocomposites. Transmission electron microscope studies revealed well-dispersed MWCNT, indicating the good selection of processing parameters. The uniform dispersion of MWCNTs was achieved due to a hybrid stirring mechanism along with transient cavitation, ultrasonic streaming, and squeeze effect. The higher Ecorr value of −1.39 V, lower Icorr value (5.81 µA/cm2), and lower corrosion rate of 0.1 mm/Yr (↑77%) were obtained by 0.8% nanocomposite at 0.4 M NaCl concentration, when compared to the monolithic alloy. The Mg(OH)2 passive film formation on 0.8 wt.% nanocomposite was denser, attributed to the refined grains. At higher NaCl concentration, the one-dimensional morphological advantage of MWCNT helped to act as a barrier for further Mg exposure to excessive Cl attack, which reduced the formation of MgCl2. Therefore, the UHSS-casted Mg-Zn-Ce/MWCNT nanocomposites present a good potential as sacrificial anodes for use in a wide range of industrial applications. Full article
(This article belongs to the Special Issue Advances in Corrosion and Protection of Materials (Third Edition))
Show Figures

Figure 1

18 pages, 3340 KB  
Article
Interfacial Effects Between Dental Impression and Die Materials and Their Role in the Internal Fit of Indirect Resin-Based Composite Restorations
by Murillo Weissheimer, João Carlos S. N. Foly, Fabíola G. Carvalho and Eliseu A. Münchow
Dent. J. 2025, 13(4), 155; https://doi.org/10.3390/dj13040155 - 31 Mar 2025
Viewed by 641
Abstract
Background/Objectives: This study tested a method for evaluating the internal fit of indirect resin-based composite (RBC) restorations, as well as the influence of different combinations of impression and die materials on the reproducibility of the topography of teeth prepared for indirect RBC restoration. [...] Read more.
Background/Objectives: This study tested a method for evaluating the internal fit of indirect resin-based composite (RBC) restorations, as well as the influence of different combinations of impression and die materials on the reproducibility of the topography of teeth prepared for indirect RBC restoration. Methods: Bovine incisors received flattened and cavitated areas at the cervical and middle thirds of the buccal surface, respectively. The samples were randomly assigned to two groups according to the material used for impression taking (n = 5): irreversible hydrocolloid and polyvinyl siloxane (PVS). Die replicas were obtained with Type IV gypsum or elastomeric material. RBC restorations were fabricated through an indirect technique (test) and a direct-indirect technique as the control. The internal fit of restorations was assessed by measuring the cementation line thickness with a digital caliper (simulated cementation protocol with ultra-light PVS) and validated using scanning electron microscopy (SEM). Surface topography (Sa, Sq, and Sz) was analyzed via optical profilometry, and wettability was assessed through the water contact angle method. The data were analyzed using t-test, ANOVA, and Pearson correlation tests (α = 5%). Results: The simulated cementation resulted in internal gap values positively correlated to the values from SEM (R2 = 0.958; p = 0.0102). The internal gap of restorations was not significantly correlated with the discrepancies between the topography of the die and tooth substrate (p ≥ 0.067). The combination of irreversible hydrocolloid and gypsum resulted in restorations with the lowest cementation line thickness, although in terms of roughness, this combination was the only one that resulted in significant differences from the control (p ≤ 0.028). The internal mean gap values of restorations were significantly correlated to the cumulative wettability difference of materials used during impression taking, fabrication of die replica, and restoration build-up (R2 = 0.981; p = 0.003). Conclusions: The reproducibility of topographical characteristics of the tooth in the die replica did not affect the internal adaptation of indirect RBC restorations, whereas surface wettability of materials presented a more relevant effect on the overall gap formation. The simulated cementation technique tested in the study shows potential as a simpler, cost-effective, and non-destructive method for evaluating the adaptation of indirect RBC restorations. Full article
(This article belongs to the Special Issue Dental Materials Design and Innovative Treatment Approach)
Show Figures

Graphical abstract

12 pages, 3381 KB  
Article
An Optical Fiber Ultrasonic Emitter Based on the Thermal Cavitation Effect
by Wenhui Kang, Dongxin Xu, Dongliang Xie, Jianqiang Sheng, Menghao Wu, Qiang Zhao and Yi Qu
Coatings 2025, 15(4), 391; https://doi.org/10.3390/coatings15040391 - 26 Mar 2025
Viewed by 534
Abstract
In this study, we have developed an optical fiber ultrasound emitter based on the thermal cavitation effect. A tube filled with a highly absorptive liquid is sealed at the end of an optical fiber pigtail. A continuous-wave laser is transmitted through the fiber, [...] Read more.
In this study, we have developed an optical fiber ultrasound emitter based on the thermal cavitation effect. A tube filled with a highly absorptive liquid is sealed at the end of an optical fiber pigtail. A continuous-wave laser is transmitted through the fiber, heating the highly absorptive copper salt solution near the fiber end face to its spinodal limit. Using a single-mode fiber, we achieved ultrasound pulses with an amplitude of 330 kPa and a repetition rate of 4 kHz in the frequency range of 5–17 MHz, and a bandwidth of 12 MHz was obtained by using a low laser heating power of 52 mW at a wavelength of 974 nm. This optical fiber ultrasound emitter features a simple fabrication process, low cost, and low optical power consumption. Its flexible design allows for easy integration into medical devices with small dimensions and makes it suitable for non-destructive testing in confined spaces. Full article
(This article belongs to the Special Issue Advancements in Lasers: Applications and Future Trends)
Show Figures

Figure 1

17 pages, 33021 KB  
Article
The Effects of Certain Processing Technologies on the Cavitation Erosion of Lamellar Graphite Pearlitic Grey Cast Iron
by Eduard Riemschneider, Ion Mitelea, Ilare Bordeașu, Corneliu Marius Crăciunescu and Ion Dragoș Uțu
Materials 2025, 18(6), 1358; https://doi.org/10.3390/ma18061358 - 19 Mar 2025
Viewed by 528
Abstract
Lamellar graphite pearlitic grey cast irons are frequently used in the manufacturing of components that operate under cavitation erosion conditions. Their poor performance regarding cavitation erosion limits their use in intense cavitation environments. The physical modification of the surface layer offers a flexible [...] Read more.
Lamellar graphite pearlitic grey cast irons are frequently used in the manufacturing of components that operate under cavitation erosion conditions. Their poor performance regarding cavitation erosion limits their use in intense cavitation environments. The physical modification of the surface layer offers a flexible and cost-effective way to combat cavitation attacks without altering the core properties. This paper comparatively analyzes the effects of four technological processing methods on the cavitation erosion resistance of grey cast irons. Cavitation erosion tests were conducted on a vibrating device with piezoceramic crystals in accordance with the ASTM G32-2016 standard. Surface hardness tests were carried out using a Vickers hardness tester, while roughness measurements were performed using a Mitutoyo device. The microstructures generated by the applied technologies and the surface wear mechanisms were analyzed using optical microscopy and scanning electron microscopy (SEM). The results indicated that the TIG local surface remelting process provides the most significant improvement in cavitation erosion resistance. Full article
(This article belongs to the Special Issue Advanced Materials and Processing Technologies)
Show Figures

Figure 1

21 pages, 10249 KB  
Article
Assessment of Corrosion and Cavitation Resistance of Laser Remelted GX40CrNiSi25-20 Cast Stainless Steel
by Ion Mitelea, Ilare Bordeașu, Daniela Cosma, Dragoș Buzdugan, Corneliu Marius Crăciunescu and Ion Dragoș Uțu
Materials 2024, 17(24), 6278; https://doi.org/10.3390/ma17246278 - 22 Dec 2024
Viewed by 1217
Abstract
This paper explores the enhancement of cavitation and corrosion resistance in cast stainless steel through laser beam surface remelting. The influence of laser treatment on material properties was assessed by analyzing the microstructure using optical microscopy, electron microscopy, and X-ray diffraction. Cavitation erosion [...] Read more.
This paper explores the enhancement of cavitation and corrosion resistance in cast stainless steel through laser beam surface remelting. The influence of laser treatment on material properties was assessed by analyzing the microstructure using optical microscopy, electron microscopy, and X-ray diffraction. Cavitation erosion was evaluated in tap water using an ultrasonic vibration setup, following ASTM G32—2016 standards. Results show that local remelting of the surface with a laser beam causes a reduction in material loss and cavitation erosion rate. Potentiodynamic polarization tests revealed a significant improvement in corrosion resistance, indicated by a reduced corrosion current density in the laser-treated surface. The observed improvements in cavitation and corrosion resistance are attributed to microstructural hardening, characterized by grain refinement and a uniform, homogeneous structure with finely dispersed, small precipitate particles. Full article
Show Figures

Figure 1

39 pages, 22737 KB  
Article
Comparative Research in the Field of the Parametric Effect of Lubricant Cavitation Initiation and Development on Friction and Wear in Piston Ring and Cylinder Liner Assemblies
by Polychronis Dellis
Lubricants 2024, 12(12), 460; https://doi.org/10.3390/lubricants12120460 - 20 Dec 2024
Cited by 3 | Viewed by 1530
Abstract
This research follows closely previous findings in flow characteristics and phenomena that take place in the piston ring and cylinder liner interface during motoring and firing engine operation, and also compares results between different optical engine set-ups. Cavitation visualisation in a simulating lubrication [...] Read more.
This research follows closely previous findings in flow characteristics and phenomena that take place in the piston ring and cylinder liner interface during motoring and firing engine operation, and also compares results between different optical engine set-ups. Cavitation visualisation in a simulating lubrication single-ring test rig and oil transport and cavitation visualisation in custom made cylinder assemblies of optical engines are the tools used to quantify the transport process under the piston ring and cylinder liner. Simplification of the interface is an essential technique that enhances the researcher’s confidence in results interpretation. Engine complexity and severe oil starvation are impeding the analysis of the experimental results. Visualisation experiments constitute an effective way to test various lubricant types and assess their overall performance characteristics, including their properties and cavitation behaviour. The repeatability of the visualisation method establishes the parametric study effects and offers valuable experimental results. As a further step towards the lubricant composition effect, a link between the lubricant formulation and the operating conditions could be established as the oil performance is assessed with a view to its transport behaviour. Image processing is used to quantify the impact of cavitation on piston ring lubrication in conjunction with varied operating and lubricant parameters. The characteristics of the lubricant and the working environment have an impact on these types of cavities. Viscosity, cavitation, oil film thickness (OFT), lubricant shear-thinning characteristics and friction are all linked. Full article
Show Figures

Figure 1

16 pages, 1682 KB  
Article
A Refined Model for Ablation Through Cavitation Bubbles with Ultrashort Pulse Lasers
by Shwetabh Verma and Samuel Arba Mosquera
Photonics 2024, 11(11), 1047; https://doi.org/10.3390/photonics11111047 - 7 Nov 2024
Cited by 3 | Viewed by 1698
Abstract
(1) Background: Ultrashort high-energy laser pulses may cause interaction mechanisms, including photodisruption and plasma-induced ablation in the medium. It is not always easy to distinguish between these two processes, as both interaction mechanisms rely on plasma generation and overlap. The purpose of this [...] Read more.
(1) Background: Ultrashort high-energy laser pulses may cause interaction mechanisms, including photodisruption and plasma-induced ablation in the medium. It is not always easy to distinguish between these two processes, as both interaction mechanisms rely on plasma generation and overlap. The purpose of this paper is to discuss prominent cavitation bubble models describing photodisruption and plasma-induced ablation and to explore their nature for different threshold energies. This exploration will help to better distinguish the two interaction mechanisms. As a second aim, we present an alternative model for the low-energy regime close to the laser-induced optical breakdown (LIOB) threshold, representing the phenomenological effect of the plasma-induced ablation regime. (2) Methods: The cavitation bubble models for photodisruption and plasma-induced ablation were used to calculate the bubble radius for a series of threshold energies (ETh = 30, 50, 70, and 300 nJ) that loosely represent commercial systems currently used in ultrashort-pulse tissue ablation. Taking a photodisruption model coefficient commonly used in the literature, the root mean square error between the two interaction models was minimized using the generalized reduced gradient fitting method to calculate the optimum scaling factors for the plasma model. The refined models with optimized coefficients were compared for a range of pulse and threshold energies. (3) Results: For low ETh (30, 50, and 70 nJ), the plasma-induced ablation model dominates for low energies that are close to the threshold energy. The photodisruption model dominates for high energies that are well above the threshold energy. At very high pulse energies, for all the simulated cases, the photodisruption model transitions and crosses over to the plasma-induced ablation model. The cross-over points from which the photodisruption model dominates tend to be reduced for larger ETh. A new universally applicable model for plasma-induced ablation has been hypothesized that considers the cavitation bubble volume and potentially better explains the bubble dynamics during intrastromal processes. (4) Conclusions: This theoretical exploration and the comparison of the outcomes to empirical data substantiate that inadvertently using the photodisruption model to explain the cavitation bubble dynamics for the entire spectrum of pulse energies and laser systems might provide erroneous estimates of cavitation bubble sizes. A reliable estimate of the true size (the maximum radius) of the cavitation bubble can be reasonably retrieved as the maximum predicted size from the fit of the photodisruption model and the newly proposed plasma-induced ablation model at any given pulse energy. Full article
(This article belongs to the Special Issue Visual Optics)
Show Figures

Figure 1

14 pages, 4692 KB  
Article
Experimental Study of Surface Microtexture Formed by Laser-Induced Cavitation Bubble on 7050 Aluminum Alloy
by Bin Li, Byung-Won Min, Yingxian Ma, Rui Zhou, Hai Gu and Yupeng Cao
Coatings 2024, 14(9), 1230; https://doi.org/10.3390/coatings14091230 - 23 Sep 2024
Viewed by 1455
Abstract
In order to study the feasibility of forming microtexture at the surface of 7050 aluminum alloy by laser-induced cavitation bubble, and how the density of microtexture influences its tribological properties, the evolution of the cavitation bubble was captured by a high-speed camera, and [...] Read more.
In order to study the feasibility of forming microtexture at the surface of 7050 aluminum alloy by laser-induced cavitation bubble, and how the density of microtexture influences its tribological properties, the evolution of the cavitation bubble was captured by a high-speed camera, and the underwater acoustic signal of evolution was collected by a fiber optic hydrophone system. This combined approach was used to study the effect of the cavitation bubble on 7050 aluminum alloy. The surface morphology of the microtexture was analyzed by a confocal microscope, and the tribological properties of the microtexture were analyzed by a friction testing machine. Then the feasibility of the preparation process was verified and the optimal density was obtained. The study shows that the microtexture on the surface of a sample is formed by the combined results of the plasma shock wave and the collapse shock wave. When the density of microtexture is less than or equal to 19.63%, the diameters of the micropits range from 478 μm to 578 μm, and the depths of the micropits range from 13.56 μm to 18.25 μm. This shows that the laser-induced cavitation bubble is able to form repeatable microtexture. The friction coefficient of the sample with microtexture is lower than that of the untextured sample, with an average friction coefficient of 0.16. This indicates that the microtexture formed by laser-induced cavitation bubble has a good lubrication effect. The sample with a density of 19.63% is uniform and smooth, having the minimum friction coefficient, with an average friction coefficient of 0.14. This paper provides a new approach for microtexture processing of metal materials. Full article
Show Figures

Figure 1

19 pages, 10843 KB  
Article
Research on the Mechanism of Oxygen-Induced Embrittlement Fracturing in Industrial Electrolytic Nickel
by Han Zhang, Chen Sang, Chengpeng Miao, Yangtao Xu, Jisen Qiao and Tiandong Xia
Materials 2024, 17(17), 4428; https://doi.org/10.3390/ma17174428 - 9 Sep 2024
Cited by 1 | Viewed by 1438
Abstract
In this study, severe cracking occurred during an investigation of the direct hot rolling of industrial electrolytic nickel plates. To determine the cause of hot-rolling cracking, the microstructure phase composition was analyzed through the utilization of various techniques, including optical microscopy, scanning electron [...] Read more.
In this study, severe cracking occurred during an investigation of the direct hot rolling of industrial electrolytic nickel plates. To determine the cause of hot-rolling cracking, the microstructure phase composition was analyzed through the utilization of various techniques, including optical microscopy, scanning electron microscopy, electron backscattering diffraction, transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS) and electron probe micro-analysis. The comparative microstructural analysis took place between specimens heat treated in atmospheric and vacuum environments. The characterization and analysis of the hot-rolled plates considered the crack microstructure and fracture morphology. It was shown that holes appeared along the large angular grain boundaries after annealing at 1100 °C for 8 h. Possible reason: In a high-temperature environment, the decomposition of residual additives in the electrolytic nickel releases oxidizing gases, which oxidizes the grain boundaries. The reaction with carbon diffused into the grain boundaries and produced carbon monoxide gas, which induced holes and severely reduced the grain boundary plasticity. The heat treatment time did not need to be very long for severe grain boundary degradation to occur. After severe cavitation, the electrolytic nickel was severely cracked at grain boundaries cracks due to a shear force, and brittle fractures occurred along grains with very low plasticity. Full article
Show Figures

Figure 1

23 pages, 2302 KB  
Article
CA-ViT: Contour-Guided and Augmented Vision Transformers to Enhance Glaucoma Classification Using Fundus Images
by Tewodros Gizaw Tohye, Zhiguang Qin, Mugahed A. Al-antari, Chiagoziem C. Ukwuoma, Zenebe Markos Lonseko and Yeong Hyeon Gu
Bioengineering 2024, 11(9), 887; https://doi.org/10.3390/bioengineering11090887 - 31 Aug 2024
Cited by 5 | Viewed by 2593
Abstract
Glaucoma, a predominant cause of visual impairment on a global scale, poses notable challenges in diagnosis owing to its initially asymptomatic presentation. Early identification is vital to prevent irreversible vision impairment. Cutting-edge deep learning techniques, such as vision transformers (ViTs), have been employed [...] Read more.
Glaucoma, a predominant cause of visual impairment on a global scale, poses notable challenges in diagnosis owing to its initially asymptomatic presentation. Early identification is vital to prevent irreversible vision impairment. Cutting-edge deep learning techniques, such as vision transformers (ViTs), have been employed to tackle the challenge of early glaucoma detection. Nevertheless, limited approaches have been suggested to improve glaucoma classification due to issues like inadequate training data, variations in feature distribution, and the overall quality of samples. Furthermore, fundus images display significant similarities and slight discrepancies in lesion sizes, complicating glaucoma classification when utilizing ViTs. To address these obstacles, we introduce the contour-guided and augmented vision transformer (CA-ViT) for enhanced glaucoma classification using fundus images. We employ a Conditional Variational Generative Adversarial Network (CVGAN) to enhance and diversify the training dataset by incorporating conditional sample generation and reconstruction. Subsequently, a contour-guided approach is integrated to offer crucial insights into the disease, particularly concerning the optic disc and optic cup regions. Both the original images and extracted contours are given to the ViT backbone; then, feature alignment is performed with a weighted cross-entropy loss. Finally, in the inference phase, the ViT backbone, trained on the original fundus images and augmented data, is used for multi-class glaucoma categorization. By utilizing the Standardized Multi-Channel Dataset for Glaucoma (SMDG), which encompasses various datasets (e.g., EYEPACS, DRISHTI-GS, RIM-ONE, REFUGE), we conducted thorough testing. The results indicate that the proposed CA-ViT model significantly outperforms current methods, achieving a precision of 93.0%, a recall of 93.08%, an F1 score of 92.9%, and an accuracy of 93.0%. Therefore, the integration of augmentation with the CVGAN and contour guidance can effectively enhance glaucoma classification tasks. Full article
Show Figures

Figure 1

22 pages, 18002 KB  
Article
Ultrasonic Cavitation Erosion Behavior of GX40CrNiSi25-20 Cast Stainless Steel through Yb-YAG Surface Remelting
by Daniela Cosma, Ion Mitelea, Ilare Bordeașu, Ion Dragoș Uțu and Corneliu Marius Crăciunescu
Materials 2024, 17(17), 4180; https://doi.org/10.3390/ma17174180 - 23 Aug 2024
Cited by 3 | Viewed by 1067
Abstract
Laser beam remelting is a relatively simple and highly effective technique for the physical modification of surfaces to improve resistance to cavitation erosion. In this study, we investigated the effect of laser remelting on the surface of cast stainless steel with 0.40% C, [...] Read more.
Laser beam remelting is a relatively simple and highly effective technique for the physical modification of surfaces to improve resistance to cavitation erosion. In this study, we investigated the effect of laser remelting on the surface of cast stainless steel with 0.40% C, 25% Cr, 20% Ni, and 1.5% Si on cavitation erosion behavior in tap water. The investigation was conducted using a piezoceramic crystal vibrator apparatus. Base laser beam parameters were carefully selected to result in a defect-free surface (no porosity, material burn, cracks) with hardness capable of generating better resistance to cavitation erosion. The experimental results were compared with those of the reference material. Surface morphology and microstructure evolution after cavitation tests were analyzed using an optical metallographic microscope (OM), scanning electron microscope (SEM), and hardness tests to explore the mechanism of improving surface degradation resistance. The conducted research demonstrated that surfaces modified by laser remelting exhibit a 4.8–5.1 times greater increase in cavitation erosion resistance due to the homogenization of chemical composition and refinement of the microstructure, while maintaining the properties of the base material. Full article
Show Figures

Figure 1

15 pages, 14119 KB  
Article
Investigation of Toughening Mechanisms in Elastomeric Polycarbonate Blends through Morphological and Mechanical Characterization at Small and Medium Strain Rates
by Pedro Veiga Rodrigues, Bruno Ramoa, Maria Cidália R. Castro and Ana Vera Machado
Polymers 2024, 16(16), 2303; https://doi.org/10.3390/polym16162303 - 15 Aug 2024
Cited by 3 | Viewed by 1565
Abstract
Despite polycarbonate (PC) being a widely used engineering plastic, its notch and crack sensitivity pose challenges in critical applications. To address this, PC was blended with elastomeric polymers to explore the improvement in toughness. This study systematically investigates the toughening mechanisms of PC [...] Read more.
Despite polycarbonate (PC) being a widely used engineering plastic, its notch and crack sensitivity pose challenges in critical applications. To address this, PC was blended with elastomeric polymers to explore the improvement in toughness. This study systematically investigates the toughening mechanisms of PC blended with acrylonitrile–butadiene–styrene (ABS), copolyether ester elastomer (COPE), and ABS and styrene–ethylene–butylene–styrene (SEBS) copolymer grafted with maleic anhydride (MA). The morphology and mechanical behavior were evaluated under quasi-static and medium-strain-rate tensile tests and Charpy impact tests using optical, electronic, and atomic force microscopy and Raman mapping spectroscopy. The morphological analysis reveals cavitation and crazing phenomena for COPE and SEBS-g-MA systems, and mostly debonding for ABS, indicating an improvement in toughening. While the addition of ABS improves the PC plastic deformation, modifying ABS with maleic anhydride enhances the elastic modulus. Blending PC with SEBS-g-MA increases the strain at break, and the addition of COPE significantly improves the deformation behavior of PC (by around 115%). This comparative study provides valuable insights into the performance of different PC–elastomer blends under similar conditions, supporting the selection of appropriate materials for given applications. Full article
(This article belongs to the Section Polymer Physics and Theory)
Show Figures

Graphical abstract

Back to TopTop