Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,169)

Search Parameters:
Keywords = optical signal

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1419 KB  
Article
Optical Coherence Tomography Angiography (OCTA) Captures Early Micro-Vascular Remodeling in Non-Melanoma Skin Cancer During Superficial Radiotherapy: A Proof-of-Concept Study
by Gerd Heilemann, Giulia Rotunno, Lisa Krainz, Francesco Gili, Christoph Müller, Kristen M. Meiburger, Dietmar Georg, Joachim Widder, Wolfgang Drexler, Mengyang Liu and Cora Waldstein
Diagnostics 2025, 15(21), 2698; https://doi.org/10.3390/diagnostics15212698 (registering DOI) - 24 Oct 2025
Abstract
Background/Objectives: This proof-of-concept study evaluated whether optical coherence tomography angiography (OCTA) can non-invasively capture micro-vascular alterations in non-melanoma skin cancer (NMSC) lesions during and after superficial orthovoltage radiotherapy (RT) using radiomics and vascular features analysis. Methods: Eight patients (13 NMSC lesions) [...] Read more.
Background/Objectives: This proof-of-concept study evaluated whether optical coherence tomography angiography (OCTA) can non-invasively capture micro-vascular alterations in non-melanoma skin cancer (NMSC) lesions during and after superficial orthovoltage radiotherapy (RT) using radiomics and vascular features analysis. Methods: Eight patients (13 NMSC lesions) received 36–50 Gy in 6–20 fractions. High-resolution swept-source OCTA volumes (1.1 × 10 × 10 mm3) were acquired from each lesion at three time points: pre-RT, immediately post-RT, and three months post-RT. Additionally, healthy skin baseline was scanned. After artifact suppression and region-of-interest cropping, (i) first-order and texture radiomics and (ii) skeleton-based vascular features were extracted. Selected features after LASSO (least absolute shrinkage and selection operator) were explored with principal-component analysis. An XGBoost model was trained to classify time points with 100 bootstrap out-of-bag validations. Kruskal–Wallis tests with Benjamini–Hochberg correction assessed longitudinal changes in the 20 most influential features. Results: Sixty-one OCTA volumes were analyzable. LASSO retained 47 of 103 features. The first two principal components explained 63% of the variance, revealing a visible drift of lesions from pre- to three-month post-RT clusters. XGBoost achieved a macro-averaged AUC of 0.68 ± 0.07. Six features (3 texture, 2 first order, 1 vascular) changed significantly across time points (adjusted p < 0.05), indicating dose-dependent reductions in signal heterogeneity and micro-vascular complexity as early as treatment completion, which deepened by three months. Conclusions: OCTA-derived radiomic and vascular signatures tracked RT-induced micro-vascular remodeling in NMSC. The approach is entirely non-invasive, label-free, and feasible at the point of care. As an exploratory proof-of-concept, this study helps to refine scanning and analysis protocols and generates knowledge to support future integration of OCTA into adaptive skin-cancer radiotherapy workflows. Full article
(This article belongs to the Collection Biomedical Optics: From Technologies to Applications)
10 pages, 1147 KB  
Article
Optical Measurements of Binary Buffer-Gas Partial Pressures for Vapor-Cell Atomic Clocks
by Andrew Householder and James Camparo
Time Space 2025, 1(1), 4; https://doi.org/10.3390/timespace1010004 (registering DOI) - 24 Oct 2025
Abstract
In vapor-cell atomic clocks, a buffer gas is employed to slow the collision rate of atoms with the vapor-cell’s walls, which dephases the atomic coherence and thereby contributes to the 0-0 hyperfine transition’s linewidth. However, the buffer gas also gives rise to a [...] Read more.
In vapor-cell atomic clocks, a buffer gas is employed to slow the collision rate of atoms with the vapor-cell’s walls, which dephases the atomic coherence and thereby contributes to the 0-0 hyperfine transition’s linewidth. However, the buffer gas also gives rise to a temperature-dependent pressure shift in the hyperfine transition, Δνhfs. As a consequence, the clock’s frequency develops a temperature dependence, manifesting as a clock environmental sensitivity, which can degrade the clock’s long-term frequency stability. To mitigate this problem, it is routine to employ a buffer-gas mixture in a vapor cell. With an appropriate choice of buffer gases, d[Δνhfs]/dT = 0 at a vapor temperature Tc, “zeroing out” the clock’s buffer-gas temperature sensitivity. Unfortunately, Tc depends on the exact mix of buffer-gas partial pressures, and if not properly achieved, Tc will be far from the vapor temperature that yields useful atomic clock signals, To. Therefore, understanding buffer-gas partial pressures in sealed vapor cells is crucial for optimizing a vapor cell clock’s performance, yet, to date, there have been no easy means for measuring buffer-gas partial pressures non-destructively in sealed glass vapor cells. Here, we demonstrate an optical technique that can accurately assess partial pressures in binary buffer-gas mixtures. Moreover, this technique is relatively simple and can be easily implemented. Full article
Show Figures

Figure 1

14 pages, 2526 KB  
Article
Trillion-Frame-Rate All-Optical Sectioning Three-Dimensional Holographic Imaging
by Yubin Zhang, Qingzhi Li, Wanguo Zheng and Zeren Li
Photonics 2025, 12(11), 1051; https://doi.org/10.3390/photonics12111051 (registering DOI) - 24 Oct 2025
Abstract
Three-dimensional holographic imaging technology is increasingly applied in biomedical detection, materials science, and industrial non-destructive testing. Achieving high-resolution, large-field-of-view, and high-speed three-dimensional imaging has become a significant challenge. This paper proposes and implements a three-dimensional holographic imaging method based on trillion-frame-frequency all-optical multiplexing. [...] Read more.
Three-dimensional holographic imaging technology is increasingly applied in biomedical detection, materials science, and industrial non-destructive testing. Achieving high-resolution, large-field-of-view, and high-speed three-dimensional imaging has become a significant challenge. This paper proposes and implements a three-dimensional holographic imaging method based on trillion-frame-frequency all-optical multiplexing. This approach combines spatial and temporal multiplexing to achieve multi-channel partitioned acquisition of the light field via a two-dimensional diffraction grating, significantly enhancing the system’s imaging efficiency and dynamic range. The paper systematically derives the theoretical foundation of holographic imaging, establishes a numerical reconstruction model based on angular spectrum propagation, and introduces iterative phase recovery and image post-processing strategies to optimize reproduction quality. Experiments using standard resolution plates and static particle fields validate the proposed method’s imaging performance under static conditions. Results demonstrate high-fidelity reconstruction approaching diffraction limits, with post-processing further enhancing image sharpness and signal-to-noise ratio. This research establishes theoretical and experimental foundations for subsequent dynamic holographic imaging and observation of large-scale complex targets. Full article
(This article belongs to the Special Issue Thermal Radiation and Micro-/Nanophotonics)
Show Figures

Figure 1

19 pages, 4894 KB  
Article
Study on Microdroplets Generation and Detection Method in Four-Way Microfluid Structure (FWMS) by Double Photoresist Method Pulses
by Lele Luo and Lu Zhang
Micromachines 2025, 16(11), 1205; https://doi.org/10.3390/mi16111205 - 23 Oct 2025
Abstract
Hundred-micron-sized microdroplets are widely used in microbial culture, chemical investigations and industrial processes. The size, velocity and frequency of microdroplets significantly affect the cultivation and processing effects. The detections of droplets mainly rely on capacitance detection or imaging, but it requires expensive and [...] Read more.
Hundred-micron-sized microdroplets are widely used in microbial culture, chemical investigations and industrial processes. The size, velocity and frequency of microdroplets significantly affect the cultivation and processing effects. The detections of droplets mainly rely on capacitance detection or imaging, but it requires expensive and complex systems for capacitance detection, and high-throughput imaging detections are challenging. In this study, four-way microfluid structure (FWMS) is proposed for microdroplets generation and detection. FWMS, fixed on a 3D-printed holder, is designed to generate microdroplets (100–500 µm), with optical fibers embedded to collect double photoresist method pulses of scattering light by fast-moving microdroplets. The size and volume of the microdroplets are retrieved by tracking the double pulse signal in the time sequence. In the experiments, 50 groups of microdroplets (a total of 105 microdroplets) with size ranging from 100 to 450 µm were generated and detected. Compared with traditional imaging detection, this method has a better sampling rate and detection error of less than 1.42%, which can provide a simple and accurate integrated microfluid system for microdroplet generation and synchronous detection. Full article
Show Figures

Figure 1

24 pages, 13390 KB  
Article
Performance of Acoustic, Electro-Acoustic and Optical Sensors in Precise Waveform Analysis of a Plucked and Struck Guitar String
by Jan Jasiński, Marek Pluta, Roman Trojanowski, Julia Grygiel and Jerzy Wiciak
Sensors 2025, 25(21), 6514; https://doi.org/10.3390/s25216514 - 22 Oct 2025
Abstract
This study presents a comparative performance analysis of three sensor technologies—microphone, magnetic pickup, and laser Doppler vibrometer—for capturing string vibration under varied excitation conditions: striking, plectrum plucking, and wire plucking. Two different magnetic pickups are included in the comparison. Measurements were taken at [...] Read more.
This study presents a comparative performance analysis of three sensor technologies—microphone, magnetic pickup, and laser Doppler vibrometer—for capturing string vibration under varied excitation conditions: striking, plectrum plucking, and wire plucking. Two different magnetic pickups are included in the comparison. Measurements were taken at multiple excitation levels on a simplified electric guitar mounted on a stable platform with repeatable excitation mechanisms. The analysis focuses on each sensor’s capacity to resolve fine-scale waveform features during the initial attack while also taking into account its capability to measure general changes in instrument dynamics and timbre. We evaluate their ability to distinguish vibro-acoustic phenomena resulting from changes in excitation method and strength as well as measurement location. Our findings highlight the significant influence of sensor choice on observable string vibration. While the microphone captures the overall radiated sound, it lacks the required spatial selectivity and offers poor SNR performance 34 dB lower then other methods. Magnetic pickups enable precise string-specific measurements, offering a compelling balance of accuracy and cost-effectiveness. Results show that their low-pass frequency characteristic limits temporal fidelity and must be accounted for when analysing general sound timbre. Laser Doppler vibrometers provide superior micro-temporal fidelity, which can have critical implications for physical modeling, instrument design, and advanced audio signal processing, but have severe practical limitations. Critically, we demonstrate that the required optical target, even when weighing as little as 0.1% of the string’s mass, alters the string’s vibratory characteristics by influencing RMS energy and spectral content. Full article
(This article belongs to the Special Issue Deep Learning for Perception and Recognition: Method and Applications)
Show Figures

Figure 1

29 pages, 3695 KB  
Article
Multi-Objective Parameter Stochastic Optimization Method for Time-Delayed Integration Optical Remote Sensing System Used for Kelvin Wake Imaging
by Mingzhu Song, Lizhou Li, Xuechan Zhao and Junsheng Wang
Appl. Sci. 2025, 15(21), 11307; https://doi.org/10.3390/app152111307 - 22 Oct 2025
Viewed by 17
Abstract
When using optical remote sensing methods for Kelvin wake imaging, the imaging is affected by sea-surface stochastic fluctuation, imaging noise, and weak reflectivity contrast, resulting in weak wake image signals. In order to better obtain wake optical remote sensing images, this article proposes [...] Read more.
When using optical remote sensing methods for Kelvin wake imaging, the imaging is affected by sea-surface stochastic fluctuation, imaging noise, and weak reflectivity contrast, resulting in weak wake image signals. In order to better obtain wake optical remote sensing images, this article proposes a multi-objective parameter stochastic optimization method for a time-delayed integration optical remote sensing imaging system. By constructing the wake imaging mechanism framework integrating a hydrodynamic model, rough sea surface probability and statistics model, and Time-Delay Integration Charge-Coupled Device (TDI-CCD) imaging link model, a stochastic multi-objective optimization model with constraints is established. The multi-objective function of this model is specifically defined as follows: maximizing the digital number difference between the crest and trough of Kelvin wakes in imaging results, maximizing the F number, minimizing the integration stages, and minimizing the quantization bits. Meanwhile, a two-stage solution method based on sample average approximation (SAA), branch and bound method (B&B), and the complex method is designed. The model can be used to obtain optimized design results for remote sensing imaging parameters, providing theoretical and methodological support for the design of remote sensing imaging systems. Numerical simulation results show that the optimized parameter combination can achieve clear imaging of the Kelvin wake, and the core indicators meet the design requirements. Full article
Show Figures

Figure 1

19 pages, 1892 KB  
Article
Optimizing Multi-Band Optical Network Design: A Layered Approach for Engineering and Education
by Nick Nafpliotis, Dimitris Uzunidis and Gerasimos Pagiatakis
Appl. Sci. 2025, 15(20), 11270; https://doi.org/10.3390/app152011270 - 21 Oct 2025
Viewed by 91
Abstract
The sixth generation of mobile networks (6G) presents increasing complexity that challenges traditional analysis and performance evaluation methods, necessitating more structured approaches for both research and educational purposes. This study introduces a layered methodology that classifies physical layer impairments, such as amplified spontaneous [...] Read more.
The sixth generation of mobile networks (6G) presents increasing complexity that challenges traditional analysis and performance evaluation methods, necessitating more structured approaches for both research and educational purposes. This study introduces a layered methodology that classifies physical layer impairments, such as amplified spontaneous emission (ASE) noise and fiber nonlinearities into sequential layers. The approach enables independent assessment of individual impairment contributions to overall system performance, facilitating more accurate evaluation of signal quality metrics, including signal-to-noise-ratio (SNR) and optical signal-to-noise-plus-interference ratio (OSNIR) across multiple spectral bands. By implementing this step-by-step analysis framework, researchers can better understand the cumulative impact of various transmission effects, while students can gain progressive insight into complex optical communication principles, making this approach serve dual purposes as both an effective research tool for system optimization and a pedagogical instrument that enhances engineering education. The effectiveness of the methodology is demonstrated through the performance evaluation of a system employing five spectral bands (E, S1, S2, C, and L) under various operating conditions. Full article
Show Figures

Figure 1

28 pages, 3909 KB  
Article
VCSELs: Influence of Design on Performance and Data Transmission over Multi-Mode and Single-Mode Fibers
by Nikolay N. Ledentsov, Nikolay Ledentsov, Vitaly A. Shchukin, Alexander N. Ledentsov, Oleg Yu. Makarov, Ilya E. Titkov, Markus Lindemann, Thomas de Adelsburg Ettmayer, Nils C. Gerhardt, Martin R. Hofmann, Xin Chen, Jason E. Hurley, Hao Dong and Ming-Jun Li
Photonics 2025, 12(10), 1037; https://doi.org/10.3390/photonics12101037 - 21 Oct 2025
Viewed by 208
Abstract
Substantial improvements in the performance of optical interconnects based on multi-mode fibers are required to support emerging single-channel data transmission rates of 200 Gb/s and 400 Gb/s. Future optical components must combine very high modulation bandwidths—supporting signaling at 100 Gbaud and 200 Gbaud—with [...] Read more.
Substantial improvements in the performance of optical interconnects based on multi-mode fibers are required to support emerging single-channel data transmission rates of 200 Gb/s and 400 Gb/s. Future optical components must combine very high modulation bandwidths—supporting signaling at 100 Gbaud and 200 Gbaud—with reduced spectral width to mitigate chromatic-dispersion-induced pulse broadening and increased brightness to further restrict flux-confining area in multi-mode fibers and thereby increase the effective modal bandwidth (EMB). A particularly promising route to improved performance within standard oxide-confined VCSEL technology is the introduction of multiple isolated or optically coupled oxide-confined apertures, which we refer to collectively as multi-aperture (MA) VCSEL arrays. We show that properly designed MA VCSELs exhibit narrow emission spectra, narrow far-field profiles and extended intrinsic modulation bandwidths, enabling longer-reach data transmission over both multi-mode (MMF) and single-mode fibers (SMF). One approach uses optically isolated apertures with lateral dimensions of approximately 2–3 µm arranged with a pitch of 10–12 µm or less. Such devices demonstrate relaxation oscillation frequencies of around 30 GHz in continuous-wave operation and intrinsic modulation bandwidths approaching 50 GHz. Compared with a conventional single-aperture VCSELs of equivalent oxide-confined area, MA designs can reduce the spectral width (root mean square values < 0.15 nm), lower series resistance (≈50 Ω) and limit junction overheating through more efficient multi-spot heat dissipation at the same total current. As each aperture lases in a single transverse mode, these devices exhibit narrow far-field patterns. In combination with well-defined spacing between emitting spots, they permit tailored restricted launch conditions in MMFs, enhancing effective modal bandwidth. In another MA approach, the apertures are optically coupled such that self-injection locking (SIL) leads to lasing in a single supermode. One may regard one of the supermodes as acting as a master mode controlling the other one. Streak-camera studies reveal post-pulse oscillations in the SIL regime at frequencies up to 100 GHz. MA VCSELs enable a favorable combination of wavelength chirp and chromatic dispersion, extending transmission distances over MMFs beyond those expected for zero-chirp sources and supporting transfer bandwidths up to 60 GHz over kilometer-length SMF links. Full article
Show Figures

Figure 1

29 pages, 48102 KB  
Article
Infrared Temporal Differential Perception for Space-Based Aerial Targets
by Lan Guo, Xin Chen, Cong Gao, Zhiqi Zhao and Peng Rao
Remote Sens. 2025, 17(20), 3487; https://doi.org/10.3390/rs17203487 - 20 Oct 2025
Viewed by 214
Abstract
Space-based infrared (IR) detection, with wide coverage, all-time operation, and stealth, is crucial for aerial target surveillance. Under low signal-to-noise ratio (SNR) conditions, however, its small target size, limited features, and strong clutters often lead to missed detections and false alarms, reducing stability [...] Read more.
Space-based infrared (IR) detection, with wide coverage, all-time operation, and stealth, is crucial for aerial target surveillance. Under low signal-to-noise ratio (SNR) conditions, however, its small target size, limited features, and strong clutters often lead to missed detections and false alarms, reducing stability and real-time performance. To overcome these issues of energy-integration imaging in perceiving dim targets, this paper proposes a biomimetic vision-inspired Infrared Temporal Differential Detection (ITDD) method. The ITDD method generates sparse event streams by triggering pixel-level radiation variations and establishes an irradiance-based sensitivity model with optimized threshold voltage, spectral bands, and optical aperture parameters. IR sequences are converted into differential event streams with inherent noise, upon which a lightweight multi-modal fusion detection network is developed. Simulation experiments demonstrate that ITDD reduces data volume by three orders of magnitude and improves the SNR by 4.21 times. On the SITP-QLEF dataset, the network achieves a detection rate of 99.31%, and a false alarm rate of 1.97×105, confirming its effectiveness and application potential under complex backgrounds. As the current findings are based on simulated data, future work will focus on building an ITDD demonstration system to validate the approach with real-world IR measurements. Full article
(This article belongs to the Special Issue Deep Learning-Based Small-Target Detection in Remote Sensing)
Show Figures

Figure 1

15 pages, 2326 KB  
Article
Bridging Photoacoustic and Protoacoustic Imaging: Material Heterogeneity Effects on Proton Range Verification Using Time-of-Flight Analysis
by Sangwoon Jeong, Wonjoong Cheon, Youngyih Han and Sungkoo Cho
Bioengineering 2025, 12(10), 1123; https://doi.org/10.3390/bioengineering12101123 - 20 Oct 2025
Viewed by 235
Abstract
Photoacoustic and protoacoustic imaging share the common principle of acoustic wave generation through different excitation sources: optical absorption vs. proton Bragg-peak. These acoustic signals exhibit heterogeneity within the tissue, which strongly influence wave propagation and detection accuracy. In this study, we investigate how [...] Read more.
Photoacoustic and protoacoustic imaging share the common principle of acoustic wave generation through different excitation sources: optical absorption vs. proton Bragg-peak. These acoustic signals exhibit heterogeneity within the tissue, which strongly influence wave propagation and detection accuracy. In this study, we investigate how material variation affects time-of-flight (TOF)-based acoustic signal analysis in the context of protoacoustic proton range verification, providing insights relevant to broader photoacoustic imaging methodologies. A ±15 °C temperature difference in water caused only a 0.04 μs delay and thus had a minimal effect. In heterogeneous phantoms, lung-containing cases produced range errors up to 3.72 mm. In clinical scenarios, detectors aligned with air or low-density tissues showed large overestimations, up to 192.4 mm. Only 2 of 25 detector positions met the <2 mm error criterion. These results highlight that tissue composition and acoustic heterogeneity significantly influence protoacoustic wave propagation and range accuracy. Accurate range verification using protoacoustics must account for material variations along the wave path, particularly in lung regions, to ensure clinical applicability. Full article
Show Figures

Figure 1

11 pages, 3423 KB  
Article
High-Precision Digital Time-Interval Measurement in Dual-Comb Systems via Adaptive Signal Processing and Centroid Localization
by Ganbin Lu, Dongrui Yu, Ziyue Zhang, Yang Xie, Yufei Zhang, Zhongyuan Fu, Sifei Chen, Lin Xiao, Ziyang Chen, Bin Luo and Hong Guo
Symmetry 2025, 17(10), 1769; https://doi.org/10.3390/sym17101769 - 20 Oct 2025
Viewed by 203
Abstract
Time and frequency standards constitute fundamental requirements for diverse applications spanning daily life technologies to advanced scientific research. Among precision time dissemination methods, microwave-clock-based dual comb time transfer has emerged as a promising approach that achieves ultra-precise time interval measurements through linear optical [...] Read more.
Time and frequency standards constitute fundamental requirements for diverse applications spanning daily life technologies to advanced scientific research. Among precision time dissemination methods, microwave-clock-based dual comb time transfer has emerged as a promising approach that achieves ultra-precise time interval measurements through linear optical sampling. However, conventional peak detection methodologies employed in such systems exhibit critical limitations: vulnerability to amplitude noise interference and inherent accuracy constraints imposed by analog sampling rates. To address these challenges, we present a novel digital time differential measurement paradigm integrating three key algorithmic innovations: (1) adaptive signal detection and extraction protocols, (2) multi-stage noise suppression processing, and (3) optimized centroid determination techniques. This comprehensive digital processing framework significantly enhances both measurement stability and operational efficiency, demonstrating single-shot temporal resolution at 17.6 fs stability levels. Our method establishes new capabilities for high-precision time-frequency transfer applications requiring robust noise immunity and enhanced sampling dynamics. Full article
(This article belongs to the Section Physics)
Show Figures

Figure 1

31 pages, 17070 KB  
Article
WRF Simulations of Passive Tracer Transport from Biomass Burning in South America: Sensitivity to PBL Schemes
by Douglas Lima de Bem, Vagner Anabor, Damaris Kirsch Pinheiro, Luiz Angelo Steffenel, Hassan Bencherif, Gabriela Dornelles Bittencourt, Eduardo Landulfo and Umberto Rizza
Remote Sens. 2025, 17(20), 3483; https://doi.org/10.3390/rs17203483 - 19 Oct 2025
Viewed by 292
Abstract
This single high-impact case study investigates the impact of planetary boundary layer (PBL) representation on long-range transport of Amazon fire smoke that reached the Metropolitan Area of São Paulo (MASP) from 15 to 20 August 2019, using the WRF model to compare three [...] Read more.
This single high-impact case study investigates the impact of planetary boundary layer (PBL) representation on long-range transport of Amazon fire smoke that reached the Metropolitan Area of São Paulo (MASP) from 15 to 20 August 2019, using the WRF model to compare three PBL schemes (MYNN 2.5, YSU, and BouLac) and three source-tagged tracers. The simulations are evaluated against MODIS-derived aerosol optical depth (AOD), the Light Detection and Ranging (LiDAR) time–height curtain over MASP, and HYSPLIT forward trajectories. Transport is diagnosed along the source-to-MASP pathway using six-hourly cross-sections and two integrative metrics: the projected mean wind in the 700–600 hPa layer and the vertical moment of tracer mass above the boundary layer. Outflow and downwind impact are strongest when a persistent reservoir between 2 and 4 km coexists with projected winds for several hours. In this episode, MYNN maintains an elevated 2–5 km transport layer and matches the observed arrival time and altitude, YSU yields a denser but delayed column, and BouLac produces discontinuous pulses with reduced coherence over the city. A negatively tilted trough, jet coupling, and a nearly stationary front establish a northwest-to-southeast corridor consistent across model fields, trajectories, and satellite signal. Seasonal robustness should be assessed with multi-event, multi-model analyses. Full article
Show Figures

Figure 1

14 pages, 2702 KB  
Article
Albendazole Detection at a Nanomolar Level Through a Fabry–Pérot Interferometer Realized via Molecularly Imprinted Polymers
by Ines Tavoletta, Ricardo Oliveira, Filipa Sequeira, Catarina Cardoso Novo, Luigi Zeni, Giancarla Alberti, Nunzio Cennamo and Rogerio Nunes Nogueira
Sensors 2025, 25(20), 6456; https://doi.org/10.3390/s25206456 - 18 Oct 2025
Viewed by 251
Abstract
Albendazole (ABZ) is a broad-spectrum anthelmintic drug whose residual presence in food and the environment raises public health concerns, requiring rapid and sensitive methods of detection. In this work, a sensitive Fabry–Pérot interferometer (FPI) probe was fabricated by realizing a cavity located at [...] Read more.
Albendazole (ABZ) is a broad-spectrum anthelmintic drug whose residual presence in food and the environment raises public health concerns, requiring rapid and sensitive methods of detection. In this work, a sensitive Fabry–Pérot interferometer (FPI) probe was fabricated by realizing a cavity located at the tip of a single-mode optical fiber core with a molecularly imprinted polymer (MIP) for ABZ detection. The fabrication process involved the development of a photoresist-based micro-hole filled by the specific MIP via thermal polymerization. Interferometric measurements obtained using the proposed sensor system have demonstrated a limit of detection (LOD) of 27 nM, a dynamic concentration range spanning from 27 nM (LOD) to 250 nM, and a linear response at the nanomolar level (27 nM–100 nM). The selectivity test demonstrated no signal when interfering molecules were present, and the application of the sensor for ABZ quantification in a commercial pharmaceutical sample provided good recovery, in accordance with bioanalytical validation standard methods. These results demonstrate the capability of a MIP layer-based FPI probe to provide low-cost and selective optical-sensing strategies, proposing a competitive approach to traditional analytical techniques for ABZ monitoring. Full article
Show Figures

Figure 1

17 pages, 13766 KB  
Article
Reduction in Reflection Signal Losses in Complex Terahertz Optical Elements Through Tailored Oil Application
by Mateusz Kaluza, Adrianna Nieradka, Mateusz Surma, Wojciech Krauze and Agnieszka Siemion
Appl. Sci. 2025, 15(20), 11167; https://doi.org/10.3390/app152011167 - 17 Oct 2025
Viewed by 193
Abstract
In complex terahertz (THz) systems, multiple optical elements are often combined to achieve advanced functionalities. However, unwanted Fresnel reflections at their interfaces and between components lead to parasitic interference effects and signal losses. This study presents oil-based refractive-index-matching fillers integrated with additively manufactured [...] Read more.
In complex terahertz (THz) systems, multiple optical elements are often combined to achieve advanced functionalities. However, unwanted Fresnel reflections at their interfaces and between components lead to parasitic interference effects and signal losses. This study presents oil-based refractive-index-matching fillers integrated with additively manufactured assemblies to suppress Fresnel reflections and enhance overall optical system performance. The optical properties of 20 plant-based, synthetic, and mineral oils were investigated using terahertz time-domain spectroscopy (THz TDS). Furthermore, a multilayer structure was designed and experimentally verified, fabricated via fused deposition modeling (FDM) using highly transparent cyclic olefin copolymer (COC). The results demonstrate that the use of tailored oils reduces Fresnel reflection signal losses and also mitigates parasitic interference within the system, thereby improving the effective efficiency of the optical system. Additionally, THz TDS measurements on multilayer structures revealed that, in imaging configurations, the application of refractive-index-matched oils increases the signal gain by 2.33 times. These findings highlight the potential of oil-based index-matching fillers for imaging multilayered objects and mitigating delamination effects in optical elements. Full article
Show Figures

Figure 1

25 pages, 10667 KB  
Article
Adaptive Exposure Optimization for Underwater Optical Camera Communication via Multimodal Feature Learning and Real-to-Sim Channel Emulation
by Jiongnan Lou, Xun Zhang, Haifei Shen, Yiqian Qian, Zhan Wang, Hongda Chen, Zefeng Wang and Lianxin Hu
Sensors 2025, 25(20), 6436; https://doi.org/10.3390/s25206436 - 17 Oct 2025
Viewed by 402
Abstract
Underwater Optical Camera Communication (UOCC) has emerged as a promising paradigm for short-range, high-bandwidth, and secure data exchange in autonomous underwater vehicles (AUVs). UOCC performance strongly depends on exposure time and International Standards Organization (ISO) sensitivity—two parameters that govern photon capture, contrast, and [...] Read more.
Underwater Optical Camera Communication (UOCC) has emerged as a promising paradigm for short-range, high-bandwidth, and secure data exchange in autonomous underwater vehicles (AUVs). UOCC performance strongly depends on exposure time and International Standards Organization (ISO) sensitivity—two parameters that govern photon capture, contrast, and bit detection fidelity. However, optical propagation in aquatic environments is highly susceptible to turbidity, scattering, and illumination variability, which severely degrade image clarity and signal-to-noise ratio (SNR). Conventional systems with fixed imaging settings cannot adapt to time-varying conditions, limiting communication reliability. While validating the feasibility of deep learning for exposure prediction, this baseline lacked environmental awareness and generalization to dynamic scenarios. To overcome these limitations, we introduce a Real-to-Sim-to-Deployment framework that couples a physically calibrated emulation platform with a Hybrid CNN-MLP Model (HCMM). By fusing optical images, environmental states, and camera configurations, the HCMM achieves substantially improved parameter prediction accuracy, reducing RMSE to 0.23–0.33. When deployed on embedded hardware, it enables real-time adaptive reconfiguration and delivers up to 8.5 dB SNR gain, surpassing both static-parameter systems and the prior CNN baseline. These results demonstrate that environment-aware multimodal learning, supported by reproducible optical channel emulation, provides a scalable and robust solution for practical UOCC deployment in positioning, inspection, and laser-based underwater communication. Full article
Show Figures

Figure 1

Back to TopTop