Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = outdoor sweeping robot

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 11175 KB  
Article
AI-Enabled Condition Monitoring Framework for Autonomous Pavement-Sweeping Robots
by Sathian Pookkuttath, Aung Kyaw Zin, Akhil Jayadeep, M. A. Viraj J. Muthugala and Mohan Rajesh Elara
Mathematics 2025, 13(14), 2306; https://doi.org/10.3390/math13142306 - 18 Jul 2025
Viewed by 361
Abstract
The demand for large-scale, heavy-duty autonomous pavement-sweeping robots is rising due to urban growth, hygiene needs, and labor shortages. Ensuring their health and safe operation in dynamic outdoor environments is vital, as terrain unevenness and slope gradients can accelerate wear, increase maintenance costs, [...] Read more.
The demand for large-scale, heavy-duty autonomous pavement-sweeping robots is rising due to urban growth, hygiene needs, and labor shortages. Ensuring their health and safe operation in dynamic outdoor environments is vital, as terrain unevenness and slope gradients can accelerate wear, increase maintenance costs, and pose safety risks. This study introduces an AI-driven condition monitoring (CM) framework designed to detect terrain unevenness and slope gradients in real time, distinguishing between safe and unsafe conditions. As system vibration levels and energy consumption vary with terrain unevenness and slope gradients, vibration and current data are collected for five CM classes identified: safe, moderately safe terrain, moderately safe slope, unsafe terrain, and unsafe slope. A simple-structured one-dimensional convolutional neural network (1D CNN) model is developed for fast and accurate prediction of the safe to unsafe classes for real-time application. An in-house developed large-scale autonomous pavement-sweeping robot, PANTHERA 2.0, is used for data collection and real-time experiments. The training dataset is generated by extracting representative vibration and heterogeneous slope data using three types of interoceptive sensors mounted in different zones of the robot. These sensors complement each other to enable accurate class prediction. The dataset includes angular velocity data from an IMU, vibration acceleration data from three vibration sensors, and current consumption data from three current sensors attached to the key motors. A CM-map framework is developed for real-time monitoring of the robot by fusing the predicted anomalous classes onto a 3D occupancy map of the workspace. The performance of the trained CM framework is evaluated through offline and real-time field trials using statistical measurement metrics, achieving an average class prediction accuracy of 92% and 90.8%, respectively. This demonstrates that the proposed CM framework enables maintenance teams to take timely and appropriate actions, including the adoption of suitable maintenance strategies. Full article
Show Figures

Figure 1

20 pages, 26297 KB  
Article
A Framework for Coverage Path Planning of Outdoor Sweeping Robots Deployed in Large Environments
by Braulio Félix Gómez, Akhil Jayadeep, M. A. Viraj J. Muthugala and Mohan Rajesh Elara
Mathematics 2025, 13(14), 2238; https://doi.org/10.3390/math13142238 - 10 Jul 2025
Viewed by 467
Abstract
Outdoor sweeping is a tedious and labor-intensive task essential for maintaining the cleanliness of public spaces such as gardens and parks. Robots have been developed to address the limitations of traditional methods. Coverage Path Planning (CPP) is a critical function for these robots. [...] Read more.
Outdoor sweeping is a tedious and labor-intensive task essential for maintaining the cleanliness of public spaces such as gardens and parks. Robots have been developed to address the limitations of traditional methods. Coverage Path Planning (CPP) is a critical function for these robots. However, existing CPP methods often perform poorly in large environments, where such robots are typically deployed. This paper proposes a novel CPP framework for outdoor sweeping robots operating in expansive outdoor areas, defined as environments exceeding 1000 square meters in size. The framework begins by decomposing the environment into smaller sub-regions. The sequence in which these sub-regions are visited is then optimized by formulating the problem as a Travelling Salesman Problem (TSP), aiming to minimize travel distance. Once the visiting sequence is determined, a boustrophedon-based CPP is applied within each sub-region. We analyzed two decomposition strategies, Voronoi-based and grid-based, and evaluated three TSP optimization techniques: local search, record-to-record travel, and simulated annealing. This results in six possible combinations. Simulation results demonstrated that Voronoi-based decomposition achieves higher area coverage (average coverage of 95.6%) than grid-based decomposition (average coverage 52.8%). For Voronoi-based methods, local search yielded the shortest computation time, while simulated annealing achieved the lowest travel distance. We have also conducted hardware experiments to validate the real-world applicability of the proposed framework for efficient CPP in outdoor sweeping robots. The robot hardware experiment achieved 84% coverage in a 19 m × 17 m environment. Full article
(This article belongs to the Special Issue Optimization and Path Planning of Robotics)
Show Figures

Figure 1

31 pages, 7977 KB  
Article
Locomotion with Pedestrian Aware from Perception Sensor by Pavement Sweeping Reconfigurable Robot
by Lim Yi, Anh Vu Le, Balakrishnan Ramalingam, Abdullah Aamir Hayat, Mohan Rajesh Elara, Tran Hoang Quang Minh, Braulio Félix Gómez and Lum Kai Wen
Sensors 2021, 21(5), 1745; https://doi.org/10.3390/s21051745 - 3 Mar 2021
Cited by 17 | Viewed by 3321
Abstract
Regular washing of public pavements is necessary to ensure that the public environment is sanitary for social activities. This is a challenge for autonomous cleaning robots, as they must adapt to the environment with varying pavement widths while avoiding pedestrians. A self-reconfigurable pavement [...] Read more.
Regular washing of public pavements is necessary to ensure that the public environment is sanitary for social activities. This is a challenge for autonomous cleaning robots, as they must adapt to the environment with varying pavement widths while avoiding pedestrians. A self-reconfigurable pavement sweeping robot, named Panthera, has the mechanisms to perform reconfiguration in width to enable smooth cleaning operations, and it changes its behavior based on environment dynamics of moving pedestrians and changing pavement widths. Reconfiguration in the robot’s width is possible, due to the scissor mechanism at the core of the robot’s body, which is driven by a lead screw motor. Panthera will perform locomotion and reconfiguration based on perception sensors feedback control proposed while using an Red Green Blue-D (RGB-D) camera. The proposed control scheme involves publishing robot kinematic parameters for reconfiguration during locomotion. Experiments were conducted in outdoor pavements to demonstrate the autonomous reconfiguration during locomotion to avoid pedestrians while complying with varying pavements widths in a real-world scenario. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

Back to TopTop