Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (685)

Search Parameters:
Keywords = oxygen mobility

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
54 pages, 11409 KB  
Article
FracFusionNet: A Multi-Level Feature Fusion Convolutional Network for Bone Fracture Detection in Radiographic Images
by Sameh Abd El-Ghany, Mahmood A. Mahmood and A. A. Abd El-Aziz
Diagnostics 2025, 15(17), 2212; https://doi.org/10.3390/diagnostics15172212 - 31 Aug 2025
Viewed by 319
Abstract
Background/Objectives: Bones are essential components of the human body, providing structural support, enabling mobility, storing minerals, and protecting internal organs. Bone fractures (BFs) are common injuries that result from excessive physical force and can lead to serious complications, including bleeding, infection, impaired oxygenation, [...] Read more.
Background/Objectives: Bones are essential components of the human body, providing structural support, enabling mobility, storing minerals, and protecting internal organs. Bone fractures (BFs) are common injuries that result from excessive physical force and can lead to serious complications, including bleeding, infection, impaired oxygenation, and long-term disability. Early and accurate identification of fractures through radiographic imaging is critical for effective treatment and improved patient outcomes. However, manual evaluation of X-rays is often time-consuming and prone to diagnostic errors due to human limitations. To address this, artificial intelligence (AI), particularly deep learning (DL), has emerged as a powerful tool for enhancing diagnostic precision in medical imaging. Methods: This research introduces a novel convolutional neural network (CNN) model, the Multi-Level Feature Fusion Network (MLFNet), designed to capture and integrate both low-level and high-level image features. The model was evaluated using the Bone Fracture Multi-Region X-ray (BFMRX) dataset. Preprocessing steps included image normalization, resizing, and contrast enhancement to ensure stable convergence, reduce sensitivity to lighting variations in radiographic images, and maintain consistency. Ablation studies were conducted to assess architectural variations, confirming the model’s robustness and generalizability across data distributions. MLFNet’s high accuracy, interpretability, and efficiency make it a promising solution for clinical deployment. Results: MLFNet achieved an impressive accuracy of 99.60% as a standalone model and 98.81% when integrated into hybrid ensemble architectures with five leading pre-trained DL models. Conclusions: The proposed approach supports timely and precise fracture detection, optimizing the diagnostic process and reducing healthcare costs. This approach offers significant potential to aid clinicians in fields such as orthopedics and radiology, contributing to more equitable and effective patient care. Full article
(This article belongs to the Special Issue Machine-Learning-Based Disease Diagnosis and Prediction)
Show Figures

Figure 1

16 pages, 2240 KB  
Article
Defect-Engineered MnO2@Ni Foam Electrode for Zinc-Ion Batteries Toward Mobile Robotics Applications
by Shilin Li, Dong Xie, Taoyun Zhou, Qiaomei Zhao, Muzhou Liu and Xinyu Li
Nanomaterials 2025, 15(17), 1312; https://doi.org/10.3390/nano15171312 - 26 Aug 2025
Viewed by 436
Abstract
Aqueous zinc-ion batteries (AZIBs) have gained significant attention as promising candidates for next-generation energy storage systems, especially in mobile robotics, due to their inherent safety, environmental friendliness, and low cost. However, the practical application of AZIBs is often hindered by slow Zn2+ [...] Read more.
Aqueous zinc-ion batteries (AZIBs) have gained significant attention as promising candidates for next-generation energy storage systems, especially in mobile robotics, due to their inherent safety, environmental friendliness, and low cost. However, the practical application of AZIBs is often hindered by slow Zn2+ diffusion and the poor structural stability of the cathode materials under high-rate or long-term operation. To address these challenges, a defect-engineered, binder-free MnO2 electrode, with a MnO2 loading of 1.35 mg·cm−2, is synthesized via in situ hydrothermal growth of ultrathin MnO2 nanosheets directly on a 3D conductive nickel foam scaffold, followed by reductive annealing to introduce abundant oxygen vacancies. These oxygen-rich defect sites significantly enhance Zn2+ adsorption, improve charge transfer kinetics, and contribute to enhanced pseudocapacitive behavior, further improving overall electrochemical performance. The intimate contact between the MnO2 and Ni substrate ensures efficient electron transport and robust structural integrity during repeated cycling. With this synergistic architecture, the MnO2@Ni electrode achieves a high specific capacity of 122.9 mAh·g−1 at 1 A·g−1, demonstrating excellent cycling durability with 94.24% capacity retention after 800 cycles and nearly 99% coulombic efficiency. This study offers a scalable strategy for designing high-performance, structurally stable Zn-ion battery cathodes with improved rate capability, making it a promising candidate for energy-intensive mobile robotic and flexible electronic systems. Full article
(This article belongs to the Special Issue Novel Electrode Materials for Solid-State Batteries)
Show Figures

Figure 1

43 pages, 13206 KB  
Review
Cerium-Doped Strontium Ferrate Perovskite Oxides: Sustainable Materials to Face Energy and Environmental Challenges
by Maria Laura Tummino, Francesca Deganello and Vittorio Boffa
Sustain. Chem. 2025, 6(3), 24; https://doi.org/10.3390/suschem6030024 - 20 Aug 2025
Viewed by 859
Abstract
Facing energy and environmental issues is recognized globally as one of the major challenges for sustainable development, to which sustainable chemistry can make significant contributions. Strontium ferrate-based materials belong to a little-known class of perovskite-type compounds in which iron is primarily stabilized in [...] Read more.
Facing energy and environmental issues is recognized globally as one of the major challenges for sustainable development, to which sustainable chemistry can make significant contributions. Strontium ferrate-based materials belong to a little-known class of perovskite-type compounds in which iron is primarily stabilized in the unusual 4+ oxidation state, although some Fe3+ is often present, depending on the synthesis and processing conditions and the type and amount of dopant. When doped with cerium at the Sr site, the SrFeO3−δ cubic structure is stabilized, more oxygen vacancies form and the Fe4+/Fe3+ redox couple plays a key role in its functional properties. Alone or combined with other materials, Ce-doped strontium ferrates can be successfully applied to wastewater treatment. Specific doping at the Fe site enhances their electronic conductivity for use as electrodes in solid oxide fuel cells and electrolyzers. Their oxygen storage capacity and oxygen mobility are also exploited in chemical looping reactions. The main limitations of these materials are SrCO3 formation, especially at the surface; their low surface area and porosity; and cation leaching at acidic pH values. However, these limitations can be partially addressed through careful selection of synthesis, processing and testing conditions. This review highlights the high versatility and efficiency of cerium-doped strontium ferrates for energy and environmental applications, both at low and high temperatures. The main literature on these compounds is reviewed to highlight the impact of their key properties and synthesis and processing parameters on their applicability as sustainable thermocatalysts, electrocatalysts, oxygen carriers and sensors. Full article
Show Figures

Graphical abstract

14 pages, 3884 KB  
Article
Microwave-Enhanced Catalytic Performance of Benzene Oxidation on MOF-Derived Mn/Ce-Co Oxides
by Shefeng Li, Pengyi Zhao, Ziyang Liu, Chang Wang, Linling Wang and Siyu Ding
Molecules 2025, 30(16), 3388; https://doi.org/10.3390/molecules30163388 - 15 Aug 2025
Viewed by 468
Abstract
Microwave-assisted processing has shown tremendous promise in accelerating chemical reactions and reducing energy consumption through targeted dielectric heating. This study develops MOF-derived Mn-Co and Ce-Co oxide catalysts for energy-efficient benzene oxidation via microwave catalysis. The MnCo spinel oxides (particularly MnCo11-400) exhibit superior microwave [...] Read more.
Microwave-assisted processing has shown tremendous promise in accelerating chemical reactions and reducing energy consumption through targeted dielectric heating. This study develops MOF-derived Mn-Co and Ce-Co oxide catalysts for energy-efficient benzene oxidation via microwave catalysis. The MnCo spinel oxides (particularly MnCo11-400) exhibit superior microwave absorption and catalytic activity due to enhanced oxygen mobility and tailored dielectric properties. Microwave irradiation enables rapid benzene mineralization over the MnCo11-400 catalyst, achieving 78% conversion at 30 W and complete conversion at 50 W, demonstrating exceptional energy efficiency at low power inputs. Microwaves significantly lower the reaction temperature compared to conventional thermal catalysis (ΔT = 100–250 °C). Stability tests confirm robustness over repeated power cycling (80% conversion retained after 3 × 1 h on/off cycles). Furthermore, an adsorption–microwave oxidation synergistic strategy is demonstrated: pre-adsorbed low-concentration benzene (1.15 mmol) at ambient temperature undergoes complete mineralization within 20 min under 30 W microwave irradiation. The intermittent microwave operation achieves equivalent benzene removal to continuous thermal processing while significantly reducing energy demand. This work establishes MOF-derived spinel oxides as high-performance microwave catalysts for low-temperature VOC abatement. Full article
(This article belongs to the Section Organometallic Chemistry)
Show Figures

Figure 1

12 pages, 2529 KB  
Article
Selective DUV Femtosecond Laser Annealing for Electrical Property Modulation in NMOS Inverter
by Joo Hyun Jeong, Won Woo Lee, Sang Jik Kwon, Min-Kyu Park and Eou-Sik Cho
Nanomaterials 2025, 15(16), 1247; https://doi.org/10.3390/nano15161247 - 14 Aug 2025
Viewed by 392
Abstract
Amorphous indium gallium zinc oxide (a-IGZO) is widely used as an oxide semiconductor in the electronics industry due to its low leakage current and high field-effect mobility. However, a-IGZO suffers from notable limitations, including crystallization at temperatures above 600 °C and the high [...] Read more.
Amorphous indium gallium zinc oxide (a-IGZO) is widely used as an oxide semiconductor in the electronics industry due to its low leakage current and high field-effect mobility. However, a-IGZO suffers from notable limitations, including crystallization at temperatures above 600 °C and the high cost of indium. To address these issues, nitrogen-doped zinc oxynitride (ZnON), which can be processed at room temperature, has been proposed. Nitrogen in ZnON effectively reduces oxygen vacancies (VO), resulting in enhanced field-effect mobility and improved stability under positive bias stress (PBS) compared to IGZO. In this study, selective deep ultraviolet femtosecond (DUV fs) laser annealing was applied to the channel region of ZnON thin-film transistors (TFTs), enabling rapid threshold voltage (Vth) modulation within microseconds, without the need for vacuum processing. Based on the electrical characteristics of both Vth-modulated and pristine ZnON TFTs, an NMOS inverter was fabricated, demonstrating reliable performance. These results suggest that laser annealing is a promising technique, applicable to various logic circuits and electronic devices. Full article
Show Figures

Figure 1

16 pages, 1838 KB  
Article
Nano-Thin Oxide Layers Formed on Hydrogen Plasma Modified Crystalline Si for Advanced Applications
by Sashka Alexandrova, Anna Szekeres and Evgenia Valcheva
Nanomanufacturing 2025, 5(3), 12; https://doi.org/10.3390/nanomanufacturing5030012 - 12 Aug 2025
Viewed by 320
Abstract
Since the early days of silicon manufacturing, hydrogen gas treatment has been used to control the defect concentrations. Its beneficial effect can be enhanced using hydrogen plasma as a source of active atomic hydrogen. Hydrogen plasma modification of c-Si surface can be challenging [...] Read more.
Since the early days of silicon manufacturing, hydrogen gas treatment has been used to control the defect concentrations. Its beneficial effect can be enhanced using hydrogen plasma as a source of active atomic hydrogen. Hydrogen plasma modification of c-Si surface can be challenging because the plasma can induce precursors of defect centers that can persist at the interface and/or grown oxide after subsequent thermal oxidation. In the present study, we investigate nanoscale silicon dioxides with thicknesses in the range of 6–22 nm grown at low temperature (850 °C) in dry oxygen on radio frequency (RF) hydrogen plasma-treated silicon surface. The properties of these oxides are compared to oxides grown following standard Radio Corporation of America (RCA) Si technology. Electroreflectance measurements reveal better interface quality with enhanced electron mobility and lowered oxidation-induced stress levels when the oxides are grown on H-plasma modified c-Si substrates. These results are in good accordance with the reduced defect concentration established from the analysis of the current–voltage (I-V) and multifrequency capacitance–voltage (C-V) characteristics of metal-oxide-semiconductor (MOS) capacitors incorporating the Si-SiO2 structures. The study proves the potential of hydrogen plasma treatment of Si prior to oxidation for various Si-based applications. Full article
Show Figures

Figure 1

14 pages, 3205 KB  
Article
Typomorphic Characterization and Geological Significance of Megacrystalline Uraninite in the Haita Area, Kangdian Region, Southwestern China
by Minghui Yin, Zhengqi Xu, Bo Xie, Chengjiang Zhang and Jian Yao
Crystals 2025, 15(8), 718; https://doi.org/10.3390/cryst15080718 - 8 Aug 2025
Viewed by 353
Abstract
Megacrystalline uraninite within Neoproterozoic migmatites in the Haita area of the Kangdian region of China provides a unique condition for the investigation of uraninite typomorphism under high-temperature conditions. The present study represents the first systematic characterization of the typomorphic signatures and genetic significance [...] Read more.
Megacrystalline uraninite within Neoproterozoic migmatites in the Haita area of the Kangdian region of China provides a unique condition for the investigation of uraninite typomorphism under high-temperature conditions. The present study represents the first systematic characterization of the typomorphic signatures and genetic significance of megacrystalline uraninite via optical microscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XRS), and electron probe microanalysis (EPMA). The results show that uranium mineralization occurs as euhedral megacrystalline uraninite (black grains ≤ 10 mm) hosted in quartz veins, exhibiting frequent rhombic dodecahedral and subordinate cubic–octahedral morphologies. The paragenetic assemblage is quartz–uraninite–titanite–apatite–molybdenite. The investigated uraninite is characterized by elevated unit-cell parameters and a reduced oxygen index, with complex chemical compositions enriched in ThO2 and Y2O3. These typomorphic characteristics indicate crystallization under high-temperature reducing conditions with gradual cooling. Post-crystallization tectonic fragmentation and uplift-facilitated oxidation occur, generating secondary uranium minerals with concentric color zonation (orange–red to yellow–green halos). Mineralization was jointly controlled by migmatization and late-stage tectonism, with the breakup of the Rodinia supercontinent serving as the key driver of fluid mobilization and ore deposition. The data materialized in the present study improve our knowledge about uranium mineralization during continental breakup events. Full article
Show Figures

Figure 1

13 pages, 1482 KB  
Article
Effect of Surrounding Detritus on Phragmites australis Litter Decomposition: Evidence from Laboratory Aquatic Microcosms
by Franca Sangiorgio, Daniela Santagata, Fabio Vignes, Maurizio Pinna and Alberto Basset
Limnol. Rev. 2025, 25(3), 34; https://doi.org/10.3390/limnolrev25030034 - 1 Aug 2025
Viewed by 6474
Abstract
The availability of detritus is a key factor influencing aquatic biota and can significantly affect decomposition processes. In this study, we investigated how varying quantities of surrounding detritus impact leaf litter decay rates. It was tested in flowing and still-water microcosms to highlight [...] Read more.
The availability of detritus is a key factor influencing aquatic biota and can significantly affect decomposition processes. In this study, we investigated how varying quantities of surrounding detritus impact leaf litter decay rates. It was tested in flowing and still-water microcosms to highlight context-dependent effects of surrounding detritus on leaf litter decomposition. To isolate the effect of detritus amount, experiments were conducted in laboratory microcosms simulating lotic and lentic ecosystems, each containing leaf fragments for decomposition assessments. Four detritus quantities were tested, with invertebrates either allowed or restricted from moving among detritus patches. Leaf decomposition rates were influenced by the amount of surrounding detritus, with slower decay observed at higher detritus conditions, regardless of invertebrate mobility. Detritivore distribution responded to both detritus quantity and oxygen availability, showing a preference for high detritus conditions. Additionally, detritus quantity affected microbial activity with a quadratic response, as indicated by leaf respiration rates. Overall, our findings indicate that the amount of surrounding detritus modulates leaf litter decomposition independently of invertebrate density, by influencing oxygen dynamics and, consequently, the activity of biological decomposers. Full article
Show Figures

Graphical abstract

17 pages, 1525 KB  
Article
Clonidine Protects Endothelial Cells from Angiotensin II-Induced Injury via Anti-Inflammatory and Antioxidant Mechanisms
by Bekir Sıtkı Said Ulusoy, Mehmet Cudi Tuncer and İlhan Özdemir
Life 2025, 15(8), 1193; https://doi.org/10.3390/life15081193 - 27 Jul 2025
Viewed by 677
Abstract
Background: Cerebral aneurysm (CA) is a focal or diffuse pathological dilation of the cerebral arterial wall that arises due to various etiological factors. It represents a serious vascular condition, particularly affecting the elderly, and carries a high risk of rupture and neurological morbidity. [...] Read more.
Background: Cerebral aneurysm (CA) is a focal or diffuse pathological dilation of the cerebral arterial wall that arises due to various etiological factors. It represents a serious vascular condition, particularly affecting the elderly, and carries a high risk of rupture and neurological morbidity. Clonidine (CL), an α2-adrenergic receptor agonist, has been reported to suppress aneurysm progression; however, its underlying molecular mechanisms, especially in relation to cerebral endothelial dysfunction, remain unclear. This study aimed to investigate the potential of CL to mitigate CA development by modulating apoptosis, inflammation, and oxidative stress in an Angiotensin II (Ang II)-induced endothelial injury model. Methods: Human brain microvascular endothelial cells (HBMECs) were used to establish an in vitro model of endothelial dysfunction by treating cells with 1 µM Ang II for 48 h. CL was administered 2 h prior to Ang II exposure at concentrations of 0.1, 1, and 10 µM. Cell viability was assessed using the MTT assay. Oxidative stress markers, including reactive oxygen species (ROS) and Nitric Oxide (NO), were measured using 2′,7′–dichlorofluorescin diacetate (DCFDA). Gene expression levels of vascular endothelial growth factor (VEGF), matrix metalloproteinases (MMP-2 and MMP-9), high mobility group box 1 (HMGB1), and nuclear factor kappa B (NF-κB) were quantified using RT-qPCR. Levels of proinflammatory cytokines; tumor necrosis factor-alpha (TNF-α), Interleukin-6 (IL-6), and interferon-gamma (IFN-γ); were measured using commercial ELISA kits. Results: Ang II significantly increased ROS production and reduced NO levels, accompanied by heightened proinflammatory cytokine release and endothelial dysfunction. MTT assay revealed a marked decrease in cell viability following Ang II treatment (34.18%), whereas CL preserved cell viability in a concentration-dependent manner: 44.24% at 0.1 µM, 66.56% at 1 µM, and 81.74% at 10 µM. CL treatment also significantly attenuated ROS generation and inflammatory cytokine levels (p < 0.05). Furthermore, the expression of VEGF, HMGB1, NF-κB, MMP-2, and MMP-9 was significantly downregulated in response to CL. Conclusions: CL exerts a protective effect on endothelial cells by reducing oxidative stress and suppressing proinflammatory signaling pathways in Ang II-induced injury. These results support the potential of CL to mitigate endothelial injury in vitro, though further in vivo studies are required to confirm its translational relevance. Full article
(This article belongs to the Section Pharmaceutical Science)
Show Figures

Figure 1

14 pages, 1959 KB  
Article
Experimental Investigation of Environmental Factors Affecting Cable Bolt Corrosion in Simulated Underground Conditions
by Saisai Wu, Pengbo Cui, Chunshan Zheng, Krzysztof Skrzypkowski and Krzysztof Zagórski
Materials 2025, 18(15), 3460; https://doi.org/10.3390/ma18153460 - 23 Jul 2025
Viewed by 328
Abstract
Corrosion-related failures have emerged as a critical driver of premature support bolt failures in underground mines, emphasizing the urgency of understanding the phenomenon with respect to enhancing safety in underground environments. This study investigated key factors influencing bolt degradation through extensive experimental evaluation [...] Read more.
Corrosion-related failures have emerged as a critical driver of premature support bolt failures in underground mines, emphasizing the urgency of understanding the phenomenon with respect to enhancing safety in underground environments. This study investigated key factors influencing bolt degradation through extensive experimental evaluation of cable bolts in simulated underground bolt environments. Multi-stranded cable specimens were exposed to saturated clay, coal, mine water, and grout/cement environments. Water samples were collected weekly from critical packing sections and analyzed for pH, electrical conductivity, and dissolved oxygen. The mineralogy and atmospheric conditions were identified as principal corrosion factors, and clay-rich and coal matrices accelerated corrosion, linked to high ion mobility and oxygen diffusion. Secondary factors correlated context-dependently: pH was negatively associated with corrosion in mineral-packed environments, while conductivity was correlated with non-mineral matrices. Notably, multi-stranded cables exhibited higher localized galvanic corrosion in inter-strand zones, highlighting design vulnerabilities. This work provides pioneering evidence that geological conditions are primary drivers for corrosion-related failures, offering actionable guidance for corrosion mitigation strategies in mining infrastructure. Full article
Show Figures

Figure 1

15 pages, 3671 KB  
Article
Improving the Water–Gas Shift Performance of a Co/CeO2 Catalyst for Hydrogen Production
by Nipatta Chumanee and Pannipa Nachai
ChemEngineering 2025, 9(4), 71; https://doi.org/10.3390/chemengineering9040071 - 10 Jul 2025
Viewed by 500
Abstract
The aim of this study was to improve the water–gas shift efficiency of Co/CeO2 catalyst by incorporating praseodymium and rhenium. The catalysts were synthesized via combustion method and characterized using X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET) surface area analysis, Scanning Electron Microscope (SEM), [...] Read more.
The aim of this study was to improve the water–gas shift efficiency of Co/CeO2 catalyst by incorporating praseodymium and rhenium. The catalysts were synthesized via combustion method and characterized using X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET) surface area analysis, Scanning Electron Microscope (SEM), H2-temperature programmed reduction (H2-TPR), NH3-temperature programmed desorption (NH3-TPD), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). These characterization techniques evaluate the increase of the surface acidity and oxygen vacancies in Co-based catalysts, which leads to an increase in water–gas shift performance because CO molecules prefer to react with surface oxygen, then followed by the production of CO2 and oxygen vacancies which act as active sites for H2O dissociation. The 1%Re4%Co/Ce-5%Pr-O catalyst exhibited a maximum CO conversion of 86% at 450 °C, substantially outperforming the 5%Co/Ce-5%Pr-O catalyst, which showed only 62% CO conversion at 600 °C. In addition, 1%Re4%Co/Ce-5%Pr-O catalyst is more resistant towards deactivation than 5%Co/Ce-5%Pr-O. The result presented that the catalytic activity of 1%Re4%Co/Ce-5%Pr-O catalyst was kept constant for the whole period of 50 h, while a 6% decrease in water–gas shift activity was found for the 5%Co/Ce-5%Pr-O catalyst. Moreover, the addition of rhenium into the Co/Ce-Pr-O catalyst reveals that the enhancement of oxygen vacancy concentration, oxygen mobility, and surface acidity, thereby enhances CO conversion efficiency. Full article
Show Figures

Figure 1

26 pages, 1980 KB  
Review
The Destructive Cycle in Bronchopulmonary Dysplasia: The Rationale for Systems Pharmacology Therapeutics
by Mia Teng, Tzong-Jin Wu, Kirkwood A. Pritchard, Billy W. Day, Stephen Naylor and Ru-Jeng Teng
Antioxidants 2025, 14(7), 844; https://doi.org/10.3390/antiox14070844 - 10 Jul 2025
Viewed by 740
Abstract
Bronchopulmonary dysplasia (BPD) remains a significant complication of premature birth and neonatal intensive care. While much is known about the drivers of lung injury, few studies have addressed the interrelationships between oxidative stress, inflammation, and downstream events, such as endoplasmic reticulum (ER) stress. [...] Read more.
Bronchopulmonary dysplasia (BPD) remains a significant complication of premature birth and neonatal intensive care. While much is known about the drivers of lung injury, few studies have addressed the interrelationships between oxidative stress, inflammation, and downstream events, such as endoplasmic reticulum (ER) stress. In this review, we explore the concept of a “destructive cycle” in which these drivers self-amplify to push the lung into a state of maladaptive repair. Animal models, primarily the hyperoxic rat pup model, support a sequential progression from the generation of reactive oxygen species (ROS) and inflammation to endoplasmic reticulum (ER) stress and mitochondrial injury. We highlight how these intersecting pathways offer not just therapeutic targets but also opportunities for interventions that reprogram system-wide responses. Accordingly, we explore the potential of systems pharmacology therapeutics (SPTs) to address the multifactorial nature of BPD. As a prototype SPT, we describe the development of N-acetyl-L-lysyl-L-tyrosyl-L-cysteine amide (KYC), a systems chemico-pharmacology drug (SCPD), which is selectively activated in inflamed tissues and modulates key nodal targets such as high-mobility group box-1 (HMGB1) and Kelch-like ECH-associated protein-1 (Keap1). Collectively, the data suggest that future therapies may require a coordinated, network-level approach to break the destructive cycle and enable proper regeneration rather than partial repair. Full article
(This article belongs to the Special Issue Oxidative Stress in the Newborn)
Show Figures

Figure 1

19 pages, 10122 KB  
Article
The Influence of Equal-Channel Angular Pressing on the Microstructure and Properties of a Steel–Aluminum Composite
by Yang Liu, Junrui Xu, Bingnan Chen, Yuqi Fan, Wenxin Lv and Hua Sun
Metals 2025, 15(7), 774; https://doi.org/10.3390/met15070774 - 9 Jul 2025
Cited by 1 | Viewed by 465
Abstract
Under the global initiative for automotive lightweighting to address climate challenges, this study investigates the microstructure evolution of steel–aluminum composites processed by hot equal-channel angular pressing (H-ECAP). Using 6061-T6 aluminum cores clad with 20 # low carbon steel tubes processed through 1–4 C-path [...] Read more.
Under the global initiative for automotive lightweighting to address climate challenges, this study investigates the microstructure evolution of steel–aluminum composites processed by hot equal-channel angular pressing (H-ECAP). Using 6061-T6 aluminum cores clad with 20 # low carbon steel tubes processed through 1–4 C-path passes (Φ = 120°, ψ = 30°), we demonstrate significant microstructural improvements. The steel component showed progressive grain refinement from 2.2 μm (1 pass) to 1.3 μm (4 pass), with substructures decreasing from 72.19% to 35.46%, HAGB increasing from 31.2% to 34.6%, and hardness increasing from 222 HV to 271 HV. Concurrently, aluminum experienced grain refinement from 59.3 μm to 28.2 μm, with recrystallized structures surging from 0.97% to 71.81%, HAGB increasing from 9.96% to 63.76%, and hardness increasing from 51.4 HV to 83.6 HV. The interfacial layer thickness reduced by 74% (29.98 μm to 7.78 μm) with decreasing oxygen content, containing FeAl3, Fe2Al5, and minimal matrix oxides. Yield strength gradually increased from 361 MPa (one pass) to 372.35 MPa (four passes), accompanied by a significant enhancement in compressive strength. These findings reveal that H-ECAP’s thermomechanical coupling effect effectively enhances interface bonding quality while suppressing detrimental intermetallic growth, providing a viable solution to overcome traditional manufacturing limitations in steel–aluminum composite applications for sustainable mobility. Full article
Show Figures

Figure 1

34 pages, 8503 KB  
Article
Hydrogeochemical Characterization and Determination of Arsenic Sources in the Groundwater of the Alluvial Plain of the Lower Sakarya River Basin, Turkey
by Nisa Talay and İrfan Yolcubal
Water 2025, 17(13), 1931; https://doi.org/10.3390/w17131931 - 27 Jun 2025
Viewed by 631
Abstract
Arsenic (As) contamination in groundwater represents a major global public health threat, particularly in alluvial aquifer systems where redox-sensitive geochemical processes facilitate the mobilization of naturally occurring trace elements. This study investigates groundwater quality, particularly focusing on the origin of arsenic contamination in [...] Read more.
Arsenic (As) contamination in groundwater represents a major global public health threat, particularly in alluvial aquifer systems where redox-sensitive geochemical processes facilitate the mobilization of naturally occurring trace elements. This study investigates groundwater quality, particularly focusing on the origin of arsenic contamination in shallow and deep alluvial aquifers of the Lower Sakarya River Basin, which are crucial for drinking, domestic, and agricultural uses. Groundwater samples were collected from 34 wells—7 tapping the shallow aquifer (<60 m) and 27 tapping the deep aquifer (>60 m)—during wet and dry seasons for the hydrogeochemical characterization of groundwater. Environmental isotope analysis (δ18O, δ2H, 3H) was conducted to characterize origin and groundwater residence times, and the possible hydraulic connection between shallow and deep alluvial aquifers. Mineralogical and geochemical characterization of the sediment core samples were carried out using X-ray diffraction and acid digestion analyses to identify mineralogical sources of As and other metals. Pearson correlation coefficient analyses were also applied to the results of the chemical analyses to determine the origin of metal enrichments observed in the groundwater, as well as related geochemical processes. The results reveal that 33–41% of deep groundwater samples contain arsenic concentrations exceeding the WHO and Turkish drinking water standard of 10 µg/L, with maximum values reaching 373 µg/L. Manganese concentrations exceeded the 50 µg/L limit in up to 44% of deep aquifer samples, reaching 1230 µg/L. On the other hand, iron concentrations were consistently low, remaining below the detection limit in nearly all samples. The co-occurrence of As and Mn above their maximum contaminant levels was observed in 30–33% of the wells, exhibiting extremely low sulfate concentrations (0.2–2 mg/L), notably low dissolved oxygen concentration (1.45–3.3 mg/L) alongside high bicarbonate concentrations (450–1429 mg/L), indicating localized varying reducing conditions in the deep alluvial aquifer. The correlations between molybdenum and As (rdry = 0.46, rwet = 0.64) also indicate reducing conditions, where Mo typically mobilizes with As. Arsenic concentrations also showed significant correlations with bicarbonate (HCO3) (rdry = 0.66, rwet = 0.80), indicating that alkaline or reducing conditions are promoting arsenic mobilization from aquifer materials. All these correlations between elements indicate that coexistence of As with Mn above their MCLs in deep alluvial aquifer groundwater result from reductive dissolution of Mn/Fe(?) oxides, which are primary arsenic hosts, thereby releasing arsenic into groundwater under reducing conditions. In contrast, the shallow aquifer system—although affected by elevated nitrate, sulfate, and chloride levels from agricultural and domestic sources—exhibited consistently low arsenic concentrations below the maximum contaminant level. Seasonal redox fluctuations in the shallow zone influence manganese concentrations, but the aquifer’s more dynamic recharge regime and oxic conditions suppress widespread As mobilization. Mineralogical analysis identified that serpentinite, schist, and other ophiolitic/metamorphic detritus transported by river processes into basin sediments were identified as the main natural sources of arsenic and manganese in groundwater of deep alluvium aquifer. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

20 pages, 4330 KB  
Article
Extraction of Terpenoids from Pine Needle Biomass Using Dimethyl Ether
by Gary S. Groenewold, Christopher Orme, Caleb Stetson, Rebecca M. Brown, Lynn M. Wendt and Aaron D. Wilson
Separations 2025, 12(7), 169; https://doi.org/10.3390/separations12070169 - 26 Jun 2025
Viewed by 751
Abstract
Pine needles are an industrial feedstock for extracts used in a variety of applications, but conventional extraction methods often result in a degradation of the terpenoid compounds that naturally occur in loblolly pine (Pinus taeda). Separation of these compounds from pine [...] Read more.
Pine needles are an industrial feedstock for extracts used in a variety of applications, but conventional extraction methods often result in a degradation of the terpenoid compounds that naturally occur in loblolly pine (Pinus taeda). Separation of these compounds from pine biomass is an energy-intensive operation, typically requiring a significant input of thermal energy. An alternative separation approach with potential energy savings is extraction with a condensable gas, namely, dimethyl ether. Biomass materials are exposed to liquid dimethyl ether under pressure, which mobilizes the organics. The extract is then separated from the insoluble pine matter, and dimethyl ether is volatilized away from the separated organic species. A variety of terpene derivatives were extracted from pine needle biomass using this approach, including monoterpenes, sesquiterpenes, and related oxygenates, which were identified using two-dimensional gas chromatography/mass spectrometry. Additionally, the dimethyl ether-treated needles resemble needles subjected to low-temperature drying, whereas needles treated with a high-temperature drying method appear to have shrunken structures. The results suggest that dimethyl ether extraction has significant potential for separating valuable organics from complex matrices without the application of thermal energy during treatment. Full article
Show Figures

Figure 1

Back to TopTop