Loading [MathJax]/jax/output/HTML-CSS/jax.js
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (47)

Search Parameters:
Keywords = optimum tilt angle

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 3551 KiB  
Article
Rooftop Solar Photovoltaic Potential in Polluted Indian Cities: Atmospheric and Urban Impacts, Climate Trends, Societal Gains, and Economic Opportunities
by Davender Sethi and Panagiotis G. Kosmopoulos
Remote Sens. 2025, 17(7), 1221; https://doi.org/10.3390/rs17071221 - 29 Mar 2025
Viewed by 899
Abstract
This extensive study examines the solar rooftop photovoltaic potential (RTP) over polluted cities in major geographic and economic zones of India. The study examines the climatology of solar radiation attenuation due to aerosol, clouds, architectural effects, etc. The study exploits earth observations from [...] Read more.
This extensive study examines the solar rooftop photovoltaic potential (RTP) over polluted cities in major geographic and economic zones of India. The study examines the climatology of solar radiation attenuation due to aerosol, clouds, architectural effects, etc. The study exploits earth observations from ground, satellite, and radiative transfer modeling (RTM) in conjunction with geographic information systems tools. The study exploits long-term observations of cloud properties from the Meteosat Second Generation (MSG) satellites operated by EUMETSAT and aerosol properties data gathered from ground-based measurements provided by AERONET. The innovation in the study is defined in two steps. Firstly, we estimated the RTP using the current state of the art in the field, which involved using suitability factors and energy output based on the PVGIS simulations and extrapolating these for effective rooftop areas of the cities. Secondly, we advanced beyond the current state of the art by incorporating roof morphological characteristics and various area share factors to assess the RTP in more realistic terms. These two steps were applied under two different scenarios. The study determined that the optimum tilt angle is equal to the cities’ latitude for installing solar PV systems. In addition, the research emphasizes the advantages for the environment while offering energy and economic losses. According to our findings, the RTP in the rural city examined in this study is 31% greater than the urban city of India under both scenarios. The research has found that the metropolitan city, which boasts a maximum rooftop area of approximately 167 km2, could host a significant RTP of around 13,005 ± 1210.71 (6970 ± 751.38) MWh per year under scenario 1 (scenario 2). Overall, solar radiation losses due to aerosol effects dominate radiation losses due to cloud effects on the city scale. Amongst all polluted cities, estimated financial losses due to aerosols, clouds, and shadows are 11,241.70 million, 4439 million, and 1167.65 million rupees, respectively. Our findings emphasize the necessity of accounting for air pollution for accurate solar potential assessments in thoughtful city planning. The creative approach that utilizes publicly available data establishes a strong foundation for penetrating solar photovoltaic (PV) technology into society. This integration could significantly contribute to climate change mitigation and adaptation efforts, promoting environmentally sustainable urban development and prevention strategies. Full article
(This article belongs to the Special Issue Assessment of Solar Energy Based on Remote Sensing Data)
Show Figures

Graphical abstract

24 pages, 7681 KiB  
Article
Estimation of the Optimum Tilt Angle of Solar PV Panels to Maximize Incident Solar Radiation in Libya
by Alhassan Ali Teyabeen and Faisal Mohamed
Energies 2024, 17(23), 5891; https://doi.org/10.3390/en17235891 - 23 Nov 2024
Cited by 1 | Viewed by 2444
Abstract
The most significant factor affecting the performance of a solar photovoltaic (PV) system is its tilt angle. It determines the amount of incident solar energy at the panel surface. In this paper, the optimum tilt angle of solar PV panels is estimated based [...] Read more.
The most significant factor affecting the performance of a solar photovoltaic (PV) system is its tilt angle. It determines the amount of incident solar energy at the panel surface. In this paper, the optimum tilt angle of solar PV panels is estimated based on measured data recorded in twelve major cities in Libya by changing the panel’s tilt angle from 0 up to 90 in steps of 1 and searching for the corresponding maximum daily total solar radiation. A non-linear regression technique was applied to establish six empirical models to determine the optimum tilt angle in Libya. The accuracy of the models was evaluated using statistical criteria such as Taylor diagrams, root mean square error, mean bias error, and correlation coefficient. The results demonstrated that the monthly optimum tilt angle increased during the winter and decreased during the summer varying from 0 to 59. In addition, both third-order polynomial and Fourier models presented the best efficiency in estimating the optimum tilt angle with a correlation coefficient of 0.9943. The percent gain in average yearly solar energy received at the monthly optimum tilt angle varies from 12.43% to 17.24% for all studied sites compared to the horizontal surface. Full article
(This article belongs to the Special Issue Energy Performance of Photovoltaic Systems)
Show Figures

Figure 1

16 pages, 4775 KiB  
Article
Planting Density and Sowing Date Strongly Influence Canopy Characteristics and Seed Yield of Soybean in Southern Xinjiang
by Naibo Xu, Tingyong Mao, Hengbin Zhang, Xingjun Huang, Yong Zhan, Jiahao Liu, Desheng Wang and Yunlong Zhai
Agriculture 2024, 14(11), 1892; https://doi.org/10.3390/agriculture14111892 - 25 Oct 2024
Viewed by 1195
Abstract
Southern Xinjiang is an important soybean production region in China. However, the short growing season and the cultivation of winter crops (such as wheat) in the region limit the expansion of soybean planting areas. An increased planting density can compensate for the loss [...] Read more.
Southern Xinjiang is an important soybean production region in China. However, the short growing season and the cultivation of winter crops (such as wheat) in the region limit the expansion of soybean planting areas. An increased planting density can compensate for the loss in yield due to delayed sowing. To identify the quantitative relationship between increased density and delayed days, a two-year field experiment was conducted at the Tarim University Agronomy Experiment Station. Two sowing dates (April 7 (S1) and May 7 (S2)) and three planting densities of 206,800 plants·ha−1 (D1), 308,600 plants·ha−1 (D2), and 510,200 plants·ha−1 (D3) were used to compare various plant growth parameters and canopy characteristics. Late sowing and a high planting density significantly increased the plant height (S2 was 37.3% higher than S1, and D3 was 17.6% and 8.8% higher than D1 and D2), main stem internode, petiole length, and the mean tilt angle of the leaves (S2 was 22.5% higher than S1, and D3 was 11.7% higher than D2) but reduced the stem diameter (D3 was 28.6% and 12.5% lower than D1 and D2), branch number (S2 was 26.7% lower than S1, and D2 was 75% lower than D1), canopy light transmittance (S2 was 49.2% lower than S1, and D3 was 36.7% and 20.8% lower than D1 and D2), photosynthetic rate, and dry matter. The highest yield was achieved at S1D1, but the lowest yield was found for S2D1. Overall, the results suggest that earlier sowing and a lower planting density contribute to achieving an optimum canopy structure and higher yield. Our conclusions provide a reference for soybean production in southern Xinjiang. Full article
(This article belongs to the Special Issue Advances in the Cultivation and Production of Leguminous Plants)
Show Figures

Figure 1

26 pages, 8213 KiB  
Article
Study and Experiment on Screen Surface Homogenization Technology of Dislodged Material Based on Longitudinal Flow Threshing
by Jiarui Ming, Qinghao He, Dong Yue, Jie Ma, Yanan Wang, Jianning Yin, Yipeng Cui and Duanyang Geng
Agriculture 2024, 14(5), 731; https://doi.org/10.3390/agriculture14050731 - 8 May 2024
Viewed by 1079
Abstract
Aiming at the problems of uneven distribution of dislodged material on the screen surface of longitudinal axial flow grain combine harvester, a large difference in material clearing time, and large clearing loss, a dislodged material homogenizing device that can realize dislodged material return [...] Read more.
Aiming at the problems of uneven distribution of dislodged material on the screen surface of longitudinal axial flow grain combine harvester, a large difference in material clearing time, and large clearing loss, a dislodged material homogenizing device that can realize dislodged material return and homogenization at the rear of longitudinal axial flow was developed. (1) The structure and motion parameters of the reflux plate were determined, and simulation tests were carried out to verify them; (2) A test bench was set up, and the Box-Behnken test method was adopted to determine the influence law of each factor on the operating effect and the optimal parameter combination, and the results showed that the tilt angle of the return plate, motor speed, and amplitude had a significant influence on the distribution uniformity of the material on the screen surface; it was determined that the optimal combination of the angle of the return plate configuration was 28.7°, the speed of the motor was 247 r/min, the amplitude of the return plate was 18.3 mm, and the seed contamination rate was 0.48%. The optimum combination was determined to be 28.7°, 247 r/min, 18.3 mm, and 0.48% impurity rate; (3) under the conditions of the field test validation, the validation error is less than 5%, proving that it can effectively improve the performance of the clearing and reduce the rate of impurity content. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

22 pages, 5204 KiB  
Article
Thermal and Optical Analyses of a Hybrid Solar Photovoltaic/Thermal (PV/T) Collector with Asymmetric Reflector: Numerical Modeling and Validation with Experimental Results
by Dimitrios N. Korres, Theodoros Papingiotis, Irene Koronaki and Christos Tzivanidis
Sustainability 2023, 15(13), 9932; https://doi.org/10.3390/su15139932 - 21 Jun 2023
Cited by 6 | Viewed by 2370
Abstract
This study presents a combined thermal and optical, three-dimensional analysis of an asymmetric compound parabolic collector (ACPC) with an integrated hybrid photovoltaic/thermal (PV/T) receiver with the aim of establishing a sustainable approach in two ways: firstly, by determining the optimal tilt angle for [...] Read more.
This study presents a combined thermal and optical, three-dimensional analysis of an asymmetric compound parabolic collector (ACPC) with an integrated hybrid photovoltaic/thermal (PV/T) receiver with the aim of establishing a sustainable approach in two ways: firstly, by determining the optimal tilt angle for operations, and secondly, by introducing an innovative simulation method which reduces computational cost while calculating thermal performance. Initially the Incident Angle Modifier (IAM) was calculated for a wide range of incident angles, and the ray-tracing results were verified using three different simulation tools (Tonatiuh, COMSOL, and SolidWorks) with mean deviations being lower than 4%. The optimal tilt angle of the collector was determined for seven months of the year by conducting a detailed ray-tracing analysis for the mean day of each month considering whole day operation. In the thermal analysis part, the authors introduced novel numerical modeling for numerical simulations. This modeling method, designed with sustainability in mind, enables lighter computational domains for the air gap while achieving accurate numerical results. The approach was established using two distinct simulation tools: COMSOL and SolidWorks. From the optical analysis, it was found that in all months examined there is a four-hour time range around solar noon in which the optimum tilt angle remains constant at a value of 30°. The numerical models constructed for the thermal analysis were verified with each other (6.15% mean deviation) and validated through experimental results taken from the literature regarding the examined collector (<6% mean deviation). In addition, the two simulation tools exhibited a deviation of around 6% between each other. Finally, the thermal performance of the collector was investigated for the mean day of September at solar noon by adopting the optimal tilt angle for that month according to the optical analysis, considering inlet temperatures from 20 °C up to 80 °C. Full article
Show Figures

Figure 1

18 pages, 4649 KiB  
Article
Research on the Diffusion Model of Cable Corrosion Factors Based on Optimized BP Neural Network Algorithm
by Shiya Li, Guowen Yao, Wei Wang, Xuanrui Yu, Xuanbo He, Chongyang Ran and Hong Long
Buildings 2023, 13(6), 1485; https://doi.org/10.3390/buildings13061485 - 8 Jun 2023
Cited by 3 | Viewed by 1632
Abstract
Corrosion factors enter the cable via diffusion and penetration from the defect position of the cable or the connection position between the anchoring system and the cable section, seriously affecting the cable’s durability. Exploring the transmission mechanism of corrosion factors in the cable [...] Read more.
Corrosion factors enter the cable via diffusion and penetration from the defect position of the cable or the connection position between the anchoring system and the cable section, seriously affecting the cable’s durability. Exploring the transmission mechanism of corrosion factors in the cable structure is essential to reveal the durability and the long-term performance of the cable structure and to judge the corrosion damage of steel wires in the cable structure. Based on the machine learning (ML) method and the analytical solution of Fick’s second law, the laws between different temperatures, humidity, cable inclinations, cable defect areas, etc., and the diffusion coefficient of corrosion factors and the concentration of surface corrosion factors are obtained, also a spatial diffusion model of corrosion factors is established. According to the research, the optimum simulation result is achieved by employing the optimized back propagation (BP) neural network algorithm, which has a faster convergence speed and better robustness. Although ambient temperature, humidity, and corrosion time all impact the diffusion rate of corrosion factors, the tilt angle of the cable and the size of cable defects are the main factors influencing the diffusion coefficient of corrosion factors and the concentration of surface corrosion factors. The error between the concentration of corrosion factors calculated by the model in this article and the measured values at each spatial point of the cable is controlled within 15%, allowing for the spatial diffusion of corrosion factors to be effectively predicted and evaluated in practical engineering. Full article
(This article belongs to the Special Issue Intelligent Building Health Monitoring and Assessment)
Show Figures

Figure 1

12 pages, 1243 KiB  
Article
Tilt Angle Adjustment for Incident Solar Energy Increase: A Case Study for Europe
by Dragos Machidon and Marcel Istrate
Sustainability 2023, 15(8), 7015; https://doi.org/10.3390/su15087015 - 21 Apr 2023
Cited by 8 | Viewed by 3176
Abstract
The work presented in this paper aims to analyze the efficiency of using optimum tilt angles defined for several time intervals to maximize the incident solar irradiation on a certain surface deployed in Europe. Such a technique would improve the solar energy harvesting [...] Read more.
The work presented in this paper aims to analyze the efficiency of using optimum tilt angles defined for several time intervals to maximize the incident solar irradiation on a certain surface deployed in Europe. Such a technique would improve the solar energy harvesting process, both for photovoltaic panels and solar thermal collectors, while not investing in the more expensive sun-tracking devices. The optimum tilt angles have been determined for the yearly, bi-annual, seasonal, and monthly time intervals, which were delimited on a calendar and astronomical base, respectively, considering multiple locations from Europe, and using various mathematical models based on empirical equations and solar irradiation estimation. The total incident solar irradiation provided by adjusting the tilt angle multiple times per year was calculated and compared to that obtained when using the yearly optimum tilt angle. The gains for each type of adjustment were investigated, and the monthly optimization of the tilt angle is obviously the most effective one, ensuring gains of up to 7%, depending on the considered latitude. Otherwise, an optimization twice per year, using the bi-annual optimum tilt angles determined for the astronomical-defined warm and cold seasons, would be the next best solution. Full article
(This article belongs to the Special Issue Advances in Renewable Energy Production and Storage)
Show Figures

Figure 1

16 pages, 4023 KiB  
Article
Parametric Optimization of a Truncated Conical Metal Hydride Bed Surrounded by a Ring of PCM for Heat Recovery
by Sofiene Mellouli, Fatma Bouzgarrou, Talal Alqahtani, Salem Algarni, Kaouther Ghachem and Lioua Kolsi
Materials 2023, 16(8), 3234; https://doi.org/10.3390/ma16083234 - 19 Apr 2023
Cited by 6 | Viewed by 1855
Abstract
Metal hydride (MH) hydrogen storage needs an external heat source to release the stored hydrogen. To enhance the thermal performance of MHs, the incorporation of phase change materials (PCM) is a way to preserve reaction heat. This work proposes a new MH-PCM compact [...] Read more.
Metal hydride (MH) hydrogen storage needs an external heat source to release the stored hydrogen. To enhance the thermal performance of MHs, the incorporation of phase change materials (PCM) is a way to preserve reaction heat. This work proposes a new MH-PCM compact disk configuration (i.e., a truncated conical MH bed surrounded by a PCM ring). An optimization method is developed to find the optimal geometrical parameters of the MH truncated cone, which is then compared to a basic configuration (i.e., a cylindrical MH surrounded by a PCM ring). Moreover, a mathematical model is developed and used to optimize the heat transfer in a stack of MH-PCM disks. The optimum geometric parameters found (bottom radius of 0.2, top radius of 0.75 and tilt angle of 58.24) allow the truncated conical MH bed to reach a faster heat transfer rate and a large surface area of higher heat exchange. Compared to a cylindrical configuration, the optimized truncated cone shape enhances the heat transfer rate and the reaction rate in the MH bed by 37.68%. Full article
(This article belongs to the Topic Applied Heat Transfer)
Show Figures

Figure 1

19 pages, 1080 KiB  
Article
Nowcasting Hourly-Averaged Tilt Angles of Acceptance for Solar Collector Applications Using Machine Learning Models
by Ronewa Collen Nemalili, Lordwell Jhamba, Joseph Kiprono Kirui and Caston Sigauke
Energies 2023, 16(2), 927; https://doi.org/10.3390/en16020927 - 13 Jan 2023
Cited by 4 | Viewed by 2165
Abstract
Challenges in utilising fossil fuels for generating energy call for the adoption of renewable energy sources. This study focuses on modelling and nowcasting optimal tilt angle(s) of solar energy harnessing using historical time series data collected from one of South Africa’s radiometric stations, [...] Read more.
Challenges in utilising fossil fuels for generating energy call for the adoption of renewable energy sources. This study focuses on modelling and nowcasting optimal tilt angle(s) of solar energy harnessing using historical time series data collected from one of South Africa’s radiometric stations, USAid Venda station in Limpopo Province. In the study, we compared random forest (RF), K-nearest neighbours (KNN), and long short-term memory (LSTM) in nowcasting of optimum tilt angle. Gradient boosting (GB) is used as the benchmark model to compare the model’s predictive accuracy. The performance measures of mean absolute error (MAE), mean square error (MSE), root mean square error (RMSE) and R2 were used, and the results showed LSTM to have the best performance in nowcasting optimum tilt angle compared to other models, followed by the RF and GB, whereas KNN was the worst-performing model. Full article
Show Figures

Graphical abstract

15 pages, 4632 KiB  
Article
Optimization of Photovoltaic Panel Array Configurations to Reduce Lift Force Using Genetic Algorithm and CFD
by Asfand Y. Khan, Zeshan Ahmad, Tipu Sultan, Saad Alshahrani, Khazar Hayat and Muhammad Imran
Energies 2022, 15(24), 9580; https://doi.org/10.3390/en15249580 - 16 Dec 2022
Cited by 15 | Viewed by 3217
Abstract
Aerodynamic lift force acting on the solar structure is important while designing the counterweight for rooftop-mounted solar systems. Due to their unique configuration, the load estimated for solar structures using international building codes can be either higher or lower than the actual. Computational [...] Read more.
Aerodynamic lift force acting on the solar structure is important while designing the counterweight for rooftop-mounted solar systems. Due to their unique configuration, the load estimated for solar structures using international building codes can be either higher or lower than the actual. Computational Fluid Dynamics(CFD) simulations haveproven to be an efficient tool for estimating wind loads on solar panels for design purposes and identifying critical design cases. Computational Fluid Dynamics (CFD) simulations usually require high computation power, and slight changes in geometry to find optimum configuration can be time-consuming. An optimization method to minimize lift force effects on solar photovoltaic (PV) arrays installed on rooftops usesthe Computational Fluid Dynamics (CFD)and genetic algorithms proposed in this paper. The tilt angle and pitch between two rows of solar panels were parameterized, and a genetic algorithm was used to search for aconfiguration resulting in minimum wind lift force acting on the solar photovoltaic plant. Only combinations with a performance ratio >80% were considered. Three different rooftopphotovoltaic (PV) plant layout configurations were analyzed in this research. Two rows of photovoltaic (PV) panel arrays wereconsidered for optimization in the 2D domain using ANSYS Fluent. Results showed that the difference in wind-liftforce between optimized configurations against that with maximum lift force configuration for all three cases above was fifty percent. Full article
Show Figures

Figure 1

20 pages, 3071 KiB  
Article
Investigation of the Effect of Albedo in Photovoltaic Systems for Urban Applications: Case Study for Spain
by Arsenio Barbón, Luis Bayón, Guzmán Díaz and Carlos A. Silva
Energies 2022, 15(21), 7905; https://doi.org/10.3390/en15217905 - 25 Oct 2022
Cited by 7 | Viewed by 2160
Abstract
Rooftop photovoltaic generation can help cities become key players in the transition to clean energy. The optimal solar photovoltaic production on rooftops depends on two angles: tilt angle and azimuth angle. It is accepted in all studies that the ideal orientation of photovoltaic [...] Read more.
Rooftop photovoltaic generation can help cities become key players in the transition to clean energy. The optimal solar photovoltaic production on rooftops depends on two angles: tilt angle and azimuth angle. It is accepted in all studies that the ideal orientation of photovoltaic modules is toward the south (north) in the northern hemisphere (south). In contrast, the determination of the optimum tilt angle is more complex, and there are different equations for its calculation. Most of these equations do not take albedo into account. In this work, 47 Spanish province capitals representing the most populated cities have been studied with different equations for the calculation of the optimum annual tilt angle (Technical report by the Spanish Institute for the Diversification and Saving of Energy (IDAE), Lorenzo’s and Jacobson’s equation) and different types of albedo. Accounting for the geographical and the meteorological conditions of the cities, we analyzed the optimum tilt angle through a Mathematica© optimization code. The influence that different variables have on optimum tilt angle has been quantified by means of the term relative energy harvested. The use of the equations as a function of latitude increases the annual relative energy harvested by increasing the albedo. When the albedo is 0.2, the annual relative energy harvested is very similar in all equations. Comparing to the method that maximizes the total irradiation incident on a tilted surface, the minimum and maximum value of the percentage of relative energy harvested per year were 0.01 and 2.50% for the IDAE guideline, 0.00 and 2.38% for Lorenzo’s equation, 0.00 and 2.46% for Jacobson’s equation. A simplified polynomial regression model to estimate optimum tilt angle as a function of latitude, altitude and albedo has been proposed as well. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

19 pages, 5660 KiB  
Article
Frequency Specificity of Liquid-Fountain Swinging with Mist Generation: Effects of Ultrasonic Irradiation Angle
by Xiaolu Wang and Katsumi Tsuchiya
Fluids 2022, 7(9), 306; https://doi.org/10.3390/fluids7090306 - 16 Sep 2022
Cited by 2 | Viewed by 2132
Abstract
Atomization of liquid into the air attained through submerged ultrasound irradiation will involve the formation of liquid fountain, which exhibits a sequence of oscillating and/or intermittent characteristics/events: its vertical/axial growth and breakup; its lateral “compound swinging”; and its associated dynamics of mist [...] Read more.
Atomization of liquid into the air attained through submerged ultrasound irradiation will involve the formation of liquid fountain, which exhibits a sequence of oscillating and/or intermittent characteristics/events: its vertical/axial growth and breakup; its lateral “compound swinging”; and its associated dynamics of mist formation and spreading. This study attempts to provide a mechanistic view of ultrasonic atomization (UsA) process in terms of the swinging periodicity of water fountain and to specifically examine the influence of ultrasonic irradiation (i.e., transducer installation) angle on the liquid-fountain oscillations with mist generated intermittently. Through high-speed visualization, it was qualitatively found that as the extent of tilt (from the vertical direction) in the irradiation angle was increased, the degree of occurrence of mist generation and the amount of identifiable mist being generated tended to decrease. This trend was associated with reductions in both the growth rate and breakup frequency of the fountain on the tilt. It was further found, through the analysis of time variation in the resulting angle of liquid-fountain inclination, that the swinging fountain fluctuated periodically in an asymmetric manner and its periodicity could be fairly predicted based on a proposed simple “pendulum” model. An optimum value of the transducer installation angle was observed and judged to be 2° from the viewpoint of effective mist generation as well as fluid dynamic stability of the UsA liquid fountain. Full article
Show Figures

Figure 1

16 pages, 3614 KiB  
Article
Selecting Surface Inclination for Maximum Solar Power
by Ioannis-Panagiotis Raptis, Anna Moustaka, Panagiotis Kosmopoulos and Stelios Kazadzis
Energies 2022, 15(13), 4784; https://doi.org/10.3390/en15134784 - 29 Jun 2022
Cited by 8 | Viewed by 3128
Abstract
Maximum efficiency of surfaces that exploit solar energy, including Photovoltaic Panels and Thermal collectors, is achieved by installing them in a certain inclination (tilt). Most common approach is to select an inclination angle equal to the location’s latitude. This is based on the [...] Read more.
Maximum efficiency of surfaces that exploit solar energy, including Photovoltaic Panels and Thermal collectors, is achieved by installing them in a certain inclination (tilt). Most common approach is to select an inclination angle equal to the location’s latitude. This is based on the astronomical calculations of the sun’s position throughout the year but ignores meteorological factors. Cloud coverage and aerosols tend to change the direct irradiance but also the radiance sky distribution, thus horizontal surfaces receive larger amounts than tilted ones in specific atmospheric conditions (e.g., cases of cloud presence). In the present study we used 15 years of data, from 25 cities in Europe and North Africa in order to estimate the optimal tilt angle and the related energy benefits based in real atmospheric conditions. Data were retrieved from Copernicus Atmospheric Monitoring Service (CAMS). Four diffuse irradiance, various models are compared, and their differences are evaluated. Equations, extracted from solar irradiance and cloud properties regressions, are suggested to estimate the optimal tilt angle in regions, where no climatological data are available. In addition, the impact of cloud coverage is parameterized using the Cloud Modification Factor (CMF) and an equation is proposed to estimate the optimal tilt angle. A realistic representation of the photovoltaic energy production and a subsequent financial analysis were additionally performed. The results are able to support the prognosis of energy outcome and should be part of energy planning and the decision making for optimum solar power exploitation into the international clean energy transitions. Finally, results are compared to a global study and differences on the optimal tilt angle at cities of Northern Europe is presented. Full article
Show Figures

Graphical abstract

18 pages, 9973 KiB  
Article
Pure Electric Sweeper Performance Analysis and Test Verification of Dust Extraction Port
by Jin Ye, Jiabao Pan, Hejin Ai and Jiamei Wang
Appl. Sci. 2022, 12(10), 5188; https://doi.org/10.3390/app12105188 - 20 May 2022
Cited by 4 | Viewed by 2848
Abstract
Purely electric sweepers are widely used in the urban sanitation industry due to their emission-free nature and ease of miniaturisation. The dust suction port is the key to the dust suction system of the sweeper, and improving the design level of the dust [...] Read more.
Purely electric sweepers are widely used in the urban sanitation industry due to their emission-free nature and ease of miniaturisation. The dust suction port is the key to the dust suction system of the sweeper, and improving the design level of the dust suction port of the sweeper can effectively improve the operational performance of the sweeper. Using the company’s self-developed Ruiqing S26 pure electric sweeper as the research object, a CFD (Computational Fluid Dynamics) method was used to analyse the influence of the dust suction port structure parameters (front baffle tilt angle, outlet diameter) and sweeper operation parameters (driving speed, operating pressure) on the dust suction effect of the sweeper, and was verified through real vehicle tests. The results of the study show that changing the angle and outlet diameter results in a change in the flow field characteristics and, consequently, the same change in the removal efficiency, with 65° and 160 mm being the optimum angle and outlet diameter, respectively. The tests investigated the flow field characteristics of the dust extraction opening and the removal efficiency. This study can provide theoretical reference for performance optimisation and parameter matching of the sweeper. Full article
(This article belongs to the Special Issue Advances on Structural Engineering, Volume III)
Show Figures

Figure 1

14 pages, 4117 KiB  
Article
Simulation of a Low Concentrator Photovoltaic System Using COMSOL
by Maryam Mohammad Alqurashi, Entesar Ali Ganash and Reem Mohammad Altuwirqi
Appl. Sci. 2022, 12(7), 3450; https://doi.org/10.3390/app12073450 - 29 Mar 2022
Cited by 6 | Viewed by 3393
Abstract
The use of photovoltaic (PV) systems presents a great solution to high energy demand. Many factors limit the output of PV systems. One method of increasing the output of PV systems is to employ concentrators. The function of these concentrators is to increase [...] Read more.
The use of photovoltaic (PV) systems presents a great solution to high energy demand. Many factors limit the output of PV systems. One method of increasing the output of PV systems is to employ concentrators. The function of these concentrators is to increase the amount of solar radiation falling on a PV panel using optical devices. In this work, a simulation of a low concentrated photovoltaic system (LCPV) (V-trough model) will be conducted using COMSOL Multiphysics software package. The ray-tracing technique, based on the finite-element method, was used to study the performance of a V-trough without the incorporation of a tracking system. By investigating the effect of the mirrors’ inclination angles on the performance of the system, the optimum inclination angles were determined. The simulation was done for a non-tilted concentrator photovoltaic (CPV) system if placed in different geographical locations in Saudi Arabia with the inclination of the mirrors being changed every hour of the daylight. It was found that the concentration ratio of the suggested model increased for the city of Jeddah, for example, by 171% and 131% for double and partial coverage cases, respectively. In order to reduce the operation cost, the simulation was repeated with the restriction of the mirrors’ inclination to only three positions during the day. The concentration ratio decreased in this case by not more than 14%. When mirrors were fixed throughout the day, the concentration ratio dropped to about 50%. Such simulations will assist in investigating different designs of PV systems prior to their manufacturing. In addition, it could assist in determining the best geographic location for such CPV systems. Full article
Show Figures

Figure 1

Back to TopTop